AI 语言模型的运作机制主要包括以下几个方面:
需要注意的是,大模型并不拥有无限知识,其知识来源于训练过程中接触到的数据,这些数据是有限的。虽然大模型可以处理和生成大量信息,但只能回答在训练过程中见过或类似的问题,且训练后的知识库不会自动更新。
首先讲一下LLm,即large-language-model,大语言模型的工作原理。我们可以观察LLm大模型比如豆包在回复的时候,是不是一个一个字,行业里称之为流式输出的方式给你呈现内容的。为什么会这样呢?这是因为,大模型确实是在一个字一个字地去推理生成内容的。就好像我们看输入法的输入联想逻辑,输入联想,其实就是根据你输入的单个字,来推测你要输入的下个字是什么。比如我打了一个“输”字,那么我要打的下字就很有可能是“入”,当然这里就会有人问了,我要打的下个字也很有可能是“球”啊。没错,最开始的研究人员确实也识别到了这个问题。那么解法是什么呢?其实很简单,我们把上下文加入到输入里,不就能帮助模型理解下个字该是什么了吗。比如我们输入的是“我想在这个单元格中输”,那这下一个字大概率就是“入”。而我们如果输入的是“这场足球比赛中,输”,那下一个字大概率就是“球”。那么看到这里,善于思考的同学可能会发现这里存在第一,我们知道大模型的学习数据规模往往是海量的,每次的计算如果都带入全量的数据,算力上肯定是吃不消的。第二,仅去算字的概率,似乎也有问题。因为我们用于训练的文章数据等,往往是出于各种场景各种背景写就的。仅去算下个字出现的概率,容易会被各种不相干的信息干扰。是的,研究人员同样也遇到了这两个问题,而这时,两个概念的出现解决了这一难题。一个是词向量机制,一个是transformer模型中的attention自注意力机制。1)词向量机制
“小模型”确实有其优势,尤其是在特定任务上表现得非常出色。比如,如果你训练了一个专门识别猫🐱或狗🐶的模型,它在这个任务上可能非常精准。然而,这个模型就无法用于其他任务(因为用来训练模型的数据主要是由猫猫狗狗的照片组成的)。而“大模型”则不同,它像一个多功能的基础平台(有时也被称为“基座模型”)。大模型可以处理多种不同的任务,应用范围非常广泛,并且拥有更多的通识知识。这就是为什么尽管“小模型”在某些特定领域内表现优异,我们仍然需要“大模型”的原因:它们能够在更广泛的场景中提供支持和解决问题。[heading1]问题十一、大模型拥有无限知识吗?[content]大模型并不拥有无限知识。大模型的知识来源于它们在训练过程中接触到的数据,而这些数据是有限的。虽然大模型可以处理和生成大量的信息,但它们的知识来自于它们所训练的数据集,这些数据集虽然庞大,但仍然是有限的。因此,大模型只能回答它们在训练过程中见过或类似的问题。大模型在训练之后,其知识库不会自动更新。也就是说,它们无法实时获取最新的信息,除非重新训练或通过其他方式更新模型。大模型在某些特定或专业领域的知识可能不够全面,因为这些领域的数据在训练集中可能较少。[heading1]问题十二、大型语言模型的运作机制是什么?[content]大型语言模型的运作机制主要是通过大量的数据训练来学习语言的结构和模式,然后根据输入生成相应的文本。这些模型通过阅读大量的文本数据,学习到语言中的词汇、语法、句子结构以及上下文关系。当你给它一个输入时,它会根据这些学习到的知识生成一个连贯的回答。所以它永远在猜测下一个字符将要生成什么,类似于词语接龙游戏。
如果大家使用Kimi Chat来查询某个问题,你会发现它会在互联网上检索相关内容,并基于检索结果进行总结分析,最后给出结论。这其实是大模型利用「网页搜索」工具的一个典型例子,同时你也会看到PPT中介绍了非常多的不同领域类型的工具,它其实是为大模型在获取、处理、呈现信息上做额外的补充。PlanningAgent通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。比如下图中:Agent会先识别男孩的姿势,并可能找到一个姿势提取模型来识别姿势,在接下来要找到一个姿势图像模型来合成一个新的女孩图像,然后再使用图像理解文本的模型,并在最后使用语音合成输出,完成这个流程任务。Multiagent Collaboration吴恩达通过开源项目ChatDev进行举例,你可以让一个大语言模型扮演不同的角色,比如让一个Agent扮演公司CEO、产品经理、设计师、代码工程师或测试人员,这些Agent会相互协作,根据需求共同开发一个应用或者复杂程序。AI Agent基本框架OpenAI的研究主管Lilian Weng曾经写过一篇博客叫做《LLM Powered Autonomous Agents》,其中就很好的介绍了Agent的设计框架,她提出了“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型LLM扮演了Agent的“大脑”。Planning(规划)主要包括子目标分解、反思与改进。将大型任务分解为较小可管理的子目标处理复杂的任务。而反思和改进指可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。Memory(记忆)