Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai语言模型是如何运作的

Answer

AI 语言模型的运作机制主要包括以下几个方面:

  1. 对于大语言模型(LLM),如豆包在回复时是一个字一个字地推理生成内容,即流式输出。这类似于输入法的输入联想逻辑,会根据输入的单个字或上下文推测下一个字。但存在两个问题:一是全量数据计算算力吃不消,二是仅算字的概率易受不相干信息干扰。为解决这些问题,出现了词向量机制和 Transformer 模型中的 Attention 自注意力机制。
  2. 大型语言模型通过大量的数据训练来学习语言的结构和模式,包括词汇、语法、句子结构以及上下文关系。当接收到输入时,会根据学习到的知识生成连贯的回答,类似于词语接龙游戏。
  3. 以 Kimi Chat 为例,大模型会利用网页搜索工具,在互联网上检索相关内容,并基于检索结果进行总结分析,最后给出结论。同时,大模型还可以通过自行规划任务执行的工作流路径,如先识别男孩的姿势,再找到相关模型处理等。
  4. 在多智能体协作方面,如吴恩达通过开源项目 ChatDev 举例,可让一个大语言模型扮演不同角色相互协作,共同开发应用或复杂程序。
  5. OpenAI 的研究主管 Lilian Weng 提出了“Agent = LLM + 规划 + 记忆 + 工具使用”的基础架构,其中大模型 LLM 扮演了 Agent 的“大脑”。规划包括子目标分解、反思与改进,将大型任务分解为较小可管理的子目标,并对过去的行动进行自我批评和反思,以提高最终结果的质量。

需要注意的是,大模型并不拥有无限知识,其知识来源于训练过程中接触到的数据,这些数据是有限的。虽然大模型可以处理和生成大量信息,但只能回答在训练过程中见过或类似的问题,且训练后的知识库不会自动更新。

Content generated by AI large model, please carefully verify (powered by aily)

References

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

首先讲一下LLm,即large-language-model,大语言模型的工作原理。我们可以观察LLm大模型比如豆包在回复的时候,是不是一个一个字,行业里称之为流式输出的方式给你呈现内容的。为什么会这样呢?这是因为,大模型确实是在一个字一个字地去推理生成内容的。就好像我们看输入法的输入联想逻辑,输入联想,其实就是根据你输入的单个字,来推测你要输入的下个字是什么。比如我打了一个“输”字,那么我要打的下字就很有可能是“入”,当然这里就会有人问了,我要打的下个字也很有可能是“球”啊。没错,最开始的研究人员确实也识别到了这个问题。那么解法是什么呢?其实很简单,我们把上下文加入到输入里,不就能帮助模型理解下个字该是什么了吗。比如我们输入的是“我想在这个单元格中输”,那这下一个字大概率就是“入”。而我们如果输入的是“这场足球比赛中,输”,那下一个字大概率就是“球”。那么看到这里,善于思考的同学可能会发现这里存在第一,我们知道大模型的学习数据规模往往是海量的,每次的计算如果都带入全量的数据,算力上肯定是吃不消的。第二,仅去算字的概率,似乎也有问题。因为我们用于训练的文章数据等,往往是出于各种场景各种背景写就的。仅去算下个字出现的概率,容易会被各种不相干的信息干扰。是的,研究人员同样也遇到了这两个问题,而这时,两个概念的出现解决了这一难题。一个是词向量机制,一个是transformer模型中的attention自注意力机制。1)词向量机制

十七问解读生成式人工智能

“小模型”确实有其优势,尤其是在特定任务上表现得非常出色。比如,如果你训练了一个专门识别猫🐱或狗🐶的模型,它在这个任务上可能非常精准。然而,这个模型就无法用于其他任务(因为用来训练模型的数据主要是由猫猫狗狗的照片组成的)。而“大模型”则不同,它像一个多功能的基础平台(有时也被称为“基座模型”)。大模型可以处理多种不同的任务,应用范围非常广泛,并且拥有更多的通识知识。这就是为什么尽管“小模型”在某些特定领域内表现优异,我们仍然需要“大模型”的原因:它们能够在更广泛的场景中提供支持和解决问题。[heading1]问题十一、大模型拥有无限知识吗?[content]大模型并不拥有无限知识。大模型的知识来源于它们在训练过程中接触到的数据,而这些数据是有限的。虽然大模型可以处理和生成大量的信息,但它们的知识来自于它们所训练的数据集,这些数据集虽然庞大,但仍然是有限的。因此,大模型只能回答它们在训练过程中见过或类似的问题。大模型在训练之后,其知识库不会自动更新。也就是说,它们无法实时获取最新的信息,除非重新训练或通过其他方式更新模型。大模型在某些特定或专业领域的知识可能不够全面,因为这些领域的数据在训练集中可能较少。[heading1]问题十二、大型语言模型的运作机制是什么?[content]大型语言模型的运作机制主要是通过大量的数据训练来学习语言的结构和模式,然后根据输入生成相应的文本。这些模型通过阅读大量的文本数据,学习到语言中的词汇、语法、句子结构以及上下文关系。当你给它一个输入时,它会根据这些学习到的知识生成一个连贯的回答。所以它永远在猜测下一个字符将要生成什么,类似于词语接龙游戏。

Inhai: Agentic Workflow:AI 重塑了我的工作流

如果大家使用Kimi Chat来查询某个问题,你会发现它会在互联网上检索相关内容,并基于检索结果进行总结分析,最后给出结论。这其实是大模型利用「网页搜索」工具的一个典型例子,同时你也会看到PPT中介绍了非常多的不同领域类型的工具,它其实是为大模型在获取、处理、呈现信息上做额外的补充。PlanningAgent通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。比如下图中:Agent会先识别男孩的姿势,并可能找到一个姿势提取模型来识别姿势,在接下来要找到一个姿势图像模型来合成一个新的女孩图像,然后再使用图像理解文本的模型,并在最后使用语音合成输出,完成这个流程任务。Multiagent Collaboration吴恩达通过开源项目ChatDev进行举例,你可以让一个大语言模型扮演不同的角色,比如让一个Agent扮演公司CEO、产品经理、设计师、代码工程师或测试人员,这些Agent会相互协作,根据需求共同开发一个应用或者复杂程序。AI Agent基本框架OpenAI的研究主管Lilian Weng曾经写过一篇博客叫做《LLM Powered Autonomous Agents》,其中就很好的介绍了Agent的设计框架,她提出了“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型LLM扮演了Agent的“大脑”。Planning(规划)主要包括子目标分解、反思与改进。将大型任务分解为较小可管理的子目标处理复杂的任务。而反思和改进指可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。Memory(记忆)

Others are asking
文字生成图片的ai有哪些
以下是一些文字生成图片的 AI 工具: 1. DALL·E:由 OpenAI 推出,能根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,可生成高质量图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和用户友好的界面设计受到广泛欢迎,在创意设计人群中尤其流行。 您还可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104)查看更多文生图工具。 此外,在小学课堂的课程设计中,关于文字生成图片的部分,可先准备一些关键词,如“夜晚的未来城市风景,霓虹灯和飞行汽车”“超现实主义风景,漂浮的岛屿和瀑布云”等,输入 Mid Journey 生成图片并保存,用于课堂展示。同时让学生共创,每人说几个关键词,放入 Mid Journey 查看生成效果,也可展示事先用 SD 制作的作品。通过这些案例和互动,让学生理解 AI 绘图在创意增强、效率提升、降低技能门槛和探索新艺术形式方面的好处。
2025-01-21
图片生成视频的ai有哪些
以下是一些图片生成视频的 AI 工具: 1. Pika:是一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频。它是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的相关网站可以查看:https://www.waytoagi.com/category/38 。 另外,使用快影(可灵)处理图片生成视频的步骤如下: 1. 打开快影(需要先通过内测申请),选择 AI 创作。 2. 选择 AI 生成视频。 3. 选择图生视频。 4. 上传处理好的图片,填写想要的互动动作和效果,然后点击生成视频。 5. 排队等待生成结束,点击下载。 以上工具均适合于不同的使用场景和需求,您可以根据自己的具体情况进行选择。
2025-01-21
制作ai视频都需要用到哪些工具
制作 AI 视频通常需要用到以下工具: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):适用于创建小说中的场景和角色图像的 AI 图像生成工具。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,能生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 此外,制作 AI 视频还需要考虑故事的来源和剧本写作。故事来源可以是原创(如个人或周围人的经历、梦境、想象的故事等),也可以是改编(如经典 IP、名著、新闻、二创等)。剧本写作方面,虽然有一定门槛,但可以从自身或朋友的经历改编入手,多与他人讨论并不断实践总结。在生成视频画面时,可能需要大量抽卡来获取合适的画面。比如在科幻片、战争片、奇幻片等不同类型的视频中,通过不同的工具生成相应的画面。
2025-01-21
有哪些能够生成视频封面的ai
以下是一些能够生成视频封面的 AI 工具: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频,它是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要注意是收费的。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 如果您想用 AI 把小说做成视频,可参考以下制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-01-21
有哪些能够提升视频流畅度的ai
以下是一些能够提升视频流畅度的 AI 技术和工具: 1. 关键帧+补间技术: 关键帧生成方式多样,如通过 Stable Diffusion 等方式,能保证不同帧风格一致。 补帧算法包括光流补帧(计算量小、速度快)、基于姿态补帧(适合复杂运动对象)、重参考补帧等。 完善策略有渐进补帧、递归框架、增强后处理、对比学习、模糊处理、融合多个模型等。 2. DiT:能将视频分解成帧并逐帧去噪,生成流畅连贯的视频,在时间维度上保持一致性。 3. 视频配音效的 AI 工具: 支持 50 多种语言配音,音质自然流畅,提供实时配音等功能,并能将语音转录为文本,与多种工具整合。 Vidnoz AI 支持 23 多种语言配音,有语音克隆等功能,提供语音参数自定义和背景音乐添加工具,有不同定价方案。 在选择相关工具时,需考虑支持的语言数量、语音质量、自定义选项和价格等因素。
2025-01-21
有哪些能够提升视频清晰度的ai
以下是一些能够提升视频清晰度的 AI 技术和工具: 1. EvTexture:一种新方法,能解决视频细节模糊和抖动问题。利用事件相机捕获的高频动态细节来改善视频的纹理质量,让视频在处理复杂细节(如树叶、衣服上的条纹等)时更加清晰。 详细内容:https://xiaohu.ai/p/10270 ,https://x.com/imxiaohu/status/1805185573352784177 2. RealESRGANVideo:可将视频清晰度提升至 2K 或 4K,提供不同模型处理模式,用户可根据视频内容选择最适合的模型。 详细内容:https://x.com/xiaohuggg/status/1729336570115920325?s=20
2025-01-21
稳定扩散(Stable Diffusion)是如何运作的
稳定扩散(Stable Diffusion)的运作方式如下: 消除图像中的噪点:拍照太暗时会产生噪点,稳定扩散用于生成艺术作品,其本质是“清理”图像。它比手机图像编辑器中的噪点消除滑块复杂得多,它了解世界的样子和书面语言,并以此指导噪点消除过程。例如,就像艺术家利用对特定风格和世界的了解来清理图像一样,稳定扩散也在做类似的事情。 “推理步骤”:稳定扩散是逐步去除噪点的。 编写稳定扩散程序:初始噪声和文本描述作为输入,还有一组不变的约 10 亿个参数。输入图像由约 79 万个值表示,提示中的 33 个“tokens”由约 2.5 万个值表示。这 10 亿个参数分布在约 1100 个不同大小的矩阵中,每个矩阵在数学运算的不同阶段被使用。 概述:稳定扩散是一个巨大的神经网络,是纯粹的数学,我们并不完全知道它在做什么,但它能工作是因为经过了训练。先从高层次解释,再展示其内部运作方式。 原文地址:https://mccormickml.com/2022/12/21/howstablediffusionworks/ 作者:Chris McCormick(斯坦福大学毕业,一直从事计算机视觉、机器学习和 NLP 领域工作) 发表时间:2022 年 12 月 21 日 译者:通往 AGI 之路 《》入门第五篇
2024-11-29
什么是知识库,以及他的运作原理是什么,请用小白也能理解的语言进行说明
知识库可以用比较通俗的方式来理解: 想象一个大语言模型就像一个非常聪明、读过无数书的人,但对于一些特定的工作场景中的细节,比如见到老板娘过来吃饭要打三折,张梦飞过去吃饭要打骨折,它可能并不清楚。这时候,知识库就像是给这个聪明的人发的一本工作手册。 从更专业的角度来说,知识库的运作原理通常包括以下几个步骤: 1. 文档加载:从各种不同的来源,比如 PDF、SQL 数据、代码等加载相关的文档。 2. 文本分割:把加载的文档分割成指定大小的块,称为“文档块”或“文档片”。 3. 存储:这包括两个环节,一是将分割好的文档块进行嵌入,转换成向量的形式;二是将这些向量数据存储到向量数据库中。 4. 检索:当需要使用数据时,通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给大语言模型,大语言模型会根据问题和检索出来的提示一起生成更合理的答案。 以车型数据为例,每个知识库的分段中保存了一种车型的基础数据。当用户问宝马 X3 的售价是多少时,就能匹配到对应车型的分段,然后从其中获取到售价信息。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2024-11-13
有哪些能够本地部署的AI视频生成模型
以下是一些能够本地部署的 AI 视频生成模型: 1. Stable Video Diffusion 模型: 准备工作:手动下载相关内容,分别放到指定路径。 模型选择:点击下拉箭头选择不同模型版本,勾选 load Model。 视频创作:支持图生视频,图片来源可选择 Midjourney、Stable Diffusion 等生成的图片,上传到 SVD 进行视频生成,可调节左侧参数控制效果。 保存路径:生成的视频在 outputs 下。 2. LTXVideo 模型: 基于 2B 参数 DiT,能够以 768x512 分辨率生成 24 FPS 的视频,速度比观看还快。 专为 RTX 4090 等 GPU 优化,使用 bfloat16 精度,实现高效内存使用且不影响质量。 ComfyUI 现已支持该模型,用户只需下载模型文件并获取工作流即可在本地运行。 3. Sora 模型: 功能:文生视频、图生视频、视频生视频,支持多种视频定制选项,如分辨率、视频长度和视频风格;具有故事板功能,允许用户通过时间线指导视频中的多个动作;提供混音和编辑功能,包括视频混音、延伸和剪辑、创建循环视频等;还有混合功能,可将两个视频场景合并成一个新的场景。 费用和订阅套餐:对于拥有 OpenAI Plus 或 Pro 账户的用户,使用包含在现有订阅中。OpenAI Plus 订阅每月 50 次视频生成次数,OpenAI Pro 订阅无限次慢速队列生成,500 次正常速度的视频生成次数。用户可根据需要选择更高分辨率的视频生成,但可能会减少每月使用次数。发布初期,某些地区(如欧洲和英国)可能会有延迟。
2025-01-21
国内文生图模型
以下是关于国内文生图模型的相关信息: Recraft 模型:用 8 个月自研模型,包含处理数据的模型、标注工作、训练 OCR 模型、新构建的数据集等。Recraft 生成带有长文本图像的流程图解,但存在生成默认是外国面孔而非亚洲面孔且生成的亚洲人不太自然的情况,可能与数据集有关。只有少数公司真正从头训练模型,创建自己的模型困难且成本高,需要超强团队和资金。 模型能力方面: 文本编码器的能力是文生图模型语义理解能力的关键。一开始大部分模型使用 CLIP 作为文本编码器,但存在一些问题。新的模型纷纷优化文本编码器能力,如引入更大更强的 T5XXL 或结合多个特征,但开源模型在中文生图方面能力一般。 腾讯开源的 HunyuanDiT 是较可用的中文生图模型,但仍存在优化空间。 Kolors 是最近开源的给力文生图模型,改进全面,技术实力强。
2025-01-21
吴恩达大模型教程
以下是一些与吴恩达大模型相关的教程和资源: 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版等。 提示工程指南: 地址: 简介:基于对大语言模型的兴趣编写的全新提示工程指南,介绍了相关论文研究等。 LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:由两位 LLM 创业者维护的 Langchain 中文文档。 LLM 九层妖塔: 地址: 简介:包含 ChatGLM 等实战与经验。 目录:吴恩达讲 Prompt https://github.com/zard1152/deepLearningAI/wiki Coze 复刻:吴恩达开源的 AI 翻译项目 复刻步骤:包括配置反思优化的提示词、结合反思优化建议再次翻译、选择输出方式等。 大语言模型分为基础 LLM 和指令微调 LLM 两类。基础 LLM 经过训练可根据文本预测下一个词,指令微调 LLM 经过训练能遵循指令,为让系统更有帮助并遵循指令,通常会使用人类反馈强化学习(RLHF)技术优化。提示的关键原则包括尽可能保证下达的指令“清晰、没有歧义”,给大模型思考的时间以及足够的时间去完成任务。
2025-01-21
有哪个大模型工具可以提供“word文本转excel表格”功能
以下是一些可以将 word 文本转 excel 表格的大模型相关方法: 1. Markdown 格式输出 Markdown 编辑器 Excel:将大模型的输出结果复制到 Markdown 编辑器(如 Typora),然后再直接复制到 Excel,就可以得到直接可用的数据文档。 2. Markdown 格式输出 Excel 数据分组:把大模型的输出直接复制到 Excel,一般使用 Excel 的数据分列功能,用“|”作为分隔符号处理数据。 3. Markdown 格式输出 Excel 数据分组:要求大模型把输出转换成 CSV 格式,然后把结果复制到 txt 文档,另存为成 csv 文件(注意:txt 另存为时,文件后缀名更改为.csv,编码选择 ANSI)。
2025-01-21
有哪个大模型工具可以提供“word技术规范书转功能清单”功能
目前尚未有确切的大模型工具专门提供“word 技术规范书转功能清单”的功能。但一些通用的自然语言处理工具和办公软件的插件可能会对您有所帮助,例如一些基于云服务的办公自动化工具,不过其效果可能因具体的文档内容和格式而有所差异。
2025-01-21
集文档管理、AI写作、资料搜索的AI大模型推荐
以下为您推荐一些集文档管理、AI 写作、资料搜索功能于一体的 AI 大模型: 1. RAG: 工作原理:就像超级智能的图书馆员,包括检索(从庞大知识库中找相关信息)、增强(筛选优化信息)、生成(整合信息给出连贯回答)。 优点:成本效益高、灵活性强、可扩展性好。 缺点:回答准确性相对不够。 相关网站:Metaso.cn(学术、研究)、So.360.com(生活、便捷)、Devv.ai(程序员、开发者)、Perplexity(付费、高质量)、Bing.com(通用)、Google.com(全球、精准)。 内幕:平均调用 9 次大语言模型,网络爬虫预先建立数据库,用便宜但推理弱的模型(免费版)。 2. 对于律师工作: AI 大模型擅长:信息检索与整理、模式识别与预测、自动化文档处理、多任务处理能力。 AI 大模型不擅长:法律解释与推理、理解道德和情感、创新或个性化的服务。 律师擅长:法律专业知识、沟通与谈判。 3. 沉浸式翻译:主打所有网页双语翻译、PDF 文档对照阅读,新功能可一键开启网页中 Youtube 视频的双语字幕。插件安装地址:https://immersivetranslate.com/ 4. Kimi:由月之暗面科技有限公司开发,最大特点是超长文本(支持最多 20 万字的输入和输出)处理和基于文件、链接内容对话的能力,能阅读并理解多种格式文件内容为用户提供回复。
2025-01-21
ai语言模型记忆能力与什么相关,可以拥有人类相当的记忆吗
AI 语言模型的记忆能力主要与以下因素相关: 1. 长期记忆:主要有长文本(持久化)、总结、RAG 等实现方式。长文本处理中的 KV Cache 可通过缓存历史计算的 Key(K)和 Value(V)减少冗余计算,但需额外存储空间,可能导致显存占用增加,未来结合持久化 KV Cache、KV Cache 的压缩技术有望控制成本,从而打造出记忆力超越人类的智能体。 2. 短期记忆:主要存在于模型的上下文中,由对话内容(用户输入、模型输出)和系统提示词组成。 Inworld AI 开发的角色引擎,增加了可配置的安全性、知识、记忆、叙事控制、多模态等功能,其中长期记忆方面,角色能以类似人类的记忆功能操作,从闪存和长期记忆中检索信息。 人类的思维是由自然语言或感官记忆构成的超高维时间序列,而人工智能与人类不同,人类会为事物赋予意义与价值,人工智能则更追求“更准”。强化学习是人工智能的一个重要分支,通过定义状态、动作与奖励等元素,让 AI 求解如何选择动作以获得最大的期望奖励总和。
2025-01-20
请推荐AI智能体,要求是通过通用语言大模型能直接输出思维导图的
以下为为您推荐的能通过通用语言大模型直接输出思维导图的 AI 智能体: 1. 多智能体 AI 搜索引擎: 第一步,快速搜索补充参考信息,使用工具 API WebSearchPro。 第二步,用模型规划和分解子任务,通过 GLM40520 的模型分析。 第三步,用搜索智能体完成子任务,智能体 API 的调用方式可参考相关文档。智能体 ID 为 659e54b1b8006379b4b2abd6,是连接全网内容,精准搜索,快速分析并总结的智能助手。 第四步,总结子任务生成思维导图,智能体 API 的调用方式可参考相关文档。智能体 ID 为 664e0cade018d633146de0d2,能够告别整理烦恼,将任何复杂概念秒变脑图。 2. AI 智能体:企业自动化的新架构Menlo Ventures:未来的完全自主智能体可能拥有所有四个构建块,但当前的 LLM 应用程序和智能体尚未达到此水平。Menlo 确定了三种不同主要用例和应用程序进程控制自由度的智能体类型,包括决策智能体、轨道智能体和通用人工智能体。 3. AI Share Card 插件:在开发过程中,将模板生成功能设计为固定的代码组件,让大模型专注于内容总结的功能。选用的是 GLM4flash,具有较长的上下文窗口、响应速度快、并发支持高、免费或低价等优点。
2025-01-20
通过通用语言大模型能直接输出思维导图的AI智能体有那些推荐
以下是为您推荐的一些通过通用语言大模型能直接输出思维导图的 AI 智能体: 1. 豆包:输入简单提示词就能创建个人 AI 智能体。 2. GLM4flash:在处理纯文本总结任务时,仅需 13B 或更小参数的模型,加上精调的提示词,就能产生很好的结果。具有较长的上下文窗口、响应速度快、并发支持高、免费或价格低等优点。 需要注意的是,AI 领域发展迅速,新的产品和服务不断涌现,您可以持续关注相关领域的最新动态以获取更多更好的选择。
2025-01-20
如何部署私有大语言模型?
部署私有大语言模型通常包括以下步骤: 1. 部署大语言模型: 下载并安装 Ollama:根据您的电脑系统,从 https://ollama.com/download 下载 Ollama。下载完成后,双击打开,点击“Install”。安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/。 下载模型:如 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)。如果是 Windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行,粘贴进入,点击回车。等待下载完成。 2. 部署 Google Gemma: 进入 ollama.com,下载程序并安装(支持 windows,linux 和 macos)。 查找 cmd 进入命令提示符,输入 ollama v 检查版本,安装完成后版本应该显示 0.1.26,cls 清空屏幕。 直接输入 ollama run gemma 运行模型(默认是 2b),首次需要下载,需要等待一段时间,如果想用 7b,运行 ollama run gemma:7b 。完成以后就可以直接对话。 3. 关于 Ollama 的其他特点: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件。模型库可通过 https://ollama.com/library 查找。 支持自定义模型,可修改模型的温度参数等。 提供 REST API,用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面。 总的来说,Ollama 是一个方便用户在本地运行和管理大型语言模型的框架,具有良好的可扩展性和多样的使用场景。安装完之后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序即可,在 linux 上可以通过 ollama serve 启动)。可以通过 ollama list 进行确认。
2025-01-17
语音翻译在语言输出的 有什么好用的
以下是一些好用的语音翻译相关工具和应用: Deepdub:专注于将对话翻译成任何语言,并以相同的声音发音。 Eleven Labs 推出的 Dubbing:可以将视频/音频翻译成不同的语言,同时保持原始的声音。支持十一种语言的 AI 配音功能,v2 模型目前支持 20 多种语言的语音翻译,包括印地语、葡萄牙语、西班牙语、日语、乌克兰语、波兰语或阿拉伯语。还可以检测多个说话人的声音,支持背景音分离和环境音降噪。 在音频翻译性能方面,GPT4o 在语音翻译方面创下了新的领先地位,并在 MLS 基准测试中优于 Whisperv3,显著提高了语音识别性能,尤其是对于资源匮乏的语言。
2025-01-14
AI写作 (一)AI写作的优势和应用场景 (二)利用AI辅助新闻通讯稿写作的方法:如获取灵感、优化语言等
AI 写作具有以下优势和应用场景: 优势:能够快速生成内容,提高写作效率;可以提供新的思路和创意。 应用场景:广泛应用于新闻通讯、营销文案、小说创作等领域。 利用 AI 辅助新闻通讯稿写作的方法包括: 头脑风暴:在写作前让 AI 提供选题建议或内容方向。 查找资料:借助 AI 快速汇总相关主题信息,节省查阅资料时间。 优化表达:写完初稿后,让 AI 检查语法、改善表达。 拓展思路:写作卡壳时,询问 AI 以开拓新的思路。 需要注意的是,写作不仅是产出内容,更是思考的过程,不应过度依赖 AI 写作,而应注重提升自身写作技巧和思考深度。同时,大语言模型在写作中很有用,如用于集思广益、头脑风暴等,但也存在编造故事产生错误信息的问题,需要鉴别信息准确性。另外,选好模型、克服平庸、显式归纳文本特征等方法有助于用 AI 写出好文字。
2025-01-13