Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

以图片为主的PDF文件向量化的本地大模型推荐

Answer

以下是关于以图片为主的 PDF 文件向量化的本地大模型的相关信息:

RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 技术实现。RAG 应用包括 5 个过程:

  1. 文档加载:从多种来源加载文档,如包括 PDF 在内的非结构化数据、SQL 在内的结构化数据以及代码等。
  2. 文本分割:把文档切分为指定大小的块。
  3. 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。
  4. 检索:通过检索算法找到与输入问题相似的嵌入片。
  5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。

PDF 翻译的 AI 产品

  1. DeepL(网站):www.deepl.com,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件。
  2. 沉浸式翻译(浏览器插件):immersivetranslate.com,安装插件后,点击插件底部「更多」按钮,选择相关翻译选项。
  3. Calibre(电子书管理应用):calibre-ebook.com,下载安装并安装翻译插件「Ebook Translator」。
  4. 谷歌翻译(网页):translate.google.com,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮上传 Word 文档。
  5. 百度翻译(网页):fanyi.baidu.com,点击导航栏「文件翻译」,上传多种格式文件,支持选择领域和导出格式。
  6. 彩云小译(App):下载后点击「文档翻译」,可导入多种格式文档,但有免费次数限制且进阶功能需付费。
  7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。

请注意,以上内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

手把手教你本地部署大模型以及搭建个人知识库

文本加载器就是将用户提供的文本加载到内存中,便于进行后续的处理

问:推荐 pdf 翻译的 AI 产品

[title]问:推荐pdf翻译的AI产品有许多翻译PDF的方法,以下是几种适用方法:1.DeepL(网站)[www.deepl.com](https://www.deepl.com/translator):点击页面「翻译文件」按钮,上传PDF、Word或PowerPoint文件即可。2.沉浸式翻译(浏览器插件)[immersivetranslate.com](https://immersivetranslate.com/):安装插件后,点击插件底部「更多」按钮,选择「制作双语BPUB电子书」、「翻译本地PDF文件」、「翻译THML / TXT文件」、「翻译本地字幕文件」。3.Calibre(电子书管理应用)[calibre-ebook.com](https://calibre-ebook.com/zh_CN):下载并安装calibre,并安装翻译插件「Ebook Translator」。4.谷歌翻译(网页)[translate.google.com](https://translate.google.com/):使用工具把PDF转成Word,再点击谷歌翻译「Document」按钮,上传Word文档。5.百度翻译(网页)[fanyi.baidu.com](https://fanyi.baidu.com/):点击导航栏「文件翻译」,上传PDF、Word、Excel、PPT、TXT等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。6.彩云小译(App):下载后点击「文档翻译」,可以直接导入PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。7.微信读书(App):下载App后将PDF文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。同类问题:免费将PDF内各国文字翻译为中文的工具内容由AI大模型生成,请仔细甄别。

Others are asking
想用coze做一个可以提取上传pdf文档相关内容的智能体,请给我思路
以下是使用 Coze 做一个可以提取上传 PDF 文档相关内容的智能体的思路: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 考虑到待阅读内容通常都有网页链接,最理想的方式是只需输入一个 URL 就能完成收集。借鉴微信文件传输助手的直观操作方式,通过聊天窗口完成收集输入会更符合用户习惯。 2. 自动化“整理入库”: 为便于存储和回顾已收集的阅读清单,系统应在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 同时,这份阅读清单最好也能支持跨平台查看,提高可访问性。 3. 智能“选择”推荐: 根据当前收藏记录,结合用户的阅读兴趣,进行相关性匹配,并生成最合适的阅读计划。 逐步搭建 AI 智能体: 1. 搭建整理入库工作流: 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置: 开始节点:输入 url,由于希望收到用户输入的待收藏 url 就开始流程,所以不需要额外配置(至于如何判断哪些用户输入是需要收藏的 url,则交由外层 bot 的大模型判断)。 变量节点:引入 bot 变量中保存的飞书多维表格地址,为了便于维护充当稍后读存储地址的飞书多维表格链接,我们需要将这个链接存储在 bot 的变量中,并在工作流运行时进行引用。 插件节点:获取页面内容,这一步直接把开始节点的{{BOT_USER_INPUT}},引入到参数{{url}}中;随便设置{{timeout}}为 60000。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件,完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据。这样一来,理论上无需开发任何插件、APP,也能实现跨平台的稍后读收集与智能阅读计划的推荐。
2025-01-17
我当前的工作是逐字核对PDF文档和word文档,并按pdf文档将word文档修正,如何借助AI工具实现
以下是一些可以帮助您实现将 PDF 文档与 Word 文档进行核对和修正工作的 AI 工具及方法: 1. DeepL(网站):访问,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):在安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):在下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再在点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):在点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-15
请给我推荐最适合翻译PDF文档的AI平台
以下是一些适合翻译 PDF 文档的 AI 平台: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。还能一键开启网页中 Youtube 视频的双语字幕。 3. Calibre(电子书管理应用):,下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式,但进阶功能基本需要付费。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译,有免费次数限制且进阶功能需要付费。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-06
我希望ai辅助我做pdf文件的读书笔记,应该使用什么工具,并分哪几步开始进行呢
以下是一些可以辅助您做 PDF 文件读书笔记的工具及步骤: 工具: 1. DeepL(网站): ,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件): ,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用): ,下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页): ,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页): ,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 步骤: 1. 选择适合您需求的工具。 2. 按照所选工具的指引,进行文件上传或相关操作。 3. 根据工具的功能和您的需求,对翻译或处理的结果进行调整和优化。 请注意,不同工具的功能和效果可能有所差异,您可以根据实际情况进行选择和尝试。同时,内容由 AI 大模型生成,请仔细甄别。
2025-01-05
我想要做一个ai工具,针对电子元器件行业,我来提供专业术语翻译的知识库和固定描述语句翻译方法,希望上传中文PDF后,可以下载一个翻译好的PDF,0编程基础应该怎么做呢
对于您这种没有编程基础但想要制作针对电子元器件行业的 AI 工具来实现中文 PDF 上传并下载翻译好的 PDF 的需求,以下是一些建议: 首先,您需要学习一些基本的 AI 概念和技术知识,了解自然语言处理(NLP)的基本原理。 其次,可以考虑使用现有的无代码或低代码 AI 开发平台。这些平台通常具有可视化的界面和易于操作的工具,能够帮助您在不编写代码的情况下构建简单的 AI 应用。 然后,针对您的专业术语翻译需求,需要对电子元器件行业的术语进行系统整理和分类,建立一个清晰的术语库。 同时,确定固定描述语句的翻译规则和方法,并将其转化为可在 AI 工具中应用的逻辑。 在实施过程中,要不断测试和优化您的工具,以确保翻译的准确性和质量。 总之,虽然没有编程基础会增加一定的难度,但通过合理利用现有资源和持续学习,您是有可能实现这个目标的。
2025-01-04
我想要做一个ai工具,针对电子元器件行业,我来提供专业术语翻译的知识库和固定描述语句翻译方法,希望上传中文PDF后,可以下载一个翻译好的PDF
目前针对您想要针对电子元器件行业制作一个能上传中文 PDF 并下载翻译好的 PDF 的 AI 工具的需求,暂时没有相关的现成内容和方法。但您可以考虑以下步骤来实现这一目标: 1. 数据准备:收集和整理电子元器件行业的专业术语、固定描述语句以及对应的翻译,构建一个丰富准确的知识库。 2. 选择合适的技术:例如自然语言处理技术和机器翻译算法,以实现对中文 PDF 的翻译。 3. 开发工具界面:设计一个用户友好的界面,方便用户上传中文 PDF 和下载翻译后的 PDF。 4. 测试和优化:对工具进行充分的测试,根据测试结果不断优化翻译的准确性和工具的性能。 这是一个较为复杂的项目,需要一定的技术和资源投入,但如果成功实现,将为电子元器件行业带来很大的便利。
2025-01-04
大模型在金融领域的量化投研领域的应用
大模型在金融领域的量化投研领域有以下应用和特点: 1. 大型系统工程: 量化和大模型都需要大型计算集群,上万张卡的互联是对基础设施的极致挑战。量化对性能和效率有极致追求,交易指令速度至关重要;大模型在基础设施层面的每一点提升都能优化训练效率。 细节在大型系统工程中十分关键。量化交易系统包含多个方面,任何环节出问题都会导致交易系统失败;大模型预训练从数据到评估包含大量细节,如数据配比、顺序、训练策略等。 2. 本土化机会: 很多 Global 的量化基金到中国会水土不服,国家政策也限制其大规模开展业务,给国内量化基金崛起机会。 OpenAI、Google、Meta 等的模型中文能力一般,未对中国国情优化,不符合政策要求,给国内大模型公司本土化预训练机会。 两者都受政策影响极大,需要有效监管才能健康发展。 3. 其他相似之处: 少数精英的人赚大量的钱,做大模型和金融量化都不用很多人,但每个人都要绝顶聪明。 核心问题一样,下一个 token 预测和下一个股价预测类似。 都需要大量数据,都追求可解释性。 作者:黄文灏 源地址:https://zhuanlan.zhihu.com/p/646909899 最近和朋友讨论发现大模型预训练和金融量化有很多相似之处,作者恰好同时具有两者背景,做了对比。
2024-12-25
数据如何向量化
数据向量化是为了实现高效的文档检索,将原始的文本数据转化为数值向量的过程。其目的是将文本数据映射到低维向量空间,使语义相似的文本距离较近,不相似的较远。但这一过程会导致一定程度的信息损失,因为文本的复杂性和多样性难以用有限向量完全表达,可能忽略细节和特征,影响文档检索准确性。 在语义搜索中,根据用户问题从文档集合中检索语义最相关的文档,主流方法是基于数据向量化结果,利用向量空间中的距离或相似度度量语义相似度,但存在局限性,如不能完全反映真实语义相似度,向量空间中的噪声和异常值会干扰结果,导致准确率无法 100%保证。 在计算机科学和数据分析中,向量常被用作表示数据点的方式,是一个数值列表或数组,每个数值代表数据点的一个特征。多维数据运算常以矩阵形式进行,矩阵乘法是基本操作。归一化是数据预处理的关键技术,用于调整数值数据范围,常用方法有最小最大缩放和 Z 得分标准化。 在向量数据库中,当用户输入查询时,如“激动人心的科幻冒险”,会转换成一个向量,例如,表示对不同元素的偏好程度。向量数据库存放的是词在不同维度上的相对位置,数据的存储和检索与传统 Excel 和关系数据库有很大不同。关于文字如何转换成向量,实际的向量结构会很复杂。
2024-10-12
SD模型
Stable Diffusion(SD)模型是由 Stability AI 和 LAION 等公司共同开发的生成式模型,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。 文生图任务是将文本输入到 SD 模型,经过一定迭代次数生成符合描述的图片。例如输入“天堂,巨大的,海滩”,模型生成美丽沙滩图片。 图生图任务在输入文本基础上再输入一张图片,模型根据文本提示重绘输入图片使其更符合描述,如在沙滩图片上添加“海盗船”。 输入的文本信息需通过“桥梁”CLIP Text Encoder 模型转换为机器数学信息。该模型作为 SD 模型中的前置模块,将输入文本编码生成 Text Embeddings 特征矩阵,用于控制图像生成。 目前 SD 模型使用的是中的 Text Encoder 模型,其只包含 Transformer 结构,由 12 个 CLIPEncoderLayer 模块组成,模型参数大小为 123M,输出 Text Embeddings 的维度为 77x768。 以下是相关资源获取方式: SD 模型权重:关注 Rocky 的公众号 WeThinkIn,后台回复“SD 模型”,可获得包含多种模型权重的资源链接。 SD 保姆级训练资源:关注 Rocky 的公众号 WeThinkIn,后台回复“SDTrain”,可获得包含数据处理、模型微调训练及基于 SD 的 LoRA 模型训练代码等全套资源。 Stable Diffusion 中 VAE、UNet 和 CLIP 三大模型的可视化网络结构图:关注 Rocky 的公众号 WeThinkIn,后台回复“SD 网络结构”,即可获得网络结构图资源链接。
2025-01-22
到今天,大语言模型还会产生“幻觉”吗
截至今天,大语言模型仍会产生“幻觉”。 大语言模型偶尔会根据输入输出一些荒谬或不符合事实的内容,目前各家大语言模型在该问题上的表现都不尽如人意。产生“幻觉”的原因包括: 1. 样本存在错误(Imitative Falsehoods):如果大语言模型学习的“教材”中有错误,它也容易给出错误回答。缓解该问题的一个办法是上采样(Up Sampling)。 2. 信息过时(Outdated Factual Knowledge):以前正确的信息现在可能过时了。 此外,大语言模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。如果在其训练过程中,模型被暴露于大量知识之中,它并没有完美地记忆所见到的信息,并不十分清楚自己的知识边界,可能会尝试回答有关深奥话题的问题,并虚构听起来有道理但实际不正确的内容。 在构建应用程序时,可以使用一些技术来避免这种情况,例如要求模型先从文本中找到相关引文,然后使用引文回答问题,并将答案追溯回源文件,这通常有助于减少“幻觉”的发生。
2025-01-22
本地部署大模型
以下是关于本地部署大模型的详细步骤: 1. 部署大语言模型: 下载并安装 Ollama: 根据电脑系统,从 https://ollama.com/download 下载 Ollama。 下载完成后,双击打开,点击“Install”。 安装完成后,将 http://127.0.0.1:11434/ 复制进浏览器,若出现相关字样则表示安装完成。 下载 qwen2:0.5b 模型(若设备充足可下载更大模型): Windows 电脑:点击 win+R,输入 cmd 点击回车。 Mac 电脑:按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,选择“终端”应用程序。 复制相关命令行,粘贴进入并回车,等待自动下载完成。 2. ComfyUI ollama 本地大模型部署: 先下载 ollama 安装,安装完成后可在电脑桌面右下角或隐藏图标中找到。 下载对应的模型,选择模型并复制对应的命令。 打开命令行界面,输入对应的模型获取命令,等待下载完成。 模型下载后会保存到 D:\\ollama\\blobs 。 进行 docker 安装,安装会下载一些文件,安装后更改目录,不要放在 C 盘。 进行 Open webui 安装,输入相关命令,安装成功后回到 docker,点击会自动打开网页,第一次使用需注册账号,选择下载好的模型即可开始使用。 3. 错误解决: 端口占用问题,在 Windows 上可能出现,运行相关两条命令可解决。 4. 相关链接: comfyuiollama:https://github.com/stavsap/comfyuiollama?tab=readmeovfile Ollama:https://ollama.com/ docker:https://www.docker.com/ Open webui:https://openwebui.com/ 此外,还有一篇思路来源于视频号博主黄益贺的相关内容,作者按照其视频进行了实操并附加了一些关于 RAG 的额外知识。文中提到读完本文可以学习到如何使用 Ollama 一键部署本地大模型、通过搭建本地聊天工具了解 ChatGPT 信息流转、RAG 的概念及核心技术、通过 AnythingLLM 软件搭建完全本地化的数据库等内容。虽然大多数人不需要自己部署大模型,但期望通过本文的指导能够折腾一遍,从而做到知其然且知其所以然。
2025-01-22
大模型评分
大模型评分通常会根据不同的赛事或评估体系有所差异。 在金融行业的大模型挑战赛中,评测任务形式为给定一组参考文档和问题,要求模型按指定格式生成答案。赛事主办方会根据选手提供的回答与参考答案对比,并根据关键字段命中情况进行评分。评分公式涉及关键词命中总次数、关键词总数、小题数和得分等参数。例如在示例问题中,根据每个小题的回答正确情况计算得分,完全正确得满分 1 分,部分正确则根据命中比例计算得分。 在其他的大模型评估方面: FlagEval(天秤)大模型评测体系及开放平台,旨在建立科学、公正、开放的评测基准、方法、工具集,创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。地址:https://github.com/FlagOpen/FlagEval 。 CEval 构造了一个覆盖多个学科的中文知识和推理型测试集,并给出了当前主流中文 LLM 的评测结果。地址:https://github.com/SJTULIT/ceval 。 SuperCLUElyb 是中文通用大模型匿名对战评价基准,以众包方式提供匿名、随机的对战,并发布了初步结果和基于 Elo 评级系统的排行榜。地址:https://github.com/CLUEbenchmark/SuperCLUElyb 。 斯坦福发布的大模型排行榜 AlpacaEval 支持两种模式的模型评估方式:alpaca_eval 和 alpaca_eval evaluate_from_model 。评测过程分为选择评估集并计算输出、计算 golden 输出、通过指定的自动标注器计算胜率等步骤。相对于人工标注,全自动化的 AlpacaEval 具有较低的经济成本和时间成本。
2025-01-22
有哪些能够本地部署的AI视频生成模型
以下是一些能够本地部署的 AI 视频生成模型: 1. Stable Video Diffusion 模型: 准备工作:手动下载相关内容,分别放到指定路径。 模型选择:点击下拉箭头选择不同模型版本,勾选 load Model。 视频创作:支持图生视频,图片来源可选择 Midjourney、Stable Diffusion 等生成的图片,上传到 SVD 进行视频生成,可调节左侧参数控制效果。 保存路径:生成的视频在 outputs 下。 2. LTXVideo 模型: 基于 2B 参数 DiT,能够以 768x512 分辨率生成 24 FPS 的视频,速度比观看还快。 专为 RTX 4090 等 GPU 优化,使用 bfloat16 精度,实现高效内存使用且不影响质量。 ComfyUI 现已支持该模型,用户只需下载模型文件并获取工作流即可在本地运行。 3. Sora 模型: 功能:文生视频、图生视频、视频生视频,支持多种视频定制选项,如分辨率、视频长度和视频风格;具有故事板功能,允许用户通过时间线指导视频中的多个动作;提供混音和编辑功能,包括视频混音、延伸和剪辑、创建循环视频等;还有混合功能,可将两个视频场景合并成一个新的场景。 费用和订阅套餐:对于拥有 OpenAI Plus 或 Pro 账户的用户,使用包含在现有订阅中。OpenAI Plus 订阅每月 50 次视频生成次数,OpenAI Pro 订阅无限次慢速队列生成,500 次正常速度的视频生成次数。用户可根据需要选择更高分辨率的视频生成,但可能会减少每月使用次数。发布初期,某些地区(如欧洲和英国)可能会有延迟。
2025-01-21
国内文生图模型
以下是关于国内文生图模型的相关信息: Recraft 模型:用 8 个月自研模型,包含处理数据的模型、标注工作、训练 OCR 模型、新构建的数据集等。Recraft 生成带有长文本图像的流程图解,但存在生成默认是外国面孔而非亚洲面孔且生成的亚洲人不太自然的情况,可能与数据集有关。只有少数公司真正从头训练模型,创建自己的模型困难且成本高,需要超强团队和资金。 模型能力方面: 文本编码器的能力是文生图模型语义理解能力的关键。一开始大部分模型使用 CLIP 作为文本编码器,但存在一些问题。新的模型纷纷优化文本编码器能力,如引入更大更强的 T5XXL 或结合多个特征,但开源模型在中文生图方面能力一般。 腾讯开源的 HunyuanDiT 是较可用的中文生图模型,但仍存在优化空间。 Kolors 是最近开源的给力文生图模型,改进全面,技术实力强。
2025-01-21
文字生成图片的ai有哪些
以下是一些文字生成图片的 AI 工具: 1. DALL·E:由 OpenAI 推出,能根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,可生成高质量图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和用户友好的界面设计受到广泛欢迎,在创意设计人群中尤其流行。 您还可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104)查看更多文生图工具。 此外,在小学课堂的课程设计中,关于文字生成图片的部分,可先准备一些关键词,如“夜晚的未来城市风景,霓虹灯和飞行汽车”“超现实主义风景,漂浮的岛屿和瀑布云”等,输入 Mid Journey 生成图片并保存,用于课堂展示。同时让学生共创,每人说几个关键词,放入 Mid Journey 查看生成效果,也可展示事先用 SD 制作的作品。通过这些案例和互动,让学生理解 AI 绘图在创意增强、效率提升、降低技能门槛和探索新艺术形式方面的好处。
2025-01-21
图片生成视频的ai有哪些
以下是一些图片生成视频的 AI 工具: 1. Pika:是一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频。它是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的相关网站可以查看:https://www.waytoagi.com/category/38 。 另外,使用快影(可灵)处理图片生成视频的步骤如下: 1. 打开快影(需要先通过内测申请),选择 AI 创作。 2. 选择 AI 生成视频。 3. 选择图生视频。 4. 上传处理好的图片,填写想要的互动动作和效果,然后点击生成视频。 5. 排队等待生成结束,点击下载。 以上工具均适合于不同的使用场景和需求,您可以根据自己的具体情况进行选择。
2025-01-21
怎么用ai完成淘宝模特图片的批量修改,风格都是一致的
以下是使用 AI 完成淘宝模特图片批量修改且风格一致的方法: 1. 利用 Stable Diffusion 进行局部重绘: 真人穿衣服拍照,获取真实质感的照片。若身材方面有问题,可借助美图秀秀或 PS 处理。 选好真人照片风格的底模,如 majicmixRealistic_v7。 根据不同平台需求换头,如面向海外市场换白女头。 在图生图下的局部重绘选项卡下涂抹自己替换的部分,并设置好 prompts 和 parameters。 2. 大淘宝设计部的实践: 对于定制化真人模特实景素材的主题活动,通过 AI 可将策划、搭建、拍摄、设计融为一个闭环流程,短时间内完成页面所有素材的生产和输出。 在 UI 设计场景中,采用 AI 能力可快速定制多种视觉效果,通过 SD 中 controlnet 的有效控制,生成指定范围内的 ICON、界面皮肤等内容。 通过对 AI 大模型的训练和应用,算法从模特姿态、背景风格、装饰元素等多个维度进行效果升级,结合用户数据提供定制化的线上真人化模特体验。 一张商品图,结合用户的自定义输入,可生成多张场景效果,无需 3D 模型、显卡渲染和线下拍摄。 此外,字节发布的新模型 SeedEdit 也可用于图片编辑,每次编辑尽量使用单指令,多指令最好少于 3 种变化。为保证效果,局部编辑时下指令要精准,参考图要清晰、分辨率高。若编辑效果不明显或变化过多,可调整编辑强度。
2025-01-21
图片生成视频
以下是关于图片生成视频的相关内容: 使用 Pika 生成视频 打开 Discord,点击邀请链接加入 Pika 的生成视频频道:https://discord.gg/pika 生成视频的方式: 选择作画频道。 输入“/”+指令,其中: /create 为文字生成视频指令。 /animate 为图片生成视频指令。 /encrypt_image 为图片+文字生成视频指令。 选择 /animate 生成图片视频时,输入想要的图片,不能添加其他文字要求描述;或者在 message 处输入想要的图片,并在 prompt 处添加描述。 Pika 的常用指令参数: gs xx:引导比例,较高的值使其与文本更相关(推荐范围为 8 24)。 neg xxx:负面提示(指定在视频中不希望出现的内容)。 ar xx:xx:宽高比(例如 16:9、9:16、1:1、4:5)。 seed xxx:生成过程中增加一致性的种子数。 motion xx:所需运动强度(仅支持 0/1/2)。 fps xx:视频的帧率。 Pika 介绍及使用指南 要生成视频,需要进入 generate 频道,目前有 10 个 generate 频道,随便选择一个进入即可。 PIKA 生成视频的工作流程: 直接生成视频:在输入 /create,然后输入 prompt,得到视频。 图片生成视频:使用 MJ/SD 生成图像(可选)+在 PIKA 平台添加 prompt = 得到视频。 ComfyUI Flux 与 runway 制作绘画视频 生成图片:提示词告诉 flux,去生成一张技术草图,CAD。 绘制的视频:在 runway 里面,使用提示词,告诉是从空白页面开始,逐行创建;把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,controlNet 使用的是 Union 的版本,不建议权重调得太高,结束时间也是。 生成上色后的视频。 how2draw Flux lora:再分享一个好玩的 flux lora,用来展示绘画的过程,触发词:how2draw 。
2025-01-21
推荐几张ai领域图片
以下为您推荐几张 AI 领域的图片: 1. 节目单: 图片主题:风景,祖国河山 描述:AI 还原的中国自然景观,一些前所未有的角度,带来视觉震撼。 图片主题:AI 与画手的对话 描述:展示 AI 作为艺术创作工具,表明 AI 不是只会抄袭,而是画手的好工具。 图片主题:搞笑图/扩图轮播 描述:全网搞笑图片的二创。 图片主题:诗与远方 描述:诗词与 AI 结合的视觉艺术,呈现唯美画面。 图片主题:AI 红包 描述:直播制作红包封面并分发,炒热气氛。 2. 摊位信息: 摊位主题:乐易科学院 描述:通过 AI 技术,结合量子、暗物质、天体运行规律等能量形式,从科学、物理学、天文学、心理学等方面讲解国学和传统文化,可进行批八字、调风水、性格色彩分析。 摊位主题:AIGC 策划程序美术(3AI 简称 3A 游戏)应用独立游戏开发 摊位主题:AI 人像摄影绘画 摊位主题:B2B AI 营销与 AI 落地项目快速落地 描述:涵盖 AI 训练 to b 出应用、智能体 agent、文生图生视频等,以及美国独立站搭建、Google seo 与 AI 结合等,展示相关技术尝试和工具。 3. 他山之石|如何防止 AI 取代人类思考一切: 原文主要探讨了手写笔记和手绘对于学习和思考的重要性,认为在学习新技能时应先依靠人类自身,不应过早使用 AI,还提到了与朋友 Trevor Muir 关于此问题的交流。
2025-01-21
静态图片如何通过ai生成动图
以下是将静态图片生成动图的两种方法: 方法一:使用 LivePortrait 1. LivePortrait 可以精确控制眼睛和嘴唇的动作,还能无缝拼接多个肖像,将不同人物特征合并成一个视频,确保过渡自然流畅。 2. 它使用了一种不同于主流扩散方法的隐式关键点框架,在计算效率和可控性之间取得了有效的平衡。生成的动画质量优于现有的非扩散和扩散模型方法。在 RTX 4090 GPU 上,生成速度为每帧 12.8 毫秒,效率显著高于现有的扩散模型。 3. 支持各种风格的图片,常见的动物面部迁移,并可以微调面部运动幅度。 4. 工作流与模型地址: https://pan.baidu.com/s/1FkGTXLmM0Ofynz04NfCaQ?pwd=cycy https://pan.quark.cn/s/8dfd7ace4f05 5. 教程: 在 comfyui 里使用工作流、模型:https://pan.baidu.com/s/1FkGTXLmM0Ofynz04NfCaQ?pwd=cycy 安装包解压即用链接:https://pan.baidu.com/s/1fh9vvLk8OHuIlCJxD7jiBg?pwd=282n 提取码:282n 项目地址:https://github.com/KwaiVGI/LivePortrait 节点地址:https://github.com/kijai/ComfyUILivePortraitKJ 方法二:使用星流一站式 AI 设计工具的图生图功能 1. 图生图功能允许用户上传一张图像,并基于该图像生成新的视觉内容。 2. 应用图生图: prompt 输入框下,点击“图生图”上传本地文件。 无限画布中,在图片功能区进行选择。 3. 调整“图生图”功能区参数: 参考程度: 更像原图:小幅度修改基底图像,有限的增加元素。 更创意:大幅度修改基底图像,可搭配增强模型加入更多的元素。 自定义:可自定义修改重绘幅度。 增加参考纬度:点击添加按钮,会自动的应用并打开“生成器”的图片参考功能。 替换图像:鼠标滑动到图像,点击“选择参考图”即可重新选择图片。 转换提示词:反推参考图信息填入进提示词框中。 同步生图尺寸:同步参考图尺寸到“生成器”的生图尺寸中。
2025-01-20