Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

数据如何向量化

Answer

数据向量化是为了实现高效的文档检索,将原始的文本数据转化为数值向量的过程。其目的是将文本数据映射到低维向量空间,使语义相似的文本距离较近,不相似的较远。但这一过程会导致一定程度的信息损失,因为文本的复杂性和多样性难以用有限向量完全表达,可能忽略细节和特征,影响文档检索准确性。

在语义搜索中,根据用户问题从文档集合中检索语义最相关的文档,主流方法是基于数据向量化结果,利用向量空间中的距离或相似度度量语义相似度,但存在局限性,如不能完全反映真实语义相似度,向量空间中的噪声和异常值会干扰结果,导致准确率无法 100%保证。

在计算机科学和数据分析中,向量常被用作表示数据点的方式,是一个数值列表或数组,每个数值代表数据点的一个特征。多维数据运算常以矩阵形式进行,矩阵乘法是基本操作。归一化是数据预处理的关键技术,用于调整数值数据范围,常用方法有最小-最大缩放和 Z 得分标准化。

在向量数据库中,当用户输入查询时,如“激动人心的科幻冒险”,会转换成一个向量,例如[0,0.9,0.7,0.8,0,0,0,0,0,0],表示对不同元素的偏好程度。向量数据库存放的是词在不同维度上的相对位置,数据的存储和检索与传统 Excel 和关系数据库有很大不同。关于文字如何转换成向量,实际的向量结构会很复杂。

Content generated by AI large model, please carefully verify (powered by aily)

References

开发:LangChain应用开发指南-不用向量也可以RAG

[title]开发:LangChain应用开发指南-不用向量也可以RAG[heading2]RAG面临的挑战和问题「数据向量化的信息损失」。为了实现高效的文档检索,通常需要将原始的文本数据转化为数值向量,这一过程又称为数据向量化(Data Embedding)。数据向量化的目的是将文本数据映射到一个低维的向量空间中,使得语义相似的文本在向量空间中的距离较近,而语义不相似的文本在向量空间中的距离较远。然而,数据向量化也会导致一定程度的信息损失,因为文本数据的复杂性和多样性很难用有限的向量来完全表达。因此,数据向量化可能会忽略一些文本数据的细节和特征,从而影响文档检索的准确性。「语义搜索的不准确」。在RAG中,语义搜索(Semantic Search)是指根据用户的问题,从文档集合中检索出与问题语义最相关的文档,这一过程又称为数据召回(Data Retrieval)。语义搜索的难点在于如何理解用户的问题和文档的语义,以及如何衡量问题和文档之间的语义相似度。目前,语义搜索的主流方法是基于数据向量化的结果,利用向量空间中的距离或相似度来度量语义相似度。然而,这种方法也存在一些局限性,例如向量空间中的距离或相似度并不一定能反映真实的语义相似度,而且向量空间中的噪声和异常值也会干扰语义搜索的结果。因此,语义搜索的准确率也无法有100%的保证。

[算法学习] 从0开始掌握反向传播算法

向量(Vector):在计算机科学和数据分析中,向量经常被用作表示数据点的方式。在这种情况下,向量是一个数值列表(或数组),其中的每个数值代表了数据点的一个特征。矩阵运算(Matrix Operations):由于多维数据通常表示为向量,因此很多运算都是以矩阵的形式进行的。矩阵乘法是线性代数中的一个基本操作,其中每个元素的值是通过将行向量中的元素与列向量中对应元素相乘然后求和获得的。归一化(Normalization):归一化是数据预处理的一种关键技术,主要用于调整数值数据的范围,以便不同特征之间可以更公平地比较。这对于数据之间绝对值有明显差异的模型表现非常重要。比如我的数据是:面积80,商圈数5,得到的模型就会非常混乱,很难做梯度优化。归一化的常用方法:[heading4]最小-最大缩放:此方法通过以下公式将所有特征缩放到[0,1]区间内:[heading4]Z得分标准化:也称为标准化,此方法将数据按其均值和标准差重新缩放,使得处理后的数据具有均值为0和标准

大雨:简单易懂的向量数据库解析:你需要了解的一切

我们先把悬疑度和科幻元素这2个维度弄个交集,就出现了下面这个图一时没找到特别合适的展示二维效果的工具,让gpt写了个代码。|2维度|3维|<br>|-|-|<br>| | |老实说呢,维度超过3维,普通人已经不好想象了,这个时候只能借助复杂的数学公式来做,理解上还可以通过降维的方式来,比如投影之类的方法。这些是数据在向量的存储形式,如果要去查询是什么样的方法呢?[heading3]好了,我要开始查询了[content]当用户输入“激动人心的科幻冒险”时,这个查询同样可以转换成一个向量,例如[0,0.9,0.7,0.8,0,0,0,0,0,0],这表示用户对科幻(0.9)、冒险(0.7)和激动(0.8)的高度偏好。这里简单展示了一个向量的结构,数据如何存储,如何查询的过程,实际的向量结构会复杂很多。简单来说,数据的存储和检索和传统Excel,关系数据库有很大的不同。向量数据库存放的是一个词在不同维度上的相对位置。比如说,短毛猫(假如有这么个物种),这个词,它是猫科动物,是生物,是短毛的,温顺的(假如)。这样一来,就有非常多的维度可以去描述它。我们搜索的时候,也许是搜索“温顺的动物”。这里例子里面,我们看到了文字转换成向量的结果,它是咋转换的呢?

Others are asking
大模型在金融领域的量化投研领域的应用
大模型在金融领域的量化投研领域有以下应用和特点: 1. 大型系统工程: 量化和大模型都需要大型计算集群,上万张卡的互联是对基础设施的极致挑战。量化对性能和效率有极致追求,交易指令速度至关重要;大模型在基础设施层面的每一点提升都能优化训练效率。 细节在大型系统工程中十分关键。量化交易系统包含多个方面,任何环节出问题都会导致交易系统失败;大模型预训练从数据到评估包含大量细节,如数据配比、顺序、训练策略等。 2. 本土化机会: 很多 Global 的量化基金到中国会水土不服,国家政策也限制其大规模开展业务,给国内量化基金崛起机会。 OpenAI、Google、Meta 等的模型中文能力一般,未对中国国情优化,不符合政策要求,给国内大模型公司本土化预训练机会。 两者都受政策影响极大,需要有效监管才能健康发展。 3. 其他相似之处: 少数精英的人赚大量的钱,做大模型和金融量化都不用很多人,但每个人都要绝顶聪明。 核心问题一样,下一个 token 预测和下一个股价预测类似。 都需要大量数据,都追求可解释性。 作者:黄文灏 源地址:https://zhuanlan.zhihu.com/p/646909899 最近和朋友讨论发现大模型预训练和金融量化有很多相似之处,作者恰好同时具有两者背景,做了对比。
2024-12-25
以图片为主的PDF文件向量化的本地大模型推荐
以下是关于以图片为主的 PDF 文件向量化的本地大模型的相关信息: RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 技术实现。RAG 应用包括 5 个过程: 1. 文档加载:从多种来源加载文档,如包括 PDF 在内的非结构化数据、SQL 在内的结构化数据以及代码等。 2. 文本分割:把文档切分为指定大小的块。 3. 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 PDF 翻译的 AI 产品: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择相关翻译选项。 3. Calibre(电子书管理应用):,下载安装并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传多种格式文件,支持选择领域和导出格式。 6. 彩云小译(App):下载后点击「文档翻译」,可导入多种格式文档,但有免费次数限制且进阶功能需付费。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-06
我是一名数据产品经理,想转行ai产品经理,该从哪里入手。你的知识库里有哪些可以帮到我。最好把他们列举出来,具体一些最好有步骤
以下是为您整理的从数据产品经理转行 AI 产品经理的相关知识和建议: 一、AIPM 技能树 1. 理解产品核心技术 了解基本的机器学习算法原理,有助于做出更合理的产品决策。 2. 与技术团队有效沟通 掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性 在产品规划阶段,能更准确地判断某些功能的技术可行性。 4. 把握产品发展方向 了解算法前沿,更好地把握产品的未来发展方向。 5. 提升产品竞争力 发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力 掌握相关知识,提升数据分析能力。 二、AI 提示词工程师岗位技能要求 1. 学历和专业背景 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 AI 工具 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 3. 项目经验 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 4. 技术理解 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 5. 数据分析与决策 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 6. 创新思维 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 7. 技术关注 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 8. 编程能力 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 三、AI 市场与 AI 产品经理分析 当前有两个场景: 1. 企业(包括传统企业和互联网企业)如何实现 AI 转型或用好 AI。 2. 产品经理如何转型 AI 产品经理。 希望以上内容对您有所帮助。
2025-01-21
推荐一个数据分析的AI产品
以下为您推荐一些数据分析的 AI 产品: 1. PandasAI:让 Pandas DataFrame“学会说人话”的工具,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业,并符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/ 3. 医渡云病历分析系统:利用 AI 分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 4. 讯飞听见会议总结功能:在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。
2025-01-21
推荐一个数据分析的AI产品
以下为您推荐一些数据分析的 AI 产品: 1. PandasAI:让 Pandas DataFrame“学会说人话”的工具,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业,且平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/ 3. 医渡云病历分析系统:利用 AI 分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 4. 讯飞听见会议总结功能:在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。
2025-01-21
AI的数据分析工具
以下是关于 AI 的数据分析工具的相关内容: ChatGPT 助力数据分析: 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身的使用情况,输入一句话可分析用户配置图表相关的数据。 个性化分析:平台上支持上传数据,可提供数据信息(非必填),以此自定义分析用户自己上传的数据。 分析完成后展示结果数据的图表(折线图和柱状图可随意切换)和分析结论。 中小企业利用 AI 进行转型中的数据分析和洞察: 目标是通过使用 AI 工具分析大量的客户和市场数据,为企业决策提供有力支持。 步骤包括:利用 AI 工具分析客户数据、市场数据,深入理解客户行为、市场趋势和业务机会;为营销、产品开发等部门提供基于数据的建议和指导;与相关部门紧密合作,确保数据洞察被有效利用;持续监控策略执行效果,并收集相关数据,形成闭环,不断优化数据分析和业务决策。 推荐的 text2sql 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还建议查看以下几个知名的 text2sql 项目: SQLNet:一个使用深度学习方法解决 text2sql 任务的项目。 Seq2SQL:一个将自然语言转换为 SQL 查询的序列到序列模型。 Spider:一个大规模的 text2sql 数据集及其相关的挑战。
2025-01-21
知识库的实验数据,AI能关联分析思考吗?
目前的 AI 技术在一定程度上能够对知识库中的实验数据进行关联分析和思考。AI 具备处理和分析大量数据的能力,通过运用机器学习和数据挖掘算法,可以发现数据中的模式、关系和趋势。然而,AI 的分析能力取决于数据的质量、特征工程的有效性以及所采用的算法和模型的适用性。在复杂和不确定的情况下,AI 的分析结果可能存在一定的局限性,需要人类的进一步审查和判断。
2025-01-18
可以读取excel数据,编写程序的ai工具
以下是一些可以读取 Excel 数据并编写程序的 AI 工具相关内容: 1. 自制微博指数爬虫工具:通过分析微博话题页面,找到真实数据地址,明确规则后让 AI 帮忙写代码。需求是抓取微博话题 30 天的分日数据,在执行代码时 topic_name 由用户手动输入,在 colab 上运行并将数据存储到 Excel 自动下载到本地。 2. 用 AI 撰写专业区域经济报告:信息收集时利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。内容拆分时针对报告需求将内容拆分,数据处理借助传统工具如 Excel 结合 AI 指导高效操作数据筛选与图表生成,分析与撰写时通过整理数据利用 AI 辅助分析后撰写报告初稿,最终内容需人工主导校验。 3. 金融服务业中生成式 AI 的应用:生成式 AI 可以帮助金融服务团队改进内部流程,如在预测方面帮助编写 Excel、SQL 和 BI 工具中的公式和查询,发现模式并为预测建议输入;在报告方面帮助自动创建文本、图表、图形等内容,并根据不同示例调整报告;在会计和税务方面帮助综合、总结并提出可能答案;在采购和应付账款方面帮助自动生成和调整合同、采购订单和发票以及提醒。
2025-01-16