Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

近期典型的企业大模型应用案例有什么

Answer

以下是近期典型的企业大模型应用案例:

  • 彭博发布了金融领域的大模型 BloombergGPT,应用于其所在的垂直领域。
  • 医联发布了内首款医疗大语言模型 MedGPT,可在真实医疗场景中发挥实际诊疗价值。

在解决大模型落地难的问题方面:

  • 提高内容可信:如周伯文认为应做具备通用能力的大模型,并通过商业交付、反馈和评测来解决;中国科学院院士张钹指出 ChatGPT 没有自我学习能力,需用更多数据优化以解决实际应用问题;旷视科技物流业务事业部的负责人徐庆才提到大模型走向垂直化以提高内容精准度。
  • 解决算力成本高、训练重复和资源紧缺的问题:一家 AI 算力公司联合创始人张新提到以 GPT-3 模型为例,训练成本高昂,且全行业训练卡涨价,目前仍无法用商业化的国产芯片进行大模型训练。

此外,2024 年 7 月 12 日的《2024 大模型典型示范应用案例集》汇集了 97 个优秀案例,展示了大模型技术在教育、医疗、金融、政务等多个行业和领域的应用,案例由阿里云、百度、华为等领先企业实施,上海成为应用落地的热点地区,大中型企业是主要试验场,AI 智能体和知识库成为提升大模型落地实效的关键手段。

相关报告还有:

Content generated by AI large model, please carefully verify (powered by aily)

References

七大行业的商业化应用

比如,彭博此前发布了金融领域的大模型BloombergGPT,应用于其所在的垂直领域;医联则发布发布内首款医疗大语言模型MedGPT,可在真实医疗场景中发挥实际诊疗价值。无论是医疗、金融、电商等领域,都需要垂直性大模型产品。多位AI行业人士向钛媒体App指出,从产业角度来看,通用模型就是“百科全书”,能够有问必答,能够适用不同的产业土壤,而垂直模型类似于单领域的专家,虽然专业,但受众注定是少数人。但垂直大模型的发展对各个领域的模型性能持续提升。今年6月16日,OpenAI进行了更新,GPT模型的价格降低了75%,GPT-3.5-turbo的输入token价格降低了25%最新价格,每1k token,0.0001美金。奥特曼还曾提到,OpenAI正在开发新的技术,将可以使用更少的数据、更低廉的价格来训练模型。“当模型足够大之后,它可以把问题泛化成一个通用问题自然输出,可能未来常见的99%以上的物体或事件用一个模型自己就可以去做了。带来的好处就是,很可能就会非常快的加速商业化落地,带来更好的技术能力。比起原来方式,可能会更快地缩短产业应用的周期。”商汤科技联合创始人、大装置事业群总裁杨帆对钛媒体App表示。360公司创始人、董事长周鸿祎近日表示,ChatGPT的出现,代表着超级AI时代的来临。大模型属于通用人工智能,在很多维度上已经超越了人类。同时,大模型是工业革命级的生产力工具,将会带来一场新工业革命,能赋能百行千业,就能在实体经济转型数字化、智能化过程中发挥重要作用。“我认为中国发展大模型没有不可逾越的技术障碍,要感谢OpenAI的成功给我们指明了技术方向,点明了技术路线,中国科技公司在产品化、场景化、商业化上有很大的优势,我对我们能打造这个大模型深信不疑。”周鸿祎表示,未来中国不会只有一个大模型。

4.4 历史更新

《[2024大模型典型示范应用案例集](https://waytoagi.feishu.cn/record/UXgRrbKPue5a2McLLRBcobienQg)》汇集了97个优秀案例,展示了大模型技术在多个行业和领域的应用,如教育、医疗、金融、政务等。案例由阿里云、百度、华为等领先企业实施,体现了大模型在提升效率、降低成本、创新服务等方面的显著成效。上海成为应用落地的热点地区,大中型企业是主要试验场。AI智能体和知识库成为提升大模型落地实效的关键手段。这些案例为行业提供参考,推动大模型技术深入赋能实体经济,促进高质量发展。其它报告:《[信达证券:AI行业设计领域专题报告:Adobe AI功能覆盖全面,Canva、美图等力争上游](https://waytoagi.feishu.cn/record/K2jmr73Z8eLPt2cFQqmcE8WCnOc)》《[中国信通院:大模型基准测试体系研究报告(2024年)](https://waytoagi.feishu.cn/record/ImCAreDtfehepoc4aMCcVRmwn4d)》《[埃森哲:人工智能行业:2024在生成式人工智能时代重塑工作、劳动力和员工](https://waytoagi.feishu.cn/record/L5zgrgS3veYjV3c6i72cJ27xnxh)》

七大行业的商业化应用

解决大模型落地问题,总结来说主要有三方面:提高内容可信;解决算力成本高、训练重复和资源紧缺的问题;大模型价格需要不断降低,或使用垂直领域模型落地。首先是提高内容可信问题。周伯文对钛媒体App表示,我们应该做一个具备通用能力的大模型,能够解决不同用户的实际问题,而且需要不断通过商业交付去应用、反馈,甚至需要评测以解决内容可信问题。中国科学院院士、清华大学人工智能研究院名誉院长张钹认为,ChatGPT没有解决的就是自我学习的能力,这是ChatGPT最致命的地方,因此需要把更多数据去优化以进一步解决实际应用问题。“不要认为ChatGPT能解决全部的人工智能问题,没有重新学习的能力,不可能应对变化。国内、国外都一样,我问美国的ChatGPT也是这样来答的,问中国的ChatGPT,有的做得比较好,有的也是错误的。这就给我们提出一个问题,我们要把它用到这些决策问题上面去,这个重大问题需要进一步解决。”张钹表示。旷视科技物流业务事业部的负责人徐庆才在最近一次交流中提到,目前大模型需要走向垂直化,可以结合场景用一个模型和一个框架下统一去提高内容精准度。“目前依然有一定差距,这个差距来自于现在技术上的不可实现,来自于现在没有找到一个好的方式实现这个东西,这就是我们现在需要来看,现在新技术到底能不能够弥合这个点,我们判断这些问题很快都会被解决。”徐庆才表示。其次是解决算力成本高、训练重复资源却紧缺的问题。一家AI算力公司联合创始人张新(化名)对钛媒体App提到,以GPT-3模型为例,现有千卡集群训练一个月,单次训练周期一个月,总成本超过1200万美金。今年上半年,全行业(训练卡)在涨价,持续涨价超过25%。但在这样一个情况下,今天仍然没有人能够用商业化的国产芯片去做大模型的训练。

Others are asking
我要策划一个朋友圈发的海报,需要有些prompt指导,看看有没有类似的案例或者相似的案例
以下为您提供一些朋友圈海报的 prompt 指导及相关案例: 即梦图片 2.1 模型: 模型上线,已支持在图片中生成中文字体。 操作步骤: 第一步:打开即梦官网 https://jimeng.jianying.com/ 第二步:点击进入图片生成页面 第三步:生图模型选择图片 2.1 模型 案例: 提示词:咖啡店穿着服务员服装的猫咪,揉着眼睛,文字“小店打烊了” 提示词:一只布偶猫举着牌子,牌子上写着“睡什么睡,起来嗨” 提示词:电影宣传海报,画面中间是韦小宝,四周是七个宫女,标题文字“重生之我是韦小宝” 提示词:电商节日海报,背景是上海外滩,圣诞节布置,旋转木马,节日的气氛,标题文字“圣诞集市” 即梦:女神节海报教程: 原文链接:https://mp.weixin.qq.com/s/CYmlZDPjrchnKr8V4lvmRQ 操作步骤: 第一步:打开即梦 AI,选择“图片生成”功能 https://jimeng.jianying.com 第二步:模型选择图片 2.1,输入提示词(可以直接参考案例提示词) 第三步:点击生成,几秒钟后,专属字体海报完成 案例: 案例一:提示词:女神节主题,3D 设计,梦幻氛围,明亮春天场景,花田,数字 38,天空“女神节”,五彩缤纷的蝴蝶,晴朗的蓝天,茂密的绿色草地,盛开的花朵,柔和光线 案例二:提示词:粉色主题,梦幻氛围,数字 38,心形气球,花卉装饰,玫瑰花,漂浮的花瓣,柔和的云朵,美丽的湖面倒影,奇幻风格,柔和的色调,庆祝场景 案例三:提示词:妇女节,3D 设计,粉色主题,大号装饰数字 38,爱心,郁金香花朵,柔和光照,背景城市天际线,精致花卉装饰,优雅节日氛围,金色文字,春天氛围,细致鲜艳 希望这些内容对您策划朋友圈海报有所帮助!
2025-03-13
教育行业有那些基于aigc的业务实际落地的产品和案例?
以下是教育行业基于 AIGC 的一些业务实际落地的产品和案例: 教师的 AI 减负指南生成式人工智能在教学中的应用,包括教师使用 AI 的小技巧。涉及人员有张亚丽、富露露、张亚玲、张楚璇、吴箭枢等,学校有深圳大学附属中学、苏州工业园区娄葑学校、上海市静安区风华初级中学南校、江苏省苏州工业园区教师发展中心中学、苏州工业园区唯亭学校初中、中央民族大学附属中学等。 AIGC 人机协同国家课程项目化学科实践设计与实施,例如以科学《计量时间博物展》为例,以及基于思维可视化的项目式主题学习设计与实践,如以智驾未来课程为例。相关人员有祝琛、崔琴、张然、刘敏、王国庆、吴沁珂等,学校有深圳市南方科技大学教育集团实验二小、成都经济技术开发区实验小学校。 Al 创作家:用 AI 辅助设计桌游,解决学校实际问题,如北京市新英才学校的魏一然所做的工作。 生成式人工智能与教学变革:AI 领雁行动的探索与实践,相关人员有邹贤莲、向雪萍、陈治佑、余初冉、阊洪娇,学校有重庆两江新区行远小学校。 北京市新英才学校的跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 的帮助下备课和授课,生物和信息科技老师合作一起带着学生用训练 AI 模型,用以识别植物。 AIGC 常见名词解释,如 AIGC 意为人工智能生成内容,能进行 AIGC 的产品项目和媒介众多,包括语言文字类的 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等,语音声音类的 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等,图片美术类的 Midjourney、Stable Diffusion 等。
2025-03-13
有没有接入微信消息的coze工作流案例
以下是一些接入微信消息的 Coze 工作流案例: 1. 【拔刀刘】自动总结公众号内容,定时推送到微信(附完整实操教程) 搭建工作流: 设置 Bot: 人设和回复逻辑:由于 Bot 主要依托于工作流,设置提示词,直接调用工作流,将 sum_weixin_2_2 替换为工作流的名称。 工作流:添加刚刚创建的工作流。 设置触发器:选择「定时触发」,选择触发的时间,比如每天 18 点,任务执行时输入工作流中开始节点的输入参数,如 key 为 Server 酱的 sendkey,rss_list 可以使用提供的测试数据。触发器在设定时间点根据输入项内容执行工作流,从而在微信收到推送的总结内容。可以同时设置多个触发器,最多 10 个,可推送给不同的人或分不同时间段给自己推送不同内容。 发布到飞书:点击右上角「发布」,注意渠道选择飞书,因为目前 Coze 平台触发器只对飞书渠道生效。 2. AI 实战:搭建信息情报官 Agent 先在 http://open.feishu.cn 上建飞书机器人,并添加知识库或多维表格编辑权限,获得机器人的 app_id 和 app_secret 以获取租用 token:tenant_access_token 来获取多维表格数据和编辑能力。 工作流一:通过微信文章链接进行文章解读成摘要报告,通过 LLM 能力,开源提示词如下。由于 Coze 使用 LLM 和批量执行任务延时的约束,建议不要同时处理太多文章(如 6 篇左右)。执行后将多维表格的文章状态转换成“已通知”并生成简报。 消息情报官 Bot:通过 Coze 建定时任务,执行工作流二,并添加其他如分析文章和搜索文章的能力,变成一个消息情报官的 Agent,发布到 Coze 商店、豆包、飞书、微信、微信公众号、微信小程序等。可以构建多个分身,收集整理不同领域和行业的情报信息。 3. Bot 智能体|用 Coze 实现【多模态资讯的跨平台推送】 技术实现原理: Coze API 接入微信群 Bot:登录宝塔面板,在宝塔面板当中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。chatgptonwechat(简称 CoW)项目是基于大模型的智能对话机器人,可以接入微信公众号、企业微信应用、飞书、钉钉,可选择多种模型,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源。点击“Docker”中的“项目模板”中的“添加”按钮,将编译好的内容复制进来,在容器中创建容器,选择容器编排,填入模板和名称,确定。运行成功后点击容器,可看到运行的是两个服务,点击“wcandyaibot”后面的日志按钮,用微信扫码,手动刷新日志,看到 WeChat login success 即成功将 Bot 接入微信。
2025-03-12
提供给我一个agent落地的具体案例
以下为您提供几个 Agent 落地的具体案例: 彬子基于 ComfyUI 做油管封面 Agent:彬子是 ComfyUI 新人,之前更多使用 Coze 做 Agent 并调用其图像流完成绘图功能,还在 Glif 上做若干 Bot 以插件调用 API 方式完成绘图功能调用。Glif 提供的云端 ComfyUI 带来更多图像玩法,Coze 的工作流和 ComfyUI 的图像流代表了 Agent 内部两个子领域领先水平,但大多数同学专注一个领域精进,只要从擅长阵地多迈出一步,就能更好把控 Agent 中各种节点的设计和运用。 有用 Agent 产品开发:目前仍没有 Killer App 出现和 Agent 产品落地,原因一是 Agent 不靠谱,二是 Agent 开发者不靠谱。Agent 能力受 Tools 能力影响,如订机票需携程的 API 接入能力,要让模型更准确选择 Tools 及生成 api args,将非通识业务知识设计好让 Agent 直接用是当前接近“人工”智能且高性价比的方式。 【智谱 AutoGLM】:经过深度测试,AutoGLM 让开发者看到了 AI Agent 真正落地的希望。它解决了之前开发类似功能时的 API 对接难、多模态识别差、操作不精准等问题,借助 RPA 思路通过模拟人类操作实现跨应用控制。其场景理解能力出色,能根据用户意图选择合适应用场景,但仍存在语音识别偏差、复杂界面操作稳定性差、只支持安卓等问题。智谱团队选择几个高频场景深耕细作,证明了产品价值,未来发展空间大。
2025-03-12
core案例拆解教程
以下为为您提供的几个案例拆解教程: Coze 应用实战指南 吐槽心灵鸡汤 核心功能说明:一个允许用户输入心灵鸡汤类内容,AI 生成对应的反心灵鸡汤,并展示在前端页面的应用。 核心操作流程拆解: 1. 用户在页面输入指定文本。 2. 用户在页面点击【开喝】按钮。 3. Coze 后台调用工作流生成对应内容。 4. 工作流生成的内容展示在前端界面内。 核心前端设计拆解: 1. 用户界面提供一个元素 A(Coze 中称作组件),让用户输入内容。 2. 用户界面提供一个按钮 A,让用户点击后调用工作流。 3. 用户界面提供一个元素 B,向用户展示工作流的结果。 核心业务逻辑拆解: 1. 读取元素 A 的用户输入。 2. 将用户输入传递给 AI 大模型。 3. AI 大模型按照提示词设定生成指定内容。 4. 在元素 B 展示 AI 大模型生成的内容。基于上述业务逻辑,只需要设计一个简单的工作流即可,该工作流由【开始】节点(用户输入)、【大模型】节点(AI 生成内容)、【结束】节点构成(内容输出)。 Pika 新功能“Pikadditions” 厕所开门见猴 原视频:人物推开厕所门→空马桶镜头。 角色图片:一张猴子坐在马桶上的图片。 提示词:“When the door opens in the video,we see a monkey with reading glasses sitting in the toilet reading a book.” 拆解逻辑: 1. 时间触发:When the door opens→绑定视频动态事件(门开合过程)。 2. 空间绑定:sitting in the toilet→将猴子坐标锁定在马桶实体上。 3. 行为设计:reading a book→赋予角色符合场景逻辑的行为(厕所常见活动)。 4. 细节强化:with reading glasses→用视觉符号增强角色合理性(模仿人类行为)。 首尾帧循环视频制作 宇航员案例 1. MJ 生成宇航员近照。 2. 截取头盔中反射的宇航员作为第 3 步垫图和 sref 使用。 3. 生成与头盔中宇航员接近的半身像。 4. 打开即梦,选择使用尾帧。重点:一般情况可以不选择运镜控制,但这张图需要选择变焦推进,控制镜头推进到头盔里,不然 AI 会自己选择更容易实现的后拉运镜。 5. 得到。 6. 同样的做法得到尾帧回到首帧的视频,再用剪映拼接一下两段视频即可得到在他人与自己中无限轮回(有时候起始或结束有停顿,保证整条视频衔接流畅可以掐掉)。
2025-03-12
目前AI在HR领域的应用真实案例
以下是 AI 在 HR 领域的一些应用真实案例: 1. 在招聘初期,AI 可用于职位描述生成、简历分析、面试题设计。 2. 在员工绩效评估方面,AI 能够分析员工工作表现,识别绩效趋势和提升点,为管理层提供数据支持的绩效反馈。 3. 对于员工培训与发展,AI 也能发挥作用。 例如,在智能人力资源方面,目前主要利用模型进行简历初筛、JD 自动生成、数据分析等工作。还有像 Deepseek“4+1”黄金提问法中的人力资源场景,如作为 IT 企业 HR,目标是 6 个月内培养 10 名全栈工程师,能独立负责项目。需要设计阶段性培训方案,并提出了具体的要求,用培训体系文档格式输出,包含能力评估标准。
2025-03-10
希望找到一个可以帮助我写论文的模型
以下是一些关于利用模型写论文的信息: 可以向 LLM 寻求写作建议,甚至直接要求它帮您写论文。例如提供关于个人背景的信息,让其生成大学申请论文。但需要注意,这种方式可能存在道德问题。 可以直接给模型相关论文,让其完成任务,如写出论文中的例子。模型能够理解复杂的信息,不需要过度简化。 例如用 ChatGPT 撰写“宇宙类比大规模语言模型”的论文时,可以给出相关提示词,从宏观天文学、微观量子力学、哲学等角度展开讨论,并明确探讨方向。
2025-03-14
有没有ai调色的大模型
以下为您介绍一些有关 AI 调色的大模型: 1. 在最近新上线的 controlnet 模型中,新增了名为 Recolor 的模型,可将黑白图片重新上色。在处理人物照片还原时,可选择 realisian 的写实大模型,通过提示词描述颜色和对应内容。ControlNet 选择 Recolor 时,预处理器选择“recolor_luminance”效果较好。 2. 星流一站式 AI 设计工具的基础模型中,允许使用更多的微调大模型,如基础模型 F.1、基础模型 XL、基础模型 1.5 等。同时,还具有高清分辨率修复、脸部/手部修复等功能,以及多种参数如采样器、采样步数、随机种子、CFG Scale 等可调整。 3. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,可在显存不够时放大图片。处理复杂照片时,可放弃人物服装颜色指定,只给场景方向,如加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,通过简单关键词控制色调。
2025-03-14
Transformer模型
Transformer 模型是一种基于注意力机制的深度学习模型,由 Vaswani 等人在论文《Attention is All You Need》中提出,用于处理序列到序列的任务,如机器翻译、文本摘要等。其原理主要包括以下几个关键点: 1. 自注意力机制:能够同时考虑输入序列中所有位置的信息,而非像循环神经网络或卷积神经网络一样逐个位置处理。通过自注意力机制,模型可根据输入序列中不同位置的重要程度,动态分配注意力权重,从而更好地捕捉序列中的关系和依赖。 2. 位置编码:由于自注意力机制不考虑输入序列的位置信息,为使模型能够区分不同位置的词语,Transformer 模型引入了位置编码。位置编码是一种特殊的向量,与输入词向量相加,用于表示词语在序列中的位置信息。位置编码通常基于正弦和余弦函数计算得到的固定向量,可帮助模型学习到位置信息的表示。 3. 多头注意力机制:通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。 4. 残差连接和层归一化:在每个子层(SelfAttention 层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可缓解梯度消失和梯度爆炸问题,使得模型更容易训练和优化;层归一化可加速训练过程,并提高模型的泛化能力。 5. 位置感知前馈网络:在每个注意力子层之后,Transformer 模型还包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。 Transformer 模型主要由两大部分组成:编码器和解码器。每个部分都是由多个相同的层堆叠而成,每层包含了多头注意力机制和位置全连接前馈网络。 编码器可以理解为将自然语言转换成向量文本,以模型内的既有参数表示。这些参数包含了原始信息,同时也融合了序列内元素间的相互关系。例如,输入“我喜欢猫”,将自然语言转换成词嵌入向量:我>,经过自注意力机制,输出编码器输出一个序列的向量,表示对输入句子的理解。 解码器基于编码器的输出和之前生成的输出逐步生成目标序列,也就是把向量文本重新转化成自然语言。例如,目标生成中文句子“我喜欢猫”,初始输入为解码器接收一个开始符号,用,对应“猫”。这是一个简单的复现概念,当模型得到匹配度高的参数时,它就会一个词一个词地判断需要输出的语言文本。
2025-03-14
大模型如何在企业里应用
大模型在企业中的应用主要体现在以下几个方面: 1. 智能终端行业:中国超半数手机厂商如三星、荣耀、vivo、OPPO、小米等主流品牌,以及上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 2. 百度表现:在主流大模型厂商中,百度表现突出,拿下最关键的中标项目数量、中标金额两项第一。其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。百度智能云的增长主要由互联网、教育、金融等行业对模型训练和推理的高需求带动。 3. 落地所需能力:企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。这意味着大模型落地赋能企业智能化时,能力比拼从单项变为全能比拼。 然而,大模型在企业落地应用中面临一些问题和挑战: 1. 竞争格局:大模型是典型赢家通吃领域,胜出的大模型在中国和世界范围内都很难超过 2 个,巨头在资金、技术和数据方面具有优势,给创业公司的机会很少。 2. 落地难题:如何将大模型更快落地应用,将技术能力释放并与更多场景相结合,真正产生新一轮科技革命和产业变革,是当前紧要的关键问题。 3. 具体问题: 提高内容可信:需要通过商业交付去应用、反馈和评测,不断优化数据以解决实际应用问题,走向垂直化以提高内容精准度。 解决算力成本高、训练重复和资源紧缺:以 GPT3 模型为例,训练成本高昂,且目前仍无法用商业化的国产芯片进行大模型训练。 解决大模型落地问题,主要有以下三方面:提高内容可信;解决算力成本高、训练重复和资源紧缺的问题;降低大模型价格或使用垂直领域模型落地。
2025-03-14
大模型和智能体的区别
大模型和智能体的区别主要体现在以下几个方面: 概念定义: 智能体:简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。可以是面向 C 端,如社交方向,用户注册后先捏一个自己的智能体,然后让其与他人的智能体聊天,两个智能体聊到一起后再真人介入;也可以面向 B 端,帮助 B 端商家搭建智能体。 大模型:是一种技术。 局限性: 大模型具有强大的语言理解和生成能力,但存在一定局限性,例如无法回答私有领域问题(如公司制度、人员信息等),无法及时获取最新信息(如实时天气、比赛结果等),无法准确回答专业问题(如复杂数学计算、图像生成等)。 开发平台: 有众多智能体开发平台,如字节的扣子、Dify.AI 等。 应用场景: 智能体应用基于大模型,通过集成特定的外部能力,能够弥补大模型的不足。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,缺少技术人员开发大模型问答应用等场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 在 Anthropic 的定义中,智能体可以有多种定义,一些客户将其定义为能够长期独立运行的全自动系统,能使用各种工具完成复杂任务;另一些则将其描述为更具规范性、遵循预定义工作流程的系统。Anthropic 将这些变体统称为智能系统,并在架构上区分为工作流和智能体两种类型,工作流是通过预定义代码路径来编排 LLM 和工具的系统,智能体则是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。
2025-03-14
快速帮我补充下大模型的发展时间线和关键节点,以及当前最前沿的新闻
大模型的发展时间线和关键节点如下: 2017 年:发布《Attention Is All You Need》论文。 2018 年: Google 提出 BERT,创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模。 OpenAI 提出 GPT,开创仅使用自回归语言建模作为预训练目标的方式。 2021 年:Meta 提出 Large LAnguage Model Approach(LLAMA),成为首个开源模型。 2022 年 11 月 30 日:ChatGPT 发布,在全球范围内掀起人工智能浪潮。 2022 年 12 月:字节云雀大模型等出现。 2023 年: 国内大模型发展大致分为准备期(国内产学研迅速形成大模型共识)、成长期(数量和质量逐渐增长)、爆发期(开源闭源大模型层出不穷,形成百模大战态势)。 关键进展包括:Meta 开源 Llama2、OpenAI 发布多模态 GPT4V 及 GPT4 Turbo、百川智能开源 Baichuan7B 及 Baichuan2、百度升级文心一言 4.0、清华&智谱 AI 开源 ChatGLM2 及清华开源 ChatGLM3、腾讯发布混元助手等。 当前最前沿的新闻包括:过去半年,国内领军大模型企业实现了大模型代际追赶的奇迹,从 7 月份与 GPT3.5 的 20 分差距,到 11 月份测评时已在总分上超越 GPT3.5。
2025-03-14
AI在制造业的一些典型应用场景
在制造业中,AI 有以下一些典型应用场景: 1. 产品设计和开发:可利用 AI 生成工具(如 Adobe Firefly、Midjourney 等)根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,能自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:通过 AI 模型分析设备运行数据,预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可依据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提升管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,能够自动生成个性化的客户回复,改善客户体验。 此外,制造业中的 AI 应用还包括: 1. 预测性维护:预测机器故障,避免工厂停机。 2. 质量控制:检测产品缺陷,提升产品质量。 3. 机器人自动化:控制工业机器人,提高生产效率。 4. 生产计划和供应链计划状态查询。 5. 产线预测性维保辅助。 6. 产品质量分析与溯源。
2025-03-14
闭源模型分类和典型案例
以下是一些常见的闭源模型分类和典型案例: 通用大模型:字节云雀大模型。 行业大模型:如蚂蚁金融大模型等。 在 2023 年,还有众多闭源模型的发布和升级,例如: 文心一言:经历了从 1.0 到 V3.5 的版本升级。 星火:科大讯飞发布的星火 1.0 及后续的升级版本。 此外,Qwen 系列模型也有出色表现,Qwen2 在性能上超越了目前所有开源模型和国内闭源模型,如文心 4.0 等。Qwen2 具有多种尺寸的预训练和指令调整模型,在大量基准评估中表现出先进的性能,提升了代码、数学、推理等多方面的能力,并在多个国际权威测评中获得冠军。
2025-02-14
2024大模型典型应用案例集
以下是 2024 大模型的一些典型应用案例及相关信息: 《2024 大模型典型示范应用案例集》汇集了 97 个优秀案例,展示了大模型技术在教育、医疗、金融、政务等多个行业和领域的应用。案例由阿里云、百度、华为等领先企业实施,上海成为应用落地的热点地区,大中型企业是主要试验场。AI 智能体和知识库成为提升大模型落地实效的关键手段。 在智能终端行业,中国超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 整体来看,在主流大模型厂商中,百度表现突出,拿下最关键的中标项目数量、中标金额两项第一。截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%,其增长主要由互联网、教育、金融等行业对模型训练和推理的高需求带动。 企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。 相关报告: 《信达证券:AI 行业设计领域专题报告:Adobe AI 功能覆盖全面,Canva、美图等力争上游》 《中国信通院:大模型基准测试体系研究报告(2024 年)》 《埃森哲:人工智能行业:2024 在生成式人工智能时代重塑工作、劳动力和员工》 此外,还有一些相关活动,如: 2024 年是国内大模型技术加速落地的关键年份,各大厂商如百度、阿里、字节等在 AI 大模型领域展开激烈竞争。百度凭借 40 个中标项目和 2.74 亿元中标金额在行业中处于领先地位。尤其在金融、智能终端等行业,百度文心大模型的应用广泛,表现亮眼。 🏮「非遗贺春」魔多蛇年春节 AI 模型创作大赛,大赛时间 2024 年 12 月 24 日2025 年 1 月 15 日。大赛奖池【¥12000】现金奖励+官方高含金量荣誉证书+会员与算力激励+流量激励。双赛道同时开启,赛道一【春节】+赛道二【爱非遗 AI 传承】。本次活动由浙江省非遗保护中心(浙江省非遗馆)指导×浙江省非遗保护基金会主办×魔多 AI 联合承办,由提供社区传播支持。
2025-01-16
案例:借助人工智能技术的诈骗 一、案例材料 1.背景资料 (1)近期全国范围内出现了一种新型电信诈骗——AI换脸诈骗,该诈骗利用AI人工智能,通过“换脸”和“拟声”技术模仿受害人的朋友或亲戚的声音和外貌,以此骗取受害者的信任,进行网络诈骗,近日包头警方就根据一起典型案例,向大家发出了防范AI换脸诈骗的警示。 财联社5月22日讯,据平安包头微信公众号消息,包头警方发布了一起利用人工智能(AI)实施电信诈骗的典型案例,一家福州市科技公司的法人代表郭先生竟在短短10分钟内被骗走了430万元人民币。
以下是关于 AI 的相关内容: 律师如何写好提示词用好 AI: 对于不具备理工科背景的文科生,可将 AI 视为黑箱,只需知道其能模仿人类思维理解和输出自然语言。AI 就像似人而非人的存在,与传统道教的驱神役鬼拘灵遣将有相似之处。提示词应是相对完善的“谈话方案”,成果在与 AI 的对话中产生,要接受其存在的“不稳定性”,并在对话中限缩自己思维的模糊地带。 AI 的应用场景: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未具体阐述)
2024-12-25
ai技术商业应用典型案例
以下是一些 AI 技术商业应用的典型案例: 企业运营: 日常办公文档材料撰写整理。 营销对话机器人,进行市场分析和提供销售策略咨询。 法律文书起草、案例分析以及法律条文梳理。 人力资源方面的简历筛选、预招聘和员工培训。 教育: 协助评估学生学习情况,为职业规划提供建议。 针对学生情况以及兴趣定制化学习内容。 论文初稿搭建及论文审核。 帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 游戏/媒体: 定制化游戏,动态生成 NPC 互动,自定义剧情和开放式结局。 出海文案内容生成,语言翻译及辅助广告投放和运营。 数字虚拟人直播。 游戏平台代码重构。 AI 自动生成副本。 零售/电商: 舆情、投诉、突发事件监测及分析。 品牌营销内容撰写及投放。 自动化库存管理。 自动生成或完成 SKU 类别选择、数量和价格分配。 客户购物趋势分析及洞察。 金融/保险: 个人金融理财顾问。 贷款信息摘要及初始批复。 识别并检测欺诈活动风险。 客服中心分析及内容洞察。 保险理赔处理及分析。 投资者报告/研究报告总结。 制造业/汽车: 生产计划、供应链计划状态查询。 产线预测性维保辅助。 产品质量分析与溯源。 自动驾驶全场景模拟训练及虚拟汽车助手。 线上购车品牌、配置对比分析。 生命科学: 研发阶段靶点发现及产品成药性。 医学文献内容检索,重点摘要提取,相关法规整理。 医药代表培训及知识库建立。 分诊导诊助理、诊疗助理、术后护理及复建辅助。 此外,还有以下具体案例: 京东物流仓储管理系统:利用数据分析、机器学习等技术优化物流仓储管理,提高运营效率。例如通过智能算法优化货物存储位置,减少拣货时间。 BOSS 直聘简历筛选功能:利用自然语言处理、机器学习技术快速筛选简历,提高招聘效率。根据企业的招聘要求,提取关键信息,为企业推荐符合条件的候选人。 贝壳找房租赁管理功能:利用数据分析、自然语言处理技术管理房地产租赁业务,提高效率。根据租客的需求和偏好,自动推荐合适的房源。 腾讯游戏社交平台:利用数据分析、机器学习技术为玩家提供社交功能,增强游戏体验。根据玩家的游戏历史和兴趣爱好,推荐可能成为好友的玩家。
2024-12-25
典型的通用人工智能应用有哪些
以下是一些典型的通用人工智能应用: 1. 医疗保健: 医学影像分析:用于辅助诊断疾病。 药物研发:加速药物研发过程。 个性化医疗:提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出贷款决策。 投资分析:辅助投资者决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:根据客户数据推荐产品。 搜索和个性化:改善搜索结果和提供个性化体验。 动态定价:根据市场需求调整价格。 聊天机器人:回答客户问题和解决问题。 4. 制造业: 预测性维护:预测机器故障。 质量控制:检测产品缺陷。 供应链管理:优化供应链。 机器人自动化:提高生产效率。 5. 交通运输:暂未提及具体应用。 此外,通用人工智能模型还具有以下特点: 大型生成式人工智能模型可以灵活生成文本、音频、图像或视频等内容,适应各种不同任务。 当通用人工智能模型集成到人工智能系统中,该系统可服务于各种目的。 通用人工智能模型的提供者在人工智能价值链中具有特殊作用和责任,应提供适度的透明度措施和相关文件。
2024-11-17
AI应用开发平台哪个最牛?
目前在 AI 应用开发平台方面,百度智能云表现较为出色。 IDC 发布的报告显示,在战略领先、数据集成、模型调优、模型部署、加速计算能力、工程化能力、平台生态、用户体验 7 大评估项目中,百度智能云获得七项满分,位于所有大模型平台厂商第一名。 百度智能云在 IaaS 层,其百舸 AI 异构计算平台解决大模型应用中的算力问题,提供从集群创建到模型训练、推理的完整算力管理方案,显著提升算力管理能力和模型训练效率。在 Paas 层,千帆大模型平台解决大模型的调用、开发和应用开发问题,支持调用文心大模型全系列模型,还提供全面的工具链,支持定制化的模型开发。在 SaaS 层,提供丰富的常用应用供客户选择。 此外,像美团外卖配送系统、猎聘 APP、链家 APP 等也是在各自领域利用 AI 技术取得良好效果的应用。 在智能体开发平台方面,字节的扣子和腾讯的元器受到关注。扣子主要用于开发下一代 AI 聊天机器人,国内也有像 Dify.AI 等智能体开发平台。
2025-03-14
AI应用
AI 的应用场景十分广泛,主要包括以下几个方面: 1. 医疗保健: 医学影像分析:用于分析医学图像辅助诊断疾病。 药物研发:加速药物研发,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据提供个性化治疗方案。 机器人辅助手术:控制手术机器人提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据辅助投资决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障避免停机。 质量控制:检测产品缺陷提高质量。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:控制工业机器人提高生产效率。 5. 交通运输: 6. 辅助创作与学习:如 AI 智能写作助手、语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等。 7. 推荐与规划:包括 AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等。 8. 监控与预警:如 AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等。 9. 优化与管理:涉及办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等。 10. 销售与交易:有 AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等。 此外,管理经验加持 AI 应用,如沟通明确、善于提供上下文、明晰 AI 能力边界、擅长任务拆解和整合等能提升 AI 协作效率。同时,医保严禁 AI 自动开处方,而 Coinbase 全面推动 AI 应用,如工程师使用 Cursor AI 工具编程,AI 技术用于欺诈预防、客户支持、风险评分、设计等领域,并将实现从工单到 PR 代码的 AI 自动生成。
2025-03-14
AI应用赛道中top应用介绍,实现的功能和应用场景,产品Launch时间:AIGC功能 Launch时间、当前月活用户数、营收利润、一年成本投入、市场占有率、目前融资金额及估值、创始团队介绍、公司员工规模、所属国家、用户来源、用户来自于哪些国家、用户profile、转化率、ROI等等, 盈利模式,优劣势与未来发展趋势。
以下是关于 AI 应用赛道的相关介绍: 应用场景:涵盖医疗、制造业、金融风控、消费端个性化服务、办公、农业、能源优化、娱乐等领域。 关键技术: 1. 包括大语言模型作为中枢神经系统,记忆模块实现长期和短期记忆,以及规划能力中的目标设定、任务拆解、生成策略、执行与反馈、资源管理和多智能体协同。 2. 强化学习用于环境感知和决策调整,多模态融合涉及多种数据类型,低成本训练是考虑成本的重要因素。 智能体特征:包括自主性、交互性和适应性,如通过自我对弈和博弈不断进化,在金融风控领域利用大量数据提升准确率。 AI 技术路线:从有语言能力的 AI 到有推理能力,再到能使用工具、发明创新以及形成组织,共五级。 智能体框架类型:分为任务驱动型、多智能体协作、强化学习型、具身智能体、应用型智能体,每种类型都有代表性框架。 智能体与大模型的关系:大模型是中枢和基石,智能体是行动引擎,两者协同演进,智能体产生的数据可反哺大模型。 未来趋势:智能体可能在中小企业中更具效益,人机协作中人类成为监督角色,但存在算力成本、伦理风险、技术瓶颈等挑战。 B 端变现与创业方向: 1. B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。 2. 自媒体创业:视频号等平台尚有蓝海空间,需具备内容创新和差异化,内容成本低且更新迭代快。 3. 游戏创业:个人或团队可做轻量化游戏,结合 AI 技术,满足放松和社交需求,专注垂类赛道,避免与大厂竞争。 4. 影视创业:25 年将是拐点,更多内容会采用 AI 技术,如哪吒 2 因前期规划未用 AI 技术。 5. 广告营销创业:重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: 1. 创业难点:创业对创业者综合能力要求极高,找到志同道合且能力互补的战友是创业前期最难的事。 2. AI 虚拟人发展:从早期以首位为核心的宅文化虚拟偶像,到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人,其发展历程不断演进。 3. 虚拟人产业链:包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。 4. 未来创业机遇:AI 虚拟人是未来 310 年 Web 3.0 的风口,提前布局未来有潜力的赛道,准备好迎接机遇。 相关案例和产品信息: 1. 10 月 26 日,AI 翻译和口型匹配技术在视频制作中的应用逐渐流行,公司如 Captions、HeyGen 和 Verbalate 通过 AI 生成字幕、配音和口型匹配等功能,帮助用户轻松实现视频翻译本地化。 2. 10 月 25 日,Perplexity 最新估值约为 5 亿美元,较 3 月宣布的 1.5 亿美元估值上涨 300%以上,当前的付费用户数量达到了 1.5 万人,截止本月,Perplexity 的 ARR 达到 300 万美元,最新估值约为 ARR 的 150 倍。 3. 《100 个有意思的 AI 应用》由国盛证券出品,分为基于 LLM 自然语言能力的对话、写作、阅读、分析等应用;多模态技术持续发展,图像、视频、音频、3D 等 AIGC 应用;企业级应用等。
2025-03-14
当前AI应用的内外部环境及趋势
当前 AI 应用的内外部环境及趋势如下: 技术创新方面:大模型创新架构优化加速涌现,融合迭代成为趋势;Scaling Law 泛化,推理能力成为关键,推动计算和数据变革;视频生成在 AGI 探索中表现突出,空间智能统一虚拟和现实。 应用格局方面:第一轮洗牌结束,聚焦 20 赛道 5 大场景;多领域竞速中运营大于技术,AI 助手竞争激烈;AI+X 赋能类产品发展迅速,原生 AI 爆款难求。 产品趋势方面:多模态上马,Agent 席卷一切,高度个性化需求凸显。 行业渗透方面:数据基础决定初速度,用户需求成为加速度。 创投方面:投融资马太效应明显,国家队出手频率提升。 在具体的行业动态中: AI 音频领域:效果和延迟问题取得突破,难以分辨语音是否由 AI 生成,语音生成延迟降低。 3D 世界生成领域:目前处于初级阶段,新产品未向大众开放,预计明年会有巨大进步。 应用领域:更新主要集中在 AI 搜索、AI 知识库、AI 编程,传统软件增加 AI 功能,未来可能不再有“AI 应用”的单独分类。 融资方面:能拿到钱的不再局限于模型公司,越来越多应用公司受资本青睐。 红杉资本观点认为: 人工智能在客户支持、法律服务和软件工程等行业展示了产品与市场的契合度。 生成式人工智能经历快速增长,但 AI 投资转化为可观回报存在问题。 2024 年将是真正的 AI 应用从“副驾驶”转变为“代理”的一年,未来将更有能力完成更高层次认知任务,计算平衡从预训练转向推理。 目前人工智能公司融资环境不均衡,关键挑战在于提高用户保留率和缩小期望与现实差距,产品与市场的契合度有待进一步提升。
2025-03-13