Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Transformer模型

Answer

Transformer 模型是一种基于注意力机制的深度学习模型,由 Vaswani 等人在论文《Attention is All You Need》中提出,用于处理序列到序列的任务,如机器翻译、文本摘要等。其原理主要包括以下几个关键点:

  1. 自注意力机制:能够同时考虑输入序列中所有位置的信息,而非像循环神经网络或卷积神经网络一样逐个位置处理。通过自注意力机制,模型可根据输入序列中不同位置的重要程度,动态分配注意力权重,从而更好地捕捉序列中的关系和依赖。
  2. 位置编码:由于自注意力机制不考虑输入序列的位置信息,为使模型能够区分不同位置的词语,Transformer 模型引入了位置编码。位置编码是一种特殊的向量,与输入词向量相加,用于表示词语在序列中的位置信息。位置编码通常基于正弦和余弦函数计算得到的固定向量,可帮助模型学习到位置信息的表示。
  3. 多头注意力机制:通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。
  4. 残差连接和层归一化:在每个子层(Self-Attention 层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可缓解梯度消失和梯度爆炸问题,使得模型更容易训练和优化;层归一化可加速训练过程,并提高模型的泛化能力。
  5. 位置感知前馈网络:在每个注意力子层之后,Transformer 模型还包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。

Transformer 模型主要由两大部分组成:编码器和解码器。每个部分都是由多个相同的层堆叠而成,每层包含了多头注意力机制和位置全连接前馈网络。 编码器可以理解为将自然语言转换成向量文本,以模型内的既有参数表示。这些参数包含了原始信息,同时也融合了序列内元素间的相互关系。例如,输入“我喜欢猫”,将自然语言转换成词嵌入向量:我->[1,0],喜欢->[0,1],猫->[1,1],经过自注意力机制,输出编码器输出一个序列的向量,表示对输入句子的理解。 解码器基于编码器的输出和之前生成的输出逐步生成目标序列,也就是把向量文本重新转化成自然语言。例如,目标生成中文句子“我喜欢猫”,初始输入为解码器接收一个开始符号,用[0,0]来表示。第一步生成“我”,考虑到编码器的输出和当前已生成的词,解码器决定生成[1,0],这在简化模型中对应“我”。第二步生成“喜欢”,现在,解码器考虑编码器的输出和当前已生成的词,决定生成[0,1],对应“喜欢”。第三步生成“猫”,考虑到之前的所有信息,解码器生成[1,1],对应“猫”。这是一个简单的复现概念,当模型得到匹配度高的参数时,它就会一个词一个词地判断需要输出的语言文本。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:Transformer模型的原理是

Transformer模型是一种基于注意力机制(Attention Mechanism)的深度学习模型,由Vaswani等人在论文《Attention is All You Need》中提出,用于处理序列到序列(sequence-to-sequence)的任务,如机器翻译、文本摘要等。Transformer模型的原理主要包括以下几个关键点:

问:Transformer模型的原理是

1.自注意力机制(Self-Attention Mechanism):Transformer模型使用了自注意力机制,能够同时考虑输入序列中所有位置的信息,而不是像循环神经网络(RNN)或卷积神经网络(CNN)一样逐个位置处理。通过自注意力机制,模型可以根据输入序列中不同位置的重要程度,动态地分配注意力权重,从而更好地捕捉序列中的关系和依赖。2.位置编码(Positional Encoding):由于自注意力机制不考虑输入序列的位置信息,为了使模型能够区分不同位置的词语,Transformer模型引入了位置编码。位置编码是一种特殊的向量,与输入词向量相加,用于表示词语在序列中的位置信息。位置编码通常是基于正弦和余弦函数计算得到的固定向量,可以帮助模型学习到位置信息的表示。3.多头注意力机制(Multi-Head Attention):Transformer模型通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询(Query)、键(Key)和值(Value)向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。4.残差连接(Residual Connection)和层归一化(Layer Normalization):在每个子层(Self-Attention层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可以缓解梯度消失和梯度爆炸问题,使得模型更容易训练和优化;层归一化可以加速训练过程,并提高模型的泛化能力。5.位置感知前馈网络(Position-wise Feed-Forward Networks):在每个注意力子层之后,Transformer模型还包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。

Transformer模型主要由两大部分组成:编码器(Encoder)和解码器(Decoder)。每个部分都是由多个相同的层堆叠而成,每层包含了多头注意力机制(Multi-head Attention)和位置全连接前馈网络。[heading2]编码器(Encoder)[content]可以理解为将自然语言转换成向量文本,以模型内的既有参数表示。这些参数包含了原始信息,同时也融合了序列内元素间的相互关系。举个例子:输入:“我喜欢猫”将自然语言转换成词嵌入向量:我->[1,0]喜欢->[0,1]猫->[1,1]自注意力机制(这个后面详细讲)输出:编码器输出一个序列的向量,表示对输入句子的理解。[1,0],[0,1],[1,1][heading2]解码器(Decoder)[content]基于编码器的输出和之前生成的输出逐步生成目标序列,也就是把向量文本重新转化成自然语言。同样举例:目标:生成中文句子"我喜欢猫"。初始输入:解码器接收一个开始符号,用[0,0]来表示。第一步生成'我':考虑到编码器的输出和当前已生成的词,解码器决定生成[1,0],这在我们的简化模型中对应"我"。第二步生成'喜欢':现在,解码器考虑编码器的输出[1,0],[0,1],[1,1]和当前已生成的词[1,0]("我"),决定生成[0,1],对应"喜欢"。第三步生成'猫':考虑到之前的所有信息,解码器生成[1,1],对应"猫"。这是一个简单的复现概念,当模型得到匹配度高的参数时,它就会一个词一个词地判断需要输出的语言文本。

Others are asking
Transformer 架构
Transformer 架构主要由编码器(Encoder)和解码器(Decoder)两大部分组成。 编码器可以将自然语言转换成向量文本,其内部参数包含了原始信息以及序列内元素间的相互关系。例如,输入“我喜欢猫”,会将自然语言转换成词嵌入向量,如“我”对应,然后通过自注意力机制输出一个表示对输入句子理解的向量序列。 解码器基于编码器的输出和之前生成的输出逐步生成目标序列,将向量文本重新转化成自然语言。例如生成中文句子“我喜欢猫”,解码器接收开始符号,然后逐步根据编码器输出和已生成的词决定生成后续的词。 Transformer 是一种使用注意力机制的编码器解码器模型,其模型架构使得它可以利用多元化的优势,同时处理大量数据,有助于提高机器翻译等应用程序的性能。 此外,Transformer 架构能够并行处理大量数据吞吐,且满足 scaling law,在各个模态和技术栈具有优势,被 OpenAI 广泛使用。使用同样的架构可以复用模型的参数来引导不同技术栈的训练,以及使用一套 infra 框架训练不同的模型。
2025-03-14
transformer
Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”,来源于 2017 年 Google Brain 团队发布的同名论文,主要用于处理序列数据,包括热门的 NLP 任务,完全基于注意力机制,不使用传统的 RNN 或 CNN 计算架构。 其工作流程如下: 1. 输入嵌入:将每个单词映射为一个向量,即单词嵌入。例如“ I ”映射为一个 512 维的向量。 2. 位置编码:由于 Transformer 没有捕获序列顺序的结构,需给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器:输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,多头注意力机制捕捉单词间的依赖关系,前馈神经网络对 attention 的结果进行进一步编码。 4. 解码器:编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入:解码器最后一层的输出被映射为输出单词概率分布。例如生成单词“我”“是”等概率。 6. 生成:基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 Transformer 模型用途广泛,可以用来翻译文本、写诗、写文章,甚至生成计算机代码。像 AlphaFold 2、GPT3、BERT、T5、Switch、Meena 等强大的自然语言处理(NLP)模型都建立在 Transformer 基础之上。如果想在机器学习,特别是自然语言处理方面与时俱进,至少要对 Transformer 有一定了解。
2025-03-13
Transformer是什么?
Transformer 是一种注意力模型,也被称为变形金刚模型。它源于 Google 团队在 2017 年发布的论文《Attention is All Your Needs》。 Transformer 是一种深度学习模型,核心思想是“Attention is all you need”。其主要用于处理序列数据,包括当下热门的自然语言处理(NLP)任务。与传统模型不同,Transformer 完全基于注意力机制,不依赖传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。 基于 Transformer 的模型众多,例如最流行的 BERT,它是“来自 Transformer 的双向编码器表示”的缩写。BERT 经过在庞大文本语料库上的训练,已成为自然语言处理的通用模型,可用于文本摘要、问答、分类、命名实体识别、文本相似度、攻击性信息/脏话检测、理解用户查询等一系列任务。 此外,Transformer 不仅在自然语言处理领域表现出色,还在自然语言处理之外的领域掀起浪潮,如作曲、根据文本描述生成图像以及预测蛋白质结构。像 ChatGPT 这样的模型在闲聊中也能展现出更多的世界知识和某种程度的推理能力,能够更好地理解人类语言的含义和上下文,并生成更自然流畅的语言表达。
2025-03-06
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
transformer
Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”。以下为您详细介绍其工作流程: 假设我们有一个英文句子“I am a student”需要翻译成中文。 1. 输入嵌入(Input Embeddings):首先,将每个单词映射为一个向量,即单词嵌入(word embeddings)。例如“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分: 多头注意力机制(MultiHead Attention):捕捉单词间的依赖关系。 前馈神经网络(FeedForward NN):对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布。例如生成单词“我”“是”等概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 Transformer 主要用于处理序列数据,包括现在最火的 NLP 任务。与之前的模型不同,Transformer 完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。它可以用来翻译文本、写诗、写文章,甚至生成计算机代码。像 GPT3、BERT、T5 等功能强大的自然语言处理(NLP)模型都是基于 Transformer 模型构建的。
2025-02-17
希望找到一个可以帮助我写论文的模型
以下是一些关于利用模型写论文的信息: 可以向 LLM 寻求写作建议,甚至直接要求它帮您写论文。例如提供关于个人背景的信息,让其生成大学申请论文。但需要注意,这种方式可能存在道德问题。 可以直接给模型相关论文,让其完成任务,如写出论文中的例子。模型能够理解复杂的信息,不需要过度简化。 例如用 ChatGPT 撰写“宇宙类比大规模语言模型”的论文时,可以给出相关提示词,从宏观天文学、微观量子力学、哲学等角度展开讨论,并明确探讨方向。
2025-03-14
有没有ai调色的大模型
以下为您介绍一些有关 AI 调色的大模型: 1. 在最近新上线的 controlnet 模型中,新增了名为 Recolor 的模型,可将黑白图片重新上色。在处理人物照片还原时,可选择 realisian 的写实大模型,通过提示词描述颜色和对应内容。ControlNet 选择 Recolor 时,预处理器选择“recolor_luminance”效果较好。 2. 星流一站式 AI 设计工具的基础模型中,允许使用更多的微调大模型,如基础模型 F.1、基础模型 XL、基础模型 1.5 等。同时,还具有高清分辨率修复、脸部/手部修复等功能,以及多种参数如采样器、采样步数、随机种子、CFG Scale 等可调整。 3. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,可在显存不够时放大图片。处理复杂照片时,可放弃人物服装颜色指定,只给场景方向,如加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,通过简单关键词控制色调。
2025-03-14
大模型如何在企业里应用
大模型在企业中的应用主要体现在以下几个方面: 1. 智能终端行业:中国超半数手机厂商如三星、荣耀、vivo、OPPO、小米等主流品牌,以及上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 2. 百度表现:在主流大模型厂商中,百度表现突出,拿下最关键的中标项目数量、中标金额两项第一。其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。百度智能云的增长主要由互联网、教育、金融等行业对模型训练和推理的高需求带动。 3. 落地所需能力:企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。这意味着大模型落地赋能企业智能化时,能力比拼从单项变为全能比拼。 然而,大模型在企业落地应用中面临一些问题和挑战: 1. 竞争格局:大模型是典型赢家通吃领域,胜出的大模型在中国和世界范围内都很难超过 2 个,巨头在资金、技术和数据方面具有优势,给创业公司的机会很少。 2. 落地难题:如何将大模型更快落地应用,将技术能力释放并与更多场景相结合,真正产生新一轮科技革命和产业变革,是当前紧要的关键问题。 3. 具体问题: 提高内容可信:需要通过商业交付去应用、反馈和评测,不断优化数据以解决实际应用问题,走向垂直化以提高内容精准度。 解决算力成本高、训练重复和资源紧缺:以 GPT3 模型为例,训练成本高昂,且目前仍无法用商业化的国产芯片进行大模型训练。 解决大模型落地问题,主要有以下三方面:提高内容可信;解决算力成本高、训练重复和资源紧缺的问题;降低大模型价格或使用垂直领域模型落地。
2025-03-14
大模型和智能体的区别
大模型和智能体的区别主要体现在以下几个方面: 概念定义: 智能体:简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。可以是面向 C 端,如社交方向,用户注册后先捏一个自己的智能体,然后让其与他人的智能体聊天,两个智能体聊到一起后再真人介入;也可以面向 B 端,帮助 B 端商家搭建智能体。 大模型:是一种技术。 局限性: 大模型具有强大的语言理解和生成能力,但存在一定局限性,例如无法回答私有领域问题(如公司制度、人员信息等),无法及时获取最新信息(如实时天气、比赛结果等),无法准确回答专业问题(如复杂数学计算、图像生成等)。 开发平台: 有众多智能体开发平台,如字节的扣子、Dify.AI 等。 应用场景: 智能体应用基于大模型,通过集成特定的外部能力,能够弥补大模型的不足。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,缺少技术人员开发大模型问答应用等场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 在 Anthropic 的定义中,智能体可以有多种定义,一些客户将其定义为能够长期独立运行的全自动系统,能使用各种工具完成复杂任务;另一些则将其描述为更具规范性、遵循预定义工作流程的系统。Anthropic 将这些变体统称为智能系统,并在架构上区分为工作流和智能体两种类型,工作流是通过预定义代码路径来编排 LLM 和工具的系统,智能体则是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。
2025-03-14
快速帮我补充下大模型的发展时间线和关键节点,以及当前最前沿的新闻
大模型的发展时间线和关键节点如下: 2017 年:发布《Attention Is All You Need》论文。 2018 年: Google 提出 BERT,创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模。 OpenAI 提出 GPT,开创仅使用自回归语言建模作为预训练目标的方式。 2021 年:Meta 提出 Large LAnguage Model Approach(LLAMA),成为首个开源模型。 2022 年 11 月 30 日:ChatGPT 发布,在全球范围内掀起人工智能浪潮。 2022 年 12 月:字节云雀大模型等出现。 2023 年: 国内大模型发展大致分为准备期(国内产学研迅速形成大模型共识)、成长期(数量和质量逐渐增长)、爆发期(开源闭源大模型层出不穷,形成百模大战态势)。 关键进展包括:Meta 开源 Llama2、OpenAI 发布多模态 GPT4V 及 GPT4 Turbo、百川智能开源 Baichuan7B 及 Baichuan2、百度升级文心一言 4.0、清华&智谱 AI 开源 ChatGLM2 及清华开源 ChatGLM3、腾讯发布混元助手等。 当前最前沿的新闻包括:过去半年,国内领军大模型企业实现了大模型代际追赶的奇迹,从 7 月份与 GPT3.5 的 20 分差距,到 11 月份测评时已在总分上超越 GPT3.5。
2025-03-14
阿里的千问大模型在行业内处于一个什么样的水平
阿里的通义千问大模型在行业内处于领先水平。 通义千问 2.5 正式发布并开源 1100 亿参数模型,在多模态和专有能力模型方面影响力强大,始终坚持开源路线,已推出多款开源模型,受到开发者和生态伙伴的热情支持。百炼平台也升级支持企业 RAG 链路,提供更灵活的企业级检索增强服务。通义灵码推出企业版,满足企业定制化需求,已在多个领域落地应用。 Qwen2.5Max 基于 SFT 和 RLHF 策略训练,在多项基准如 Arena Hard、LiveBench、LiveCodeBench、GPQADiamond 上超越 DeepSeek V3,引发社区关注。支持官方 Chat、API 接口、Hugging Face Demo 等多种方式,展示其顶尖性能与灵活应用场景。 Qwen2.5VL 是新一代视觉语言模型,可解析 1 小时以上视频内容并秒级定位事件,识别从金融文档到通用物体,动态适配高分辨率图像。具备复杂任务执行能力,覆盖更多实际场景如票据解析、商业分析等。 10 月 31 日,阿里云正式发布千亿级参数大模型通义千问 2.0,8 大行业模型同步上线。
2025-03-14