Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

当前AI应用的内外部环境及趋势

Answer

当前 AI 应用的内外部环境及趋势如下:

  • 技术创新方面:大模型创新架构优化加速涌现,融合迭代成为趋势;Scaling Law 泛化,推理能力成为关键,推动计算和数据变革;视频生成在 AGI 探索中表现突出,空间智能统一虚拟和现实。
  • 应用格局方面:第一轮洗牌结束,聚焦 20 赛道 5 大场景;多领域竞速中运营大于技术,AI 助手竞争激烈;AI+X 赋能类产品发展迅速,原生 AI 爆款难求。
  • 产品趋势方面:多模态上马,Agent 席卷一切,高度个性化需求凸显。
  • 行业渗透方面:数据基础决定初速度,用户需求成为加速度。
  • 创投方面:投融资马太效应明显,国家队出手频率提升。

在具体的行业动态中:

  • AI 音频领域:效果和延迟问题取得突破,难以分辨语音是否由 AI 生成,语音生成延迟降低。
  • 3D 世界生成领域:目前处于初级阶段,新产品未向大众开放,预计明年会有巨大进步。
  • 应用领域:更新主要集中在 AI 搜索、AI 知识库、AI 编程,传统软件增加 AI 功能,未来可能不再有“AI 应用”的单独分类。
  • 融资方面:能拿到钱的不再局限于模型公司,越来越多应用公司受资本青睐。

红杉资本观点认为:

  • 人工智能在客户支持、法律服务和软件工程等行业展示了产品与市场的契合度。
  • 生成式人工智能经历快速增长,但 AI 投资转化为可观回报存在问题。
  • 2024 年将是真正的 AI 应用从“副驾驶”转变为“代理”的一年,未来将更有能力完成更高层次认知任务,计算平衡从预训练转向推理。
  • 目前人工智能公司融资环境不均衡,关键挑战在于提高用户保留率和缩小期望与现实差距,产品与市场的契合度有待进一步提升。
Content generated by AI large model, please carefully verify (powered by aily)

References

《2024年度AI十大趋势报告》发布:技术创新、产品洗牌、行业动态一文看尽

大模型创新:架构优化加速涌现,融合迭代大势所趋Scaling Law泛化:推理能力成皇冠明珠,倒逼计算和数据变革AGI探索:视频生成点燃世界模型,空间智能统⼀虚拟和现实AI应用格局:第⼀轮洗牌结束,聚焦20赛道5大场景AI应用竞争:多领域竞速运营大于技术,AI助手兵家必争AI应用增长:AI+X赋能类产品大干快上,原生AI爆款难求AI产品趋势:多模态上马,Agent席卷⼀切,高度个性化呼之欲出AI智变千行百业:左手变革生产力,右手重塑行业生态AI行业渗透率:数据基础决定初速度,用户需求成为加速度AI创投:投融资马太效应明显,国家队出手频率提升

赛博月刊@24年12月:AI行业大事记

✦AI音频公司都在努力解决两个问题:第一个是效果,如何让AI生成的语音更像人;第二个是延迟,如何用最小的延迟生成语音。✦从当前时间点来看,这两个问题都已突破了临界点。对于第一个问题,我们已经无法分辨一段语音是否由AI生成的了;对于第二个问题,ElevenLabs语音生成延迟已经降到了75ms,小于了人类的思考时间。✦那么明年,当我们接起营销电话的时候,对面是真人的概率还剩多少呢?5.3D✦3D世界生成领域目前还处在初级阶段。这个月发布的新产品,没有一个向大众开放体验。✦不过,基于视频生成领域的经验,我们可以大胆预言:明年,3D世界生成领域会取得巨大的进步和发展。6.应用✦AI应用的更新主要集中AI搜索、AI知识库、AI编程这三个领域。类似NotebookLM这种让人眼前一亮的新形态产品,本月似乎没有。✦也正常。毕竟应用创新不易。✦隐藏的一条暗流是,越来越多传统软件开始增加AI功能。所以,未来可能不再有「AI应用」这个分类,就像现在没有「联网App」这种说法一样。✦毕竟现在大部分软件都会联网,所以未来大部分软件也都会接入AI。7.新闻✦从本月融资新闻来看,能拿到钱的不再局限于模型公司,越来越多应用公司开始受到资本青睐,例如AIPPT,Cursor等。✦恰如上方总结提到的,其他几个领域的模型已经基本迈过了「可进入生产环境」的临界点。随着预训练时代的结束,我们应该会看到越来越多大公司转向应用开发领域。✦所以,留给小开发者们的时间,不多了。

观点:红杉资本 | 2024年:AI的机遇、现状和未来预测

Sonya Huang的演讲深入探讨了人工智能的现状,强调了它在各个行业的影响以及人工智能充分发挥其潜力需要解决的挑战。[heading2]核心观点:[content]AI产品越来越契合市场的需要:人工智能已经在客户支持、法律服务和软件工程等行业展示了产品与市场的契合度。例如,由人工智能驱动的客户服务平台Klarnas通过处理三分之二的客户服务查询,实现了相当于700个全职座席工作的自动化。生成式人工智能正在经历快速增长:第一年的收入约为30亿美元,这一壮举是SaaS市场花了近十年时间才实现的。与以前的技术转变相比,这凸显了人工智能的加速采用和价值创造潜力。AI的$200B问题:虽然公司在AI基础设施上投入了大量资金,仅去年一年就有大约500亿美元用于NVIDIA GPU,但AI应用程序产生的收入仍然相对适中。这就提出了一个问题,即对人工智能的投资何时以及如何转化为可观的回报?预测:Sonya Huang预测,2024年将是真正的AI应用将我们从Copilots(副驾驶)转变为可以作为人类Agents(代理)的一年。之前的人工智能可能更像是一种辅助工具,而未来的人工智能将变成你的同事。她还预计,随着人工智能应用进入生产阶段,人工智能将更有能力完成更高层次的认知任务,如规划和推理,并使计算的平衡从预训练转向推理。融资环境不均衡:目前的人工智能公司的融资环境并不均衡,更关注基础模型而不是应用。对于希望利用人工智能革命的初创公司来说,这既是挑战也是机遇。关键挑战:从长远来看,提高用户保留率和缩小期望与现实之间的差距是人工智能应用取得成功需要解决的关键挑战。目前,与移动应用相比,生成式AI应用的日月活跃用户比率和一个月留存率较低。产品与市场的契合度需要进一步提升:随着基础模型变得更加智能,人工智能的产品与市场的契合度有望加速,从而在各个行业中出现更成功的人工智能应用。

Others are asking
AI海报生成
以下是一些常见的 AI 海报生成工具和相关教程: 1. Canva(可画):https://www.canva.cn/ 这是一个非常受欢迎的在线设计工具,提供大量模板和设计元素,用户通过简单拖放操作即可创建海报,其 AI 功能可帮助选择合适颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ 稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ 这是一个简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ 通过简单拖放界面,用户可快速创建演示文稿、社交媒体帖子等视觉内容,还集成丰富模板库和自动图像编辑功能,如智能布局和文字优化,简化设计流程。 此外,还有即梦的女神节海报生成教程: 1. 原文链接:https://mp.weixin.qq.com/s/CYmlZDPjrchnKr8V4lvmRQ 2. 操作步骤: 第一步:打开即梦 AI,选择“图片生成”功能,https://jimeng.jianying.com 第二步:模型选择图片 2.1,输入提示词(可以直接参考案例提示词)。 第三步:点击生成,几秒钟后,专属字体海报就完成啦! 3. 海报案例: 案例一:提示词:女神节主题,3D 设计,梦幻氛围,明亮春天场景,花田,数字 38,天空“女神节”,五彩缤纷的蝴蝶,晴朗的蓝天,茂密的绿色草地,盛开的花朵,柔和光线 案例二:提示词:粉色主题,梦幻氛围,数字 38,心形气球,花卉装饰,玫瑰花,漂浮的花瓣,柔和的云朵,美丽的湖面倒影,奇幻风格,柔和的色调,庆祝场景 案例三:提示词:妇女节,3D 设计,粉色主题,大号装饰数字 38,爱心,郁金香花朵,柔和光照,背景城市天际线,精致花卉装饰,优雅节日氛围,金色文字,春天氛围,细致鲜艳 内容由 AI 大模型生成,请仔细甄别。
2025-03-14
AI浏览器有哪些?
以下是一些常见的 AI 浏览器: 1. 360 AI 浏览器:新版增加了视频总结、提问、转录和翻译等功能,支持本地和网络视频的内容分析,但无法提取无对白视频摘要。官网地址:http://browser.360.cn/ai 。 功能包括看长视频时敲黑板划重点,能帮用户观看 B 站的字幕视频,短短几秒总结概要生成脑图,告知视频重点和高潮剧情,还能对英文字幕进行翻译,支持通过 AI 助手对话就视频内容进行追问和扩展提问。 能阅读国内外长论文和著作,自动翻译自动提炼,3 分钟获取要点,目前支持 360k 长文本阅读,以《三体》为例,能呈现完整的故事框架并生成思维导图。 2. Arc 浏览器:适合 Mac 用户,方便保存常用网页。下载地址:https://arc.net/ 。但安装使用需要电脑能魔法上网并开启“全局代理”。
2025-03-14
让AI写论文
利用 AI 写论文可以按照以下步骤和建议进行: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:借助 AI 审阅工具检查课题的逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题的原创性,并进行最后的格式调整。 在论文写作领域,常用的 AI 工具和平台有: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。 此外,如果担心 AI 削弱孩子的思考力,关键在于正确的用法。比如将封闭性问题改为开放性问题,或者让 AI 帮助提出更多拓展思考的问题,能激发孩子的好奇心。对于孩子用 AI 辅助写作文,可将任务改为让孩子提交与 AI 共同完成作文的聊天记录,重点关注孩子能否说清 AI 作文的优缺点及如何修改。
2025-03-14
撰写毕业论文的AI工具哪个比较好用?
在撰写毕业论文时,以下是一些好用的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 此外,对于论文排版,以下 AI 工具可供选择: 1. Grammarly:不仅是语法和拼写检查工具,还具备一定排版功能,可改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 3. LaTeX:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版。 4. PandaDoc:文档自动化平台,利用 AI 帮助创建、格式化和自动化文档生成,适用于商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 LaTeX 编辑器,提供丰富模板和协作工具,适合学术写作排版。 选择工具时应根据具体需求,如文档类型、出版标准和个人偏好来决定。学术论文常选 LaTeX 和 Overleaf,一般文章和商业文档则 Grammarly 和 PandaDoc 等可能更适用。请注意,这些内容由 AI 大模型生成,请仔细甄别。
2025-03-14
我想学习AI如何使用,可以提高我的工作效率。请给我一个计划
以下是为您制定的学习 AI 以提高工作效率的计划: 首先,了解 AI 的基本概念和应用领域。AI 已经在许多方面带来了重大进展和效率提升,例如交通监控、银行账户欺诈检测、工业中的大规模安全关键实践、科学研究等。 其次,认识到 AI 在工作场所的潜力。它可以将我们从单调的任务中解放出来,让我们有更多时间从事专业工作。 然后,学习相关的法律法规。例如《促进创新的人工智能监管方法》,了解如何在合规的前提下利用 AI 创新,平衡风险与机会、利益。 在学习过程中,关注以下方面: 1. 了解大型语言模型等技术的发展,及其为经济和社会带来的转型机会。 2. 明白监管可以通过给予企业解决重要问题的激励,同时应对对公民的伤害风险,从而增加创新。 3. 熟悉国家的 AI 战略和数字监管计划中的原则,以及相应的比例方法。 最后,根据所学知识,在工作中尝试应用 AI 技术,不断总结经验,提高工作效率。
2025-03-14
我想从0开始学习AI
以下是为新手从零开始学习 AI 提供的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,涵盖图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-14
大模型如何在企业里应用
大模型在企业中的应用主要体现在以下几个方面: 1. 智能终端行业:中国超半数手机厂商如三星、荣耀、vivo、OPPO、小米等主流品牌,以及上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 2. 百度表现:在主流大模型厂商中,百度表现突出,拿下最关键的中标项目数量、中标金额两项第一。其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。百度智能云的增长主要由互联网、教育、金融等行业对模型训练和推理的高需求带动。 3. 落地所需能力:企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。这意味着大模型落地赋能企业智能化时,能力比拼从单项变为全能比拼。 然而,大模型在企业落地应用中面临一些问题和挑战: 1. 竞争格局:大模型是典型赢家通吃领域,胜出的大模型在中国和世界范围内都很难超过 2 个,巨头在资金、技术和数据方面具有优势,给创业公司的机会很少。 2. 落地难题:如何将大模型更快落地应用,将技术能力释放并与更多场景相结合,真正产生新一轮科技革命和产业变革,是当前紧要的关键问题。 3. 具体问题: 提高内容可信:需要通过商业交付去应用、反馈和评测,不断优化数据以解决实际应用问题,走向垂直化以提高内容精准度。 解决算力成本高、训练重复和资源紧缺:以 GPT3 模型为例,训练成本高昂,且目前仍无法用商业化的国产芯片进行大模型训练。 解决大模型落地问题,主要有以下三方面:提高内容可信;解决算力成本高、训练重复和资源紧缺的问题;降低大模型价格或使用垂直领域模型落地。
2025-03-14
AI在制造业的一些典型应用场景
在制造业中,AI 有以下一些典型应用场景: 1. 产品设计和开发:可利用 AI 生成工具(如 Adobe Firefly、Midjourney 等)根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,能自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:通过 AI 模型分析设备运行数据,预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可依据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提升管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,能够自动生成个性化的客户回复,改善客户体验。 此外,制造业中的 AI 应用还包括: 1. 预测性维护:预测机器故障,避免工厂停机。 2. 质量控制:检测产品缺陷,提升产品质量。 3. 机器人自动化:控制工业机器人,提高生产效率。 4. 生产计划和供应链计划状态查询。 5. 产线预测性维保辅助。 6. 产品质量分析与溯源。
2025-03-14
AI应用
AI 的应用场景十分广泛,主要包括以下几个方面: 1. 医疗保健: 医学影像分析:用于分析医学图像辅助诊断疾病。 药物研发:加速药物研发,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据提供个性化治疗方案。 机器人辅助手术:控制手术机器人提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据辅助投资决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障避免停机。 质量控制:检测产品缺陷提高质量。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:控制工业机器人提高生产效率。 5. 交通运输: 6. 辅助创作与学习:如 AI 智能写作助手、语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等。 7. 推荐与规划:包括 AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等。 8. 监控与预警:如 AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等。 9. 优化与管理:涉及办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等。 10. 销售与交易:有 AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等。 此外,管理经验加持 AI 应用,如沟通明确、善于提供上下文、明晰 AI 能力边界、擅长任务拆解和整合等能提升 AI 协作效率。同时,医保严禁 AI 自动开处方,而 Coinbase 全面推动 AI 应用,如工程师使用 Cursor AI 工具编程,AI 技术用于欺诈预防、客户支持、风险评分、设计等领域,并将实现从工单到 PR 代码的 AI 自动生成。
2025-03-14
AI应用赛道中top应用介绍,实现的功能和应用场景,产品Launch时间:AIGC功能 Launch时间、当前月活用户数、营收利润、一年成本投入、市场占有率、目前融资金额及估值、创始团队介绍、公司员工规模、所属国家、用户来源、用户来自于哪些国家、用户profile、转化率、ROI等等, 盈利模式,优劣势与未来发展趋势。
以下是关于 AI 应用赛道的相关介绍: 应用场景:涵盖医疗、制造业、金融风控、消费端个性化服务、办公、农业、能源优化、娱乐等领域。 关键技术: 1. 包括大语言模型作为中枢神经系统,记忆模块实现长期和短期记忆,以及规划能力中的目标设定、任务拆解、生成策略、执行与反馈、资源管理和多智能体协同。 2. 强化学习用于环境感知和决策调整,多模态融合涉及多种数据类型,低成本训练是考虑成本的重要因素。 智能体特征:包括自主性、交互性和适应性,如通过自我对弈和博弈不断进化,在金融风控领域利用大量数据提升准确率。 AI 技术路线:从有语言能力的 AI 到有推理能力,再到能使用工具、发明创新以及形成组织,共五级。 智能体框架类型:分为任务驱动型、多智能体协作、强化学习型、具身智能体、应用型智能体,每种类型都有代表性框架。 智能体与大模型的关系:大模型是中枢和基石,智能体是行动引擎,两者协同演进,智能体产生的数据可反哺大模型。 未来趋势:智能体可能在中小企业中更具效益,人机协作中人类成为监督角色,但存在算力成本、伦理风险、技术瓶颈等挑战。 B 端变现与创业方向: 1. B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。 2. 自媒体创业:视频号等平台尚有蓝海空间,需具备内容创新和差异化,内容成本低且更新迭代快。 3. 游戏创业:个人或团队可做轻量化游戏,结合 AI 技术,满足放松和社交需求,专注垂类赛道,避免与大厂竞争。 4. 影视创业:25 年将是拐点,更多内容会采用 AI 技术,如哪吒 2 因前期规划未用 AI 技术。 5. 广告营销创业:重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: 1. 创业难点:创业对创业者综合能力要求极高,找到志同道合且能力互补的战友是创业前期最难的事。 2. AI 虚拟人发展:从早期以首位为核心的宅文化虚拟偶像,到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人,其发展历程不断演进。 3. 虚拟人产业链:包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。 4. 未来创业机遇:AI 虚拟人是未来 310 年 Web 3.0 的风口,提前布局未来有潜力的赛道,准备好迎接机遇。 相关案例和产品信息: 1. 10 月 26 日,AI 翻译和口型匹配技术在视频制作中的应用逐渐流行,公司如 Captions、HeyGen 和 Verbalate 通过 AI 生成字幕、配音和口型匹配等功能,帮助用户轻松实现视频翻译本地化。 2. 10 月 25 日,Perplexity 最新估值约为 5 亿美元,较 3 月宣布的 1.5 亿美元估值上涨 300%以上,当前的付费用户数量达到了 1.5 万人,截止本月,Perplexity 的 ARR 达到 300 万美元,最新估值约为 ARR 的 150 倍。 3. 《100 个有意思的 AI 应用》由国盛证券出品,分为基于 LLM 自然语言能力的对话、写作、阅读、分析等应用;多模态技术持续发展,图像、视频、音频、3D 等 AIGC 应用;企业级应用等。
2025-03-14
打造企业AI应用场景
以下是关于打造企业 AI 应用场景的相关内容: 阿里云百炼: 阿里云的大模型服务平台百炼是一站式的大模型开发及应用构建平台。开发者和业务人员都能参与大模型应用的设计和构建。通过简单的界面操作,能在 5 分钟内开发出大模型应用,或在几小时内训练出专属模型,从而将更多精力专注于应用创新。 使用场景示例: 法律合规改写:招聘平台可通过百炼工作流封装多个法律合规 Agent 判断企业端要求是否符合劳动法等,并自动改写,减少人力审核需求。 关键信息抽取&打标签:法催机构可通过百炼工作流构建并串联相关 Agent,减少律师数据整理、分析和归类工作。 智能助理&客服:教育机构可通过百炼工作流搭建首页智能助手,通过意图分类能力分发用户 Query 并回答。 AI 决策相关: 在制定企业 AI 战略时,要在提高效率、促进创新的同时规避潜在风险。企业不需要短期内进行全面伦理审查,但可优化实际操作流程,满足市场需求并保持长远发展。 明确 AI 的适用范围:企业要针对自身业务需求明确使用边界。不是所有决策都需由 AI 完成,在复杂决策场景中,AI 适合辅助角色。常见适用场景包括数据密集型工作(如市场分析、客户画像、生产优化等)、重复性任务(自动化流程、预测维护等)、有限范围内的创新(在已有数据基础上提供初步建议)。企业管理层可引入内部评估机制,每季度评估 AI 在不同业务线中的表现,并设定不同使用权限。AI 可部署在低风险、可标准化任务上,涉及品牌形象、用户隐私、产品战略等决策应由人类主导。
2025-03-13
大模型应用产品设计流程
构建大模型应用产品的设计流程包括以下关键步骤和要点: 1. 框架选择:根据项目需求选择合适的开发框架,这是非常关键的一步。 2. 了解业务需求:深入了解业务背后的深层次需求,确保模型能够解决实际问题,并据此设定流程环节。 3. 提示词设计:在每个环节中精心设计提示词,引导模型提供准确和有用的回复。提示词的设计直接影响模型的输出质量和应用的实际效果。 4. 遵守标准:确保应用在提供服务的同时,遵守安全和伦理标准。 5. 测试与迭代:通过不断的测试和迭代,优化模型性能和用户体验。 6. 部署与维护:成功部署应用后,还需要持续的维护和更新以适应不断变化的需求。 7. 工程化:不做工程化终究会让模型应用变得无法维护。 此外,在实际应用中落地大型模型时,永远是解决方案优先。大型模型通常位于基础层,应更注重模型之上构建的应用,切实解决服务对象面临的实际问题。基于大模型的产品虽然“简约但不简单”,人们会针对特定需求设定模型的功能,并进行有目标的开发。通过掌握这些关键点,可以确保构建的模型应用不仅技术先进,而且能真正解决用户问题,提供有价值的服务。
2025-03-13
快速帮我补充下大模型的发展时间线和关键节点,以及当前最前沿的新闻
大模型的发展时间线和关键节点如下: 2017 年:发布《Attention Is All You Need》论文。 2018 年: Google 提出 BERT,创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模。 OpenAI 提出 GPT,开创仅使用自回归语言建模作为预训练目标的方式。 2021 年:Meta 提出 Large LAnguage Model Approach(LLAMA),成为首个开源模型。 2022 年 11 月 30 日:ChatGPT 发布,在全球范围内掀起人工智能浪潮。 2022 年 12 月:字节云雀大模型等出现。 2023 年: 国内大模型发展大致分为准备期(国内产学研迅速形成大模型共识)、成长期(数量和质量逐渐增长)、爆发期(开源闭源大模型层出不穷,形成百模大战态势)。 关键进展包括:Meta 开源 Llama2、OpenAI 发布多模态 GPT4V 及 GPT4 Turbo、百川智能开源 Baichuan7B 及 Baichuan2、百度升级文心一言 4.0、清华&智谱 AI 开源 ChatGLM2 及清华开源 ChatGLM3、腾讯发布混元助手等。 当前最前沿的新闻包括:过去半年,国内领军大模型企业实现了大模型代际追赶的奇迹,从 7 月份与 GPT3.5 的 20 分差距,到 11 月份测评时已在总分上超越 GPT3.5。
2025-03-14
当前国内有哪些AIGC应用
当前国内的 AIGC 应用主要有以下一些: 语言文本生成类: “悟道・天鹰”(北京智源人工智能研究院):首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。 文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。
2025-03-12
我是一名港口行业国有企业职工培训专员,想结合当前AI技术应用,出一份既涵盖管理人员序列、职能人员序列,又包括技能操作序列职工的,可直接执行的年度培训计划文案,字数不超过1000字。
以下是为您提供的一份结合当前 AI 技术应用的港口行业国有企业职工年度培训计划文案,希望对您有所帮助: 一、培训目标 提升管理人员、职能人员和技能操作序列职工在 AI 技术应用方面的知识和技能,增强企业整体竞争力。 二、培训对象 管理人员序列、职能人员序列、技能操作序列职工。 三、培训内容 1. 管理人员序列 AI 技术在企业管理中的应用趋势与案例分析。 基于 AI 的决策支持系统的使用与解读。 2. 职能人员序列 AI 办公软件的应用技巧,如自动化流程处理。 利用 AI 进行数据分析与报告生成。 3. 技能操作序列职工 港口智能化设备中 AI 技术的原理与操作维护。 基于 AI 的安全监控系统的操作与应急处理。 四、培训方式 1. 线上课程:利用网络平台提供相关课程,方便职工自主学习。 2. 线下讲座:邀请专家进行现场讲解和互动交流。 3. 实践操作:在实际工作场景中进行模拟训练和实际操作。 五、培训时间安排 1. 每月安排一次线上课程。 2. 每季度组织一次线下讲座。 3. 不定期进行实践操作培训,根据实际工作需求灵活安排。 六、培训效果评估 通过考试、实际操作考核、项目成果评估等方式,检验职工的学习成果,并将其与绩效考核挂钩,激励职工积极参与培训。
2025-02-28
前馈神经网络、循环网络、对称连接网络区别是什么,当前大语言模型属于前面说的哪种网络架构,为什么这种网络架构流行
前馈神经网络、循环网络和对称连接网络的区别如下: 1. 前馈神经网络:这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数,通过一系列变换改变样本相似性。 2. 循环网络:在连接图中存在定向循环,意味着可以按箭头回到起始点。它们具有复杂的动态,训练难度较大,但更具生物真实性。目前如何高效地训练循环网络正受到广泛关注,它是模拟连续数据的自然方式,相当于每个时间片段具有一个隐藏层的深度网络,且在每个时间片段使用相同权重和输入,能长时间记住隐藏状态信息,但难以训练其发挥潜能。 3. 对称连接网络:有点像循环网络,但单元之间的连接是对称的(在两个方向上权重相同)。比起循环网络,对称连接网络更易分析。没有隐藏单元的对称连接网络被称为“Hopfield 网络”,有隐藏单元的则称为玻尔兹曼机。 当前的大语言模型通常基于 Transformer 架构,它属于前馈神经网络的一种变体。这种架构流行的原因包括:能够处理长序列数据、并行计算效率高、具有强大的特征提取和表示能力等。
2025-02-25
神经网络从架构上有哪几种类型,当前流行的大语言模型用哪种类型神经网络,为什么这种神经网络架构更为流行
神经网络从架构上主要有以下几种类型: 1. 马尔科夫链:用于文本生成。 2. 循环神经网络(RNN):可应用于文本生成。 3. 长短时记忆网络(LSTMs):在文本生成等领域发挥作用。 4. Transformer:当今最流行的模型大多基于此架构,包括流行的大型语言模型,如 GPT3、GPTJ 或 BERT 等。 5. Encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 6. Encoderdecoder:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是 Google 的 T5。 7. Decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此结构。 当前流行的大语言模型,如 GPT3、ChatGPT 等,多采用 Decoderonly 架构的神经网络。这种架构更为流行的原因在于:它更擅长自然语言生成任务,能够根据用户输入生成相应的内容。同时,Transformer 架构具有延长的注意力广度,能够更好地处理长序列数据,提高模型的性能和表现。
2025-02-25