大模型在企业中的应用主要体现在以下几个方面:
然而,大模型在企业落地应用中面临一些问题和挑战:
解决大模型落地问题,主要有以下三方面:提高内容可信;解决算力成本高、训练重复和资源紧缺的问题;降低大模型价格或使用垂直领域模型落地。
在智能终端行业,根据媒体报道,中国超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。整体来看,在主流大模型厂商中,百度表现突出,拿下最关键的中标项目数量、中标金额两项第一。根据百度披露的数据,截至11月,其文心大模型日均调用量超过15亿次,千帆平台帮助客户精调了3.3万个模型、开发了77万个企业应用。今年三季度财报披露,百度智能云营收达49亿元,同比增长11%,百度智能云的增长主要由互联网、教育、金融等行业对模型训练和推理的高需求带动。这与前文所述百度大模型中标行业相一致。2024年,百度在大模型落地交出的成绩单可谓亮眼。大模型时代,AI基础设施的正确范式事实上,大模型进入产业落地后,除了大模型本身能力质量要过硬外,落地应用所需要的全栈技术能力、工程化配套工具等等对落地效果有直接影响。企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。这也就意味着,在大模型落地赋能企业智能化时,能力比拼从单项变为全能比拼(大模型自身、工程能力、工具平台等)。大模型的竞争,正在加速成为体系化之战。
不过从投资角度,嘉御资本董事长兼创始合伙人卫哲最近提到,“我们不碰大模型。”卫哲认为,多年互联网从业下来告诉人们,一定是头部占据60%、70%的份额,搜索引擎、电子商务无一例外,这次人工智能也是如此,胜出的大模型在中国很难超过2个,在中国以外的世界包括美国,也很难超过2个。大模型是典型赢家通吃领域。需要更多的钱,需要更多的算力,以及更优秀人才。因为更好的算力意味着更多人用,更多人用意味着更多数据,更多数据意味着更好的算力结果。大模型必然是巨头必争之地,巨头有钱,有技术,更重要是有数据。就目前“百模大战”来说,正如周鸿祎所说,大模型关键在于让更多人去使用,将大模型能力与更多场景相结合,打造更多落地应用。所以总结来看,大模型必然是只有极少数公司能做起来,给创业公司的机会很少。甚至可以说,如果不能把大模型商业化,这家企业一定会输在这轮赛道比拼中。因此,摆在大模型企业面前的问题非常严峻,如何将大模型更快落地应用,将技术能力释放并与更多场景相结合,真正产生新一轮科技革命和产业变革,是当前紧要的关键问题。而关于大模型的落地,我们还有很长的路要走,需要时间、需要机会、需要生态。
解决大模型落地问题,总结来说主要有三方面:提高内容可信;解决算力成本高、训练重复和资源紧缺的问题;大模型价格需要不断降低,或使用垂直领域模型落地。首先是提高内容可信问题。周伯文对钛媒体App表示,我们应该做一个具备通用能力的大模型,能够解决不同用户的实际问题,而且需要不断通过商业交付去应用、反馈,甚至需要评测以解决内容可信问题。中国科学院院士、清华大学人工智能研究院名誉院长张钹认为,ChatGPT没有解决的就是自我学习的能力,这是ChatGPT最致命的地方,因此需要把更多数据去优化以进一步解决实际应用问题。“不要认为ChatGPT能解决全部的人工智能问题,没有重新学习的能力,不可能应对变化。国内、国外都一样,我问美国的ChatGPT也是这样来答的,问中国的ChatGPT,有的做得比较好,有的也是错误的。这就给我们提出一个问题,我们要把它用到这些决策问题上面去,这个重大问题需要进一步解决。”张钹表示。旷视科技物流业务事业部的负责人徐庆才在最近一次交流中提到,目前大模型需要走向垂直化,可以结合场景用一个模型和一个框架下统一去提高内容精准度。“目前依然有一定差距,这个差距来自于现在技术上的不可实现,来自于现在没有找到一个好的方式实现这个东西,这就是我们现在需要来看,现在新技术到底能不能够弥合这个点,我们判断这些问题很快都会被解决。”徐庆才表示。其次是解决算力成本高、训练重复资源却紧缺的问题。一家AI算力公司联合创始人张新(化名)对钛媒体App提到,以GPT-3模型为例,现有千卡集群训练一个月,单次训练周期一个月,总成本超过1200万美金。今年上半年,全行业(训练卡)在涨价,持续涨价超过25%。但在这样一个情况下,今天仍然没有人能够用商业化的国产芯片去做大模型的训练。