以下为您介绍一些有关 AI 调色的大模型:
作者:白马少年介绍:SD实践派,出品精细教程发布时间:2023-09-10 19:00原文网址:https://mp.weixin.qq.com/s/-hlnSTpGMozJ_hfQuABgLw在最近新上线的controlnet模型中,除了我们之前测试过的一众适配sdxl的模型以外,还增加了一款名为Recolor的新模型,它的作用是可以将黑白的图片进行重新上色。看到这个功能,我首先想到的就是可以用它来修复那些已经年代久远的老照片。毕竟在以前那个年代,没有现在这种可以永远保存的数码拍照技术,很多洗出来的照片也都随着岁月的流逝而褪去了色彩。如果能用AI技术恢复这些往日的时光,也许能唤醒我们心底的一些温暖。于是,我联系爸妈帮我找来了一些他们珍存的照片。他们也很热心于这件事情,立马给我发来了一大堆照片,其中有很多我也没见过的他们年轻的时候的样子,还包括我爷爷奶奶外公外婆那一辈的回忆。虽然很多照片都是黑白的,但是仍然能感受到那个时候的阳光和清风。这是我的奶奶,她离开已经有十几年了,年轻时候留下的照片不多,这一张算是保存得很好的了,那个年代的人物照片总能让人感受到一种独特的气质。既然是人物照片的还原,我这里就选择了realisian的写实大模型。提示词直接描述颜色和对应的内容。比如黑色的头发、黄色的皮肤、深蓝色的衣服、浅蓝色的背景。因为黑白照片,颜色无从判断,所以有些只能靠猜测了。ControlNet这里选择Recolor,预处理器有两个,经过我的测试,选择“recolor_luminance”的效果会更好一些。
点击生成器下方的切换按钮进行切换|与入门模式相比增加了|高级模式框架||-|-||基础模型:允许使用更多的微调大模型<br><br>图片参考:允许使用更多的图像控制功能<br>星流基础大模型下,增加了tile分块与softedge线稿<br><br>切换不同的系列的基础模型可以使用与之配套的图像控制功能<br>基础模型F.1<br><br>基础模型XL<br><br>基础模型1.5<br><br>高清分辨率修复:利用算法对初步生成的图像进行简单的图生图高清放大(目前仅支持基础模型xl和1.5模型)<br><br>放大算法:影响图像放大后的图像质量,建议默认即可<br>重绘幅度:与初步生成的图像的相似度<br>其他参数默认即可<br>参数:允许调整更多的高级参数<br><br>采样器:采样方法决定了模型在生成图像过程中的出图质量,有些采样器在细节处理上表现更佳比如DPM++2M,而有些则在生成速度上更快,比如Euler。<br>采样步数:一般来说,步数越多,模型对图像的生成和优化越充分,但同时也会增加生成时间。<br>随机种子:文生图的随机数种子是一个用于生成过程的整数值。通过设置相同的随机数种子,可以确保在相同的参数配置下生成相同的图像。<br>CFG Scale:控制生成图像与提示词一致性的重要参数。<br>脸部/手部修复:利用算法对人像的脸部或者手部进行修复<br>||
启用MutiDiffusion插件,不开放大倍数,仅使用分块渲染的功能,能帮助我们在显存不够的情况下,将图片放大到足够的倍数。好了,经过一顿操作,我们就将这张图片处理完成了。对比一下看看,之前的黑白照片和经过上色高清化完成之后效果。同样的步骤,又还原了一张我妈妈的照片。在问到她当时穿的什么颜色衣服的时候,她记得可清楚了,想都没想就告诉我说是绿色的。这两张还算容易的,接下来就遇到比较棘手的照片了。比如这一张,是我外公外婆带着我妈和我舅舅。外公走得更早,我甚至都没见过一面,只有这些照片还记录着他存在的痕迹。而这张照片也有些年头了,一直被外婆好好保存着。人物多、场景复杂,像素非常的低,使得这张照片处理起来难度很大。我首先在ps里面进行了一下角度的调整和照片的裁切,然后使用刚才的步骤进行上色,但是直接上色的结果有点像是加了一层黄色滤镜,有颜色但是年代感还是太强了。而太具体的颜色指定,又容易让画面污染严重,因为内容实在太多了,光是指定衣服就得十来个颜色提示词,AI能分辨得清才怪。所以我决定放弃人物服装的颜色指定,只给一个场景方向,剩下的交给AI去自行决定。于是,我从网上找到了一张仙人洞的照片,让AI去帮我匹配色调。加入第二个controlnet来控制颜色,使用的是t2ia_color的模型。关键词只给了:蓝天、绿树、灰石砖这么简单的几个词。颜色终于正常了,最后经过脸部的修复和放大,得到了最终的效果。