Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

闭源模型分类和典型案例

Answer

以下是一些常见的闭源模型分类和典型案例:

  • 通用大模型:字节云雀大模型。
  • 行业大模型:如蚂蚁金融大模型等。

在 2023 年,还有众多闭源模型的发布和升级,例如:

  • 文心一言:经历了从 1.0 到 V3.5 的版本升级。
  • 星火:科大讯飞发布的星火 1.0 及后续的升级版本。

此外,Qwen 系列模型也有出色表现,Qwen2 在性能上超越了目前所有开源模型和国内闭源模型,如文心 4.0 等。Qwen2 具有多种尺寸的预训练和指令调整模型,在大量基准评估中表现出先进的性能,提升了代码、数学、推理等多方面的能力,并在多个国际权威测评中获得冠军。

Content generated by AI large model, please carefully verify (powered by aily)

References

2023年度中文大模型基准测评报告.pdf

时间2022.125字节云雀大模型闭源通用大模型百川BaichuanYi-34B开源医疗汽车教育行业大模型MindGPT部分领域岐黄问道银河大模型..................序列猴子BlueLMAndesGPT孟子玉言云天书金融工业文化/零售/交通蚂蚁金融大模型妙笔大模型AInno-15B轩辕大模型COSMO-GPTSMore LrMo..................2023年值得关注的中文大模型全景图国内外大模型发展趋势过去六个月国内外代表性模型的发展趋势趋势说明过去半年,国内领军大模型企业实现了大模型代际追赶的奇迹,从7月份与GPT3.5的20分差距,每个月都有稳定且巨大的提升,到11月份测评时已经完成总分上对GPT3.5的超越。

2023年度中文大模型基准测评报告.pdf

•OpenAI发布GPT4•科大讯飞发布星火1.0•百度发布文心一言1.0•清华开源ChatGLM•360发布360智脑1.0•复旦开源MOSS•元语开源ChatYuan•阿里云发布通义千问1.0•商汤科技发布商量1.0•昆仑万维发布天工1.0•出门问问发布序列猴子•华为发布盘古3.0•西湖心辰发布西湖大模型•文心一言升级V3.5•云从科技发布从容大模型•商汤科技升级商量2.0•理想汽车发布MindGPT•360升级智脑4.0•字节跳动公测大模型产品豆包•OPPO发布AndesGPT•商汤科技升级商量3.0•vivo发布BlueLM•阿里云开源Qwen-7B•零一万物开源Yi-34B•小米发布大模型MiLM•科大讯飞升级星火3.0•元象科技开源XVERSE-13B•Google发布多模态大模型Gemini•上海人工智能实验室开源InternLM-20B•百川智能发布Baichuan2—Turbo2月4月8月6月10月2023.12

Qwen 2开源了 模型性能超越目前所有开源模型和国内闭源模型

5种尺寸的预训练和指令调整模型,包括Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B和Qwen2-72B;(Qwen2-57B-A14B这个模型可以重点看看除英语和中文外,还接受过另外27种语言的数据训练;在大量基准评估中表现出最先进的性能;在大量基准评估中获得SOTA性能。代码和数学性能显著提高,全面超越llama3增大了上下文长度支持,最高达到128K tokens(Qwen2-72B-Instruct)。HF最新榜第一72B和7B可处理128k上下文57B-A14B可处理64k上下文0.5B和1.5B可处理32k上下文相比2月推出的通义千问Qwen1.5,Qwen2实现了整体性能的代际飞跃。在权威模型测评榜单OpenCompass中,此前开源的Qwen1.5-110B已领先于文心4.0等一众中国闭源模型。刚刚开源的Qwen2-72B,整体性能相比Qwen1.5-110B又取得了大幅提升。(图说:在上海人工智能实验室推出的OpenCompass大模型测评榜单上,此前开源的Qwen1.5-110B已领先于文心4.0等一众中国闭源模型)通义千问Qwen2系列模型大幅提升了代码、数学、推理、指令遵循、多语言理解等能力。在MMLU、GPQA、HumanEval、GSM8K、BBH、MT-Bench、Arena Hard、LiveCodeBench等国际权威测评中,Qwen2-72B获十几项世界冠军,超过美国的Llama3。(图说:Qwen2-72B在十多个权威测评中获得冠军,超过美国的Llama3-70B模型)

Others are asking
帮我列举2025年3月1日以来,国内外、闭源开源模型厂商的更新记录。
以下是 2025 年 3 月 1 日以来,国内外、闭源开源模型厂商的部分更新记录: 2025 年 3 月 20 日,OpenAI 推出了一套全新的音频模型,旨在通过 API 为开发者提供更智能、更可定制的语音代理支持,包括改进的语音转文本和文本转语音功能,为语音交互应用带来显著提升。 李开复公开表示 OpenAI 面临生存危机,商业模式不可持续。他强调中国的 DeepSeek 以极低成本提供接近的性能,开源模式将主导未来 AI 发展。他认为企业级 AI 应用将成为投资重点,资源限制反而促进了创新。李开复大胆预测,中国将出现三大 AI 玩家,竞争愈发激烈。 SuperCLUE 发布《中文大模型基准测评 2025 年 3 月报告》,指出 2022 2025 年经历多阶段发展,国内外模型差距缩小。测评显示 o3mini总分领先,国产模型表现亮眼,如 DeepSeekR1 等在部分能力上与国际领先模型相当,且小参数模型潜力大。性价比上,国产模型优势明显。DeepSeek 系列模型深度分析表明,其 R1 在多方面表现出色,蒸馏模型实用性高,不同第三方平台的联网搜索和稳定性有差异。 以上信息来源包括: 《》 《》 《》
2025-03-26
开源模型和闭源模型
开源模型和闭源模型的情况如下: 专有模型(闭源模型):如 OpenAI、Google 等公司的模型,需访问其官方网站或平台(如 ChatGPT、Gemini AI Studio)使用。 开源模型: 可使用推理服务提供商(如 Together AI)在线体验和调用。 可使用本地应用程序(如 LM Studio)在个人电脑上运行和部署较小的开源模型。 例如 DeepSeek、Llama 等开源模型。 Qwen 2 开源,具有多种尺寸的预训练和指令调整模型,在大量基准评估中表现出先进性能,超越目前所有开源模型和国内闭源模型,在代码和数学性能等方面显著提高。 金融量化领域的大模型正趋向闭源,几个巨头的核心模型如 OpenAI 最新一代的 GPT4、Google 的 Bard 以及未来的 Gemini 短时间内不会公开。Meta 的 LLaMA 目前开源,但未来可能改变。OpenAI 未来可能开源上一代模型。
2025-02-17
开源模型与闭源模型调用
以下是关于开源模型与闭源模型调用的相关信息: 1. 通义千问自 2023 年 8 月起密集推出 Qwen、Qwen1.5、Qwen2 三代开源模型,Qwen 系列的 72B、110B 模型多次登顶 HuggingFace 的 Open LLM Leaderboard 开源模型榜单。Qwen2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。同时,Qwen272binstruct 模型已上线中国大语言模型评测竞技场 Compass Arena,所有人都可登录体验其性能或进行对比测评,测评地址为。Compass Arena 集齐了国内主流的 20 多款大模型,用户可在平台选择大模型的两两“对战”。 2. 部分声称性能卓越的中国大模型被揭露为“套壳”产品,如李开复创办的“零一万物”被国外开发者质疑为“套壳”产品,其团队承认在训练过程中沿用了开源架构,但坚称发布的模型从零开始训练并进行了大量原创优化和突破。此外,字节跳动被曝出在其秘密研发的大模型项目中调用了 OpenAI 的 API,并使用 ChatGPT 的输出数据来训练自己的模型,此行为触犯了 OpenAI 使用协议中禁止的条款。 3. 在 LLM 应用程序中,OpenAI 已成为语言模型领域领导者,开发者通常使用 OpenAI API 启动新的 LLM 应用,如 gpt4 或 gpt432k 模型。项目投入生产并规模化时,有更多选择,如切换到 gpt3.5turbo,其比 GPT4 便宜约 50 倍且速度更快;与其他专有供应商如 Anthropic 的 Claude 模型进行实验;将一些请求分流到开源模型,这通常与微调开源基础模型结合更有意义。开源模型有多种推理选项,包括 Hugging Face 和 Replicate 的简单 API 接口、主要云提供商的原始计算资源等。
2025-01-06
开源模型与闭源模型调用
开源模型与闭源模型调用相关信息如下: 通义千问自 2023 年 8 月起密集推出 Qwen、Qwen1.5、Qwen2 三代开源模型,Qwen 系列的 72B、110B 模型多次登顶 HuggingFace 的 Open LLM Leaderboard 开源模型榜单。Qwen2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。同时,Qwen272binstruct 模型已上线中国大语言模型评测竞技场 Compass Arena,所有人都可登录体验其性能或进行对比测评,测评地址为:https://opencompass.org.cn/arena 。Compass Arena 是由上海人工智能实验室和魔搭社区联合推出的大模型测评平台,集齐了国内主流的 20 多款大模型。 部分声称性能卓越的中国大模型被揭露为“套壳”产品,如李开复创办的“零一万物”被国外开发者质疑为“套壳”产品,其团队承认在训练过程中沿用了开源架构。此外,字节跳动被曝出在其秘密研发的大模型项目中调用了 OpenAI 的 API,并使用 ChatGPT 的输出数据来训练自己的模型。 在 LLM 应用程序中,开发者通常使用 OpenAI API 启动新的 LLM 应用,如 gpt4 或 gpt432k 模型。当项目投入生产并规模化时,常见的选择包括切换到更便宜且速度更快的 gpt3.5turbo,与其他专有供应商(如 Anthropic 的 Claude 模型)进行实验,将一些请求分流到开源模型等。开源模型有多种推理选项,包括 Hugging Face 和 Replicate 的简单 API 接口、主要云提供商的原始计算资源等。
2025-01-06
开源模型与闭源模型调用
开源模型与闭源模型调用相关信息如下: 通义千问自 2023 年 8 月起密集推出 Qwen、Qwen1.5、Qwen2 三代开源模型,Qwen 系列的 72B、110B 模型多次登顶 HuggingFace 的 Open LLM Leaderboard 开源模型榜单。Qwen2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。同时,Qwen272binstruct 模型已经上线中国大语言模型评测竞技场 Compass Arena,所有人都可以登录体验 Qwen2 的性能,或者选择 Qwen2 模型与其他大模型进行对比测评。测评地址:https://opencompass.org.cn/arena 。Compass Arena 是由上海人工智能实验室和魔搭社区联合推出的大模型测评平台,集齐了国内主流的 20 多款大模型。 部分声称性能卓越的中国大模型被揭露为“套壳”产品,如李开复创办的“零一万物”被国外开发者质疑为“套壳”产品,其团队承认在训练过程中沿用了开源架构,但坚称发布的模型都是从零开始训练的,并进行了大量原创性的优化和突破。此外,字节跳动被曝出在其秘密研发的大模型项目中调用了 OpenAI 的 API,并使用 ChatGPT 的输出数据来训练自己的模型,这触犯了 OpenAI 使用协议中明确禁止的条款。 在 LLM 应用程序中,OpenAI 已成为语言模型领域的领导者,开发者通常使用 OpenAI API 启动新的 LLM 应用,如 gpt4 或 gpt432k 模型。当项目投入生产并开始规模化时,常见的选择包括切换到 gpt3.5turbo、与其他专有供应商(如 Anthropic 的 Claude 模型)进行实验、将一些请求分流到开源模型等。开源模型可以使用多种推理选项,包括 Hugging Face 和 Replicate 的简单 API 接口、来自主要云提供商的原始计算资源等。
2025-01-06
对于大语言模型使用的未来趋势,是闭源云端还是开源本地部署,作为普通用户是否有必要了解本地部署知识,并且是否有必要自己搭建agent以及rag?
大语言模型的未来趋势在闭源云端和开源本地部署方面存在多种可能性。 对于开源本地部署,以下是一些相关信息: Ollama 是一个方便用户在本地运行和管理大型语言模型的框架,具有以下特点: 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 提供模型库,用户可从中下载不同模型,以满足不同需求和硬件条件,模型库可通过 https://ollama.com/library 查找。 支持用户自定义模型,例如修改温度参数调整创造性和连贯性,或设置特定系统消息。 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 安装可访问 https://ollama.com/download/ 。 可以通过一些教程学习如何本地部署大模型以及搭建个人知识库,例如了解如何使用 Ollama 一键部署本地大模型、通过搭建本地聊天工具了解 ChatGPT 信息流转、RAG 的概念及核心技术、通过 AnythingLLM 搭建完全本地化的数据库等。 同时,采用开源或国内企业提供的 13B 级模型本地部署在内部系统中,虽需投入算力,但有其价值。智能客服的大量优质大客户可能会选择自己搭建智能客服平台,并结合大模型企业提供的技术服务,基于大模型搭建 LangChain、RAG 框架,实现 RPA 自动流程。 对于普通用户是否有必要了解本地部署知识以及是否有必要自己搭建 agent 以及 rag,这取决于个人需求和兴趣。如果您希望更深入了解大模型的工作原理和运行机制,或者有特定的个性化需求,那么了解和尝试本地部署可能是有意义的。但如果只是一般的使用需求,可能无需深入了解和自行搭建。
2024-09-03
有coze硬件的案例吗
以下是一些关于 Coze 硬件的案例: 1. 一泽 Eze:用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力。 分步构建和测试 Agent 功能:首先进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建。左侧「选择节点」模块中,实际用上的有插件、大模型、代码。按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 2. 90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本。 智能纪要:Code AI 应用开发教学,背景是智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。 3. 大雨:【场景驱动】企业的哪些重复性任务,最适合用 Coze 循环节点来解决? 案例展示:出海品牌设计师。早起智能体的逻辑通过工作流承载,比如让 AI 出图以后,希望在它的基础上再修改,直到满意为止,这种情况没有循环节点,整个工作流会非常复杂。从这个案例可以明显感受到,在智能体的交互上,循环节点的出现,带来极大的可能性。部分工作流的截图体现出 Coze 在实际业务场景上,具有非常巨大的商业价值。
2025-03-25
我是一个产品经理,我想要绘制ai agent对现有业务流程的提升ppt,有没有一些好的案例
以下是一些关于 AI Agent 对现有业务流程提升的案例,希望对您绘制相关 PPT 有所帮助: 1. 在查询问题方面,如使用 Kimi Chat 时,它会在互联网检索相关内容并总结分析给出结论,这是大模型利用“网页搜索”工具的典型例子,同时 PPT 中还介绍了众多不同领域类型的工具,为大模型在获取、处理、呈现信息上做补充。 2. 在任务执行的工作流路径规划方面,Agent 能够自行规划,面向简单或线性流程运行。例如,先识别男孩姿势,再找姿势提取模型、姿势图像模型、图像理解文本模型和语音合成模型来完成流程任务。 3. 在多智能体协作方面,吴恩达通过开源项目 ChatDev 举例,可让大语言模型扮演不同角色,如公司 CEO、产品经理、设计师、代码工程师或测试人员等,这些 Agent 相互协作共同开发应用或复杂程序。 4. 对于 AI Agent 的基本框架,OpenAI 的研究主管 Lilian Weng 提出“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型 LLM 扮演了 Agent 的“大脑”。规划主要包括子目标分解、反思与改进,将大型任务分解为较小可管理的子目标,处理复杂任务,并对过去行动进行自我批评和反思,从错误中学习改进未来步骤,提高最终结果质量。 5. 在信息处理方面,近期出现的各类 AI 搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等,不断颠覆传统搜索引擎。智能摘要功能能辅助快速筛选信息,实现信息降噪。 6. 在信息表达方面,现在用自然语言描述一句话就能生成美观可用的图片,降低了不同角色的创作门槛和周期。 7. 对于产品经理的工作流,可使用 AI 进行搞定用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。但建议先摸清自己的日常工作流,再根据工作节点线索找到适合自己的工具。 关于 Agent 的未来,曾被认为异想天开的想法都可能成为现实,技术迭代会不断向前。同时,在法律法规方面,相关生命周期参与者应实施适当的透明度措施,直接受 AI 系统使用影响的各方应能获取足够信息以维护自身权利,技术标准也可为评估、设计和改进 AI 系统的透明度和可解释性提供指导。
2025-03-24
实践案例推荐,仅搜索教育、多邻国相关的内容
以下是与教育、多邻国相关的实践案例推荐: 张翼然:用 AI 为教师减负(3H) 教师的 AI 减负指南生成式人工智能在教学中的应用 教师使用 AI 小技巧 想让 AI 做好,首先你得会做 教学目标:是否明确,与课程标准和学生实际需求相符合 教学方法:是否使用多种,考虑学生不同学习风格 能力培养:是否注重培养学生的思维、创新和实践能力 教学实践 教案中的教学过程是否紧密结合学生现实生活和个人经验 群里“公开问”创造良好探究学习气氛,提问技巧可见的快速提高 是否充分利用课堂时间,让学生参与教学 是否在教学中关注学生反馈和理解,及时调整教学策略 师生关系 是否营造良好教学氛围和师生关系 是否平等尊重学生主体地位,体现尊重和关爱学生的教育理念 是否注重发挥学生积极性和主动性,激发学习热情 移动教学应用: 多邻国 六六写字 幕布 “遇见苏轼”项目式教学 在教育实践中,针对二年级学生对于抽象数学概念感到困惑的痛点问题,也有相关的探索和尝试。
2025-03-20
育儿智能体落地实践推荐,相关案例和资讯
以下是为您整理的育儿智能体落地实践的相关案例和资讯: 在“通往 AGI 之路知识库使用指南”中,提到了智能纪要、智能章节等内容。包括博主精美解释六大策略,小七姐在社区带来共学课程及直播分享与回放,介绍了官方最佳 prompt 的 6 个实践办法。还提到了 AI 智能体的进阶、案例拆解及扣子的应用,如景淮老师的相关成果,阐述扣子、千帆百炼属于智能体范畴,扣子更偏 ToC 应用。同时提到 Cos 平台功能全面,社区共学成果显著,学习 AI agent 建议先吃透 prompt,官方文档内容全面,社区小伙伴参加 cos 比赛常获奖并分享经验。 在“张翼然:AI 赋能教学,创新引领未来.pdf_AI 赋能教学创新引领未来”中,涵盖了教育目标由知识本位向能力为重的转型、群智协同与知识动态生成、核心能力、关键价值等方面。还包括设计实验或观察方法、收集与分析数据、得出结论并撰写报告等研究过程的指导,以及黎加厚关于让教师掌握教育智能体金钥匙的相关内容。同时探讨了 AIGC 教育革命、AI 从工具到助手、赋能教师提升效率与能力、大语言模型的教学潜力、AI 与教育场景融合拓展教学边界与创新场景、一线教师的 AI 需求与高效工具推荐、AI 赋能课堂的核心逻辑、AI 与人类智能的共生放大学生思考力塑造深度学习能力、解码 AI 教学案例、能力的普遍性与局限性、现阶段 AI 在教育领域应用的局限性等内容。 在“扣子案例合集社区内容分享”中,包含了如“用 Coze 扣子轻松搭个 Bot,从此告别‘标题党’”“扣子官方:用扣子/Coze 揭秘吴恩达的 4 种 AI Agent 设计模式”“扣子官方:这届 00 后已经学会用扣子/Coze‘偷懒’了”“【2 万字长文】如何用 Kimi 全自动创建扣子智能体?这喂饭级教程将揭晓一切!”“保姆级教程:Coze 打工你躺平”“扣子 Coze 智能体开发实战教程|智能体开发”等案例。
2025-03-20
AI变现案例
以下是一些 AI 变现的案例: 深圳 AI 变现沙龙: AI 抖音发广告:借助抖音平台对实体商家的流量扶持,每年对实体商家有 100 万多的基础曝光量,几万家实体商家花 3000 元、9000 元、10800 元购买软件。需求是懂软件开发的技术人员,熟悉抖音。 AI 私域做客户培育/用户旅程:AI 软件帮助不同商家自动跟进/培育客户。需求是懂软件开发的技术人员,熟悉微信。 本人成绩:签约过 300 多家实体商家,变现 70 万+。 AI 绘本:2 4 岁儿童的睡前故事,图文结合。 大学生社群,高校,对接商家,链接商家广告推广需群。 变现想法:Al+绘本+视频,3 10 岁儿童阅读教育,通过 Bot 实现自动化流程。 资源在做海外跨境电商和外贸,需要对接资源:ToB 服务。 法律咨询,制作劳动合同法 bot,个人机器人对接到 AI,建立数据库,回复。 体检报告解读,有企业资源,看怎么打通企业培训。 电商:小红书 AI 绘画变现: 用 AI 制作服装:代表案例——AI 小绿裙。单价 239 卖了 1160 多份,几个月一共卖了 27 万。可用 sd 或 mj 制作(熟练者),新手可用 mewxai 或幻火。 用 AI 定制萌娃的头像:单价 19.9,卖了 2675 份,共 5 万。适合执行力强的人,有人靠此月入 2000 3000,也有人做不完把单子转给别人抽成。 Coze 变现模板全新升级: 微信小程序变现模版正在开发中,12 月将会上线。目前实现小程序端可以通过 API 形式搭建,可参考 API 形式【30 分钟教程】打破 AI 次元壁,普通人的 AI 创意变现通天指南。Zion 支持小程序、Web、AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。
2025-03-19
AI和教育结合的案例以及资料
以下是一些 AI 和教育结合的案例及相关资料: 张翼然是湖南农业大学教育技术系副教授,国家教学成果奖获得者,也是“人工智能+教育”实践专家。其相关研究包括 AI 从工具到助手赋能教师提升效率与能力、AI 与教育场景融合拓展教学边界与创新场景、AI 与人类智能的共生放大学生思考力塑造深度学习能力、AIGC 教育革命:技术原理与课堂实践、大语言模型的教学潜力:交流技巧与心得、一线教师的 AI 需求与高效工具推荐、AI 赋能课堂的核心逻辑:从理论到应用、解码 AI 教学案例:创新与实践等。 例如,在个性化支持与学习自主性方面,AI 通过数据分析与即时反馈,提供定制化学习路径和资源,帮助学生根据自身兴趣、需求和能力规划学习,同时赋予学生更多学习自主权,支持自定步调学习,实现精准教学,关注每个学生的个体需求,帮助学生在学习过程中培养自主决策能力。 在科技伦理与批判性思维方面,通过 AI 生成的开放性问题与多维数据,帮助学生审视技术的潜在风险,培养批判性思维与负责任的科技使用态度,引导学生辨析技术优劣,理解科技的伦理边界,通过讨论和反思提升学生的审辨能力。如课堂讨论 AI 生成内容的真实性与偏见,并设计项目探索数据隐私的保护方案。 同时也指出了大模型在多数任务中可快速达到及格水平,但在绝大多数领域难以达到优秀水平,以及现阶段 AI 在教育领域应用存在知识适配的层次性问题等局限性。 深圳福田区梅山中学梁玉老师使用百度文库的 AI 有声画本导入故事生成,用即梦 AI 生成数字人。 教研员贺亚使用通义千问根据评分标准改英语作文。 黎加厚提出让每一位教师都掌握教育智能体金钥匙。
2025-03-17
搭建私有大模型
搭建私有大模型可以参考以下几种方法: 1. 方法一 搭建,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时会告知如何白嫖大模型接口。 搭建,这是一个知识库问答系统,将知识文件放入,并接入上面的大模型作为分析知识库的大脑,最后回答问题。若不想接入微信,搭建完此系统即可,它也有问答界面。 搭建,其中的cow插件能进行文件总结、MJ绘画。 2. 方法二 部署大语言模型: 下载并安装Ollama,根据电脑系统,从https://ollama.com/download 下载。下载完成后,双击打开,点击“Install”。安装完成后,将下方地址复制进浏览器中,若出现相关字样,表示安装完成:http://127.0.0.1:11434/ 。 下载qwen2:0.5b模型(0.5b是为了方便测试,下载快,设备充足可下载更大模型)。若为windows电脑,点击win+R,输入cmd,点击回车;若为Mac电脑,按下Command(⌘)+Space键打开Spotlight搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行,粘贴进入,点击回车,等待下载完成。 3. 方法三 企业大模型四步走的第一步是私有化部署通用大模型,一是解决AI科普问题,二是满足一些通用需求。若有能力,可赠送免费的私有化部署通用大模型,其为千亿模型的缩小版、浓缩版,能解决科普问题,让企业员工熟悉大模型,同时满足办公等通用需求。此外,还提供了360AI办公的一套会员服务,围绕办公营销需求做了很多工具,以订阅模式耗费算力,每天几乎一块钱。
2025-03-26
我是一位程序开发小白,不会用代码开发程序。我现在有一台安装Window 11操作系统的笔记本电脑,配置为14代i7CPU、32G内存、1TB硬盘、1张RTX4070显卡。我想部署一套本地的大模型+智能体+知识库。我要怎么样才能实现无代码部署,请列出详细的安装步骤。
以下是为您提供的无代码部署本地大模型、智能体和知识库的详细安装步骤: 1. 硬件评估:您的笔记本电脑配置为 14 代 i7 CPU、32G 内存、1TB 硬盘、1 张 RTX4070 显卡,基本满足部署要求。但需要注意,运行内存最低 32GB,越高越好,最低配可能会经常爆显存。建议将软件和模型部署在 SSD(固态硬盘)上,以提高加载模型的速度。 2. 选择合适的部署工具:ComfyUI 是一个相对配置要求较低、系统资源占用少、出图速度快的工具。它最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 3. 安装准备:如果您的电脑能顺畅清晰地玩 3A 游戏,那么运行相关部署工具一般也没问题。 4. 预算和需求:根据您的需求和预算来选择合适的配置。例如,如果有做 AIGC 视频、建模渲染和炼丹(lora)的需求,可能需要更高的配置。 请注意,以上步骤仅为参考,实际部署过程可能会因具体情况而有所不同。
2025-03-26
ai大模型和工具组合使用技巧
以下是关于 AI 大模型和工具组合使用的技巧: 1. 在 Obsidian 中的使用: 简单方法:通过命令面板打开创建的页面(默认快捷键 Ctrl+P),在弹出的搜索框中输入插件名称(如 custom frames),选择 OpenKimi 并打开设置好的窗口。 进阶配置:包括笔记仓库嵌入大模型(Copilot)、笔记内容作为 RAG 嵌入大模型(Smart Conections)、笔记内使用大模型编写内容。 2. 利用大模型与工具的典型例子:如使用 Kimi Chat 查询问题时,它会在互联网上检索相关内容并总结分析给出结论,同时还有很多不同领域类型的工具为大模型在获取、处理、呈现信息上做补充。 3. Agentic Workflow 方面: Agent 通过自行规划任务执行的工作流路径,面向简单或线性流程的运行。 多 Agent 协作:吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色相互协作开发应用或复杂程序。 AI Agent 基本框架:OpenAI 的研究主管 Lilian Weng 提出“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型 LLM 扮演“大脑”,规划包括子目标分解、反思与改进。 4. 从提示词优化到底层能力提升: 任务拆解:将复杂任务的提示词拆解成若干步骤的智能体,每个智能体负责特定子任务。 工作流构建:组合多个提示词或 AI 工具搭建高频重复工作的工作流。 创作场景的灵活应用:在创作过程中使用简单提示词和连续追问调整大模型回答。 深度思考辅助:将大模型用于辅助深度思考,从居高临下的指挥变为伙伴式的协作和相互学习,关注利用大模型训练和增强认知能力。
2025-03-26
用扣子的时候怎么让大模型严格按照知识库内容进行输出
以下是关于让大模型严格按照知识库内容进行输出的相关信息: 扣子的知识库功能强大,可上传和存储知识内容,提供多种查找方法。在智能体中使用知识库,收集相关内容,当智能体回答用户时会先检索知识库,使回复更准确。 在“掘金 x 扣子 Hackathon 活动 深圳站”的总冠军工作流中,对于用户向小说人物角色的提问,通过一系列节点,包括开始节点接收问题、知识库节点检索、大模型节点生成答案等,本质上是一个根据用户 query 进行检索增强生成(RAG)的任务,每个工作流中都嵌入了知识库节点,维护了如小说合集等知识库。 大模型节点是调用大语言模型,使用变量和提示词生成回复。按需选择基础版或专业版模型,基础版支持扣子预设的一批模型资源,专业版除默认添加的豆包模型外,还支持按需接入火山引擎方舟平台的模型资源。模型选择右下角生成多样性可从多个维度调整不同模型在生成内容时的随机性,有精确模式、平衡模式和创意模式等预置模式。输入方面,开启智能体对话历史后,上下文信息将自动携带进入大模型,参数名可随意设置但建议有规律,变量值可引用前面链接过的节点的输出或进行输入。
2025-03-26
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
AI分类
AI 主要有以下分类: 1. 生成式 AI: 生产力方面:包括文档、PPT、会议、脑爆、数据处理、搜索、浏览、email、文件等。 社交方面:包括真实和虚拟社交。 教育方面:涵盖早教、语言学习、公司教育、父母教育、学生工具、学校工具等。 创意内容方面:包含视频、音乐、声音、个人图像、图像等。 2. 以生成方式划分: 音视频生成类: 视频生成:当前视频生成可分为文生视频、图生视频与视频生视频。主流生成模型为扩散模型,可用于娱乐、体育分析和自动驾驶等领域,经常与语音生成一起使用。 语音生成:用于文本到语音的转换、虚拟助手和语音克隆等,模型可由 Transformers 提供。 音频生成:用于生成音乐、语音或其他声音,常用技术包括循环神经网络、长短时记忆网络、WaveNet 等。 一些具有代表性的海外项目: Sora(OpenAI):以扩散 Transformer 模型为核心,能生成长达一分钟的高保真视频,支持多种生成方式,在文本理解方面表现出色。 Genie(Google):采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数。 WaveNet(DeepMind):一种生成模型,可以生成非常逼真的人类语音。 MuseNet(OpenAI):一种生成音乐的 AI 模型,可以在多种风格和乐器之间进行组合。 Multilingual v2(ElevenLabs):一种语音生成模型,支持 28 种语言的语音合成服务。 3. 在 AI 创客松中,参与同学的分类: 秦超:AI 2C 项目负责人,擅长产品落地服务,具有产品、技术架构和项目管理经验。 kaikai:技术实践者,擅长多 Agent 处理任务流,具备技术实践和团队合作能力。 Cici🦾:AI 算法开发,想法是宠物与 AI 结合,具有 AI 产品研发和创业经验。 BIN 陈裕彬:CTO,方向是 AI 绘画精灵、AI 推文小说视频生成器,是爆款 AI 小程序作者。 11 鸭鸭呀:产品经理,专注智能写作产品,擅长 Prompt 撰写和 AI 应用。 zz:AI 产品经理,方向是效率工具和游戏,具有大厂经验。 天天向上:AIGC 爱好者,方向是 AI 配音应用,是配音演员,有 AI 预告片制作经验。 烦烦烦🧢🍻:产品经理,方向是企业服务 AI 应用,具备 PRD 输出和前端开发能力。 周文斌:产品业务负责人,方向是 AI 创业,具有产品规划和研发经验。 Wilson·W:咨询顾问/服务设计师,方向是 AI 组团协作场景,是 GPT4.0 用户,有咨询行业经验。 王蒙:程序员,从事 AI 相关开发,具有后端开发经验。 Nero:产品体验设计师,方向是 AI 绘画、AI 视频,研究 AIGC 方向。
2025-03-26
AI应用分类
AI 的应用场景非常广泛,主要包括以下几类: 1. 医疗保健: 医学影像分析:用于分析医学图像辅助诊断疾病。 药物研发:加速药物研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据提供个性化治疗方案。 机器人辅助手术:控制手术机器人提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据辅助投资决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障避免停机。 质量控制:检测产品缺陷提高质量。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:控制工业机器人提高生产效率。 5. 交通运输:(未给出具体应用场景) 此外,还有众多具体的 AI 应用产品,例如: 1. 辅助创作与学习:AI 智能写作助手、语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等。 2. 推荐与规划:AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等。 3. 监控与预警:AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等。 4. 优化与管理:办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等。 5. 销售与交易:AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等。 具体如: AI 摄影参数调整助手:利用图像识别、数据分析技术,在一些摄影 APP 中根据场景自动调整摄影参数。 AI 音乐情感分析平台:通过机器学习、音频处理技术,有相关音乐情感分析软件可判断音乐的情感倾向。 AI 家居智能照明系统:结合物联网技术、机器学习,像小米智能照明系统可根据用户习惯和环境变化自动调整灯光。 AI 金融风险预警平台:运用数据分析、机器学习,金融风险预警软件能提前预警金融风险。 AI 旅游路线优化平台:借助数据分析、自然语言处理,马蜂窝可根据用户需求优化旅游路线。
2025-03-17
目前网上AI是如何分类的?
目前网上对 AI 的分类方式主要有以下几种: 1. 根据 a16z 榜单重新整理的分类: 生产力(文档、ppt、会议、脑爆、数据处理、搜索、浏览、email、文件) 社交(真实、虚拟) 教育(早教、语言学习、公司教育、父母教育、学生工具、学校工具) 创意内容(视频、音乐、声音、个人图像、图像) 2. 编程工具分类: AI IDE(AI 集成开发环境):本身是单独的软件开发工具,在原有软件开发工具基础上通过代码魔改具备 AI 功能,如 Cursor、Windsurf、Trae 等。 AI Extensions(AI 插件):必须被集成进对应的开发环境中才能使用,如阿里的“通义灵码”、百度的“文心快码”、字节跳动的“MarsCode”、科大讯飞的“iFlyCode”、GitHub 的“Copilot”等。 3. 以生成方式划分的 AIGC 分类: 音视频生成类: 视频生成:当前视频生成可分为文生视频、图生视频与视频生视频,主流生成模型为扩散模型。视频生成可用于娱乐、体育分析和自动驾驶等领域,经常与语音生成一起使用。 语音生成:用于文本到语音的转换、虚拟助手和语音克隆等,常用模型由 Transformers 提供,常用技术包括循环神经网络、长短时记忆网络、WaveNet 等。 一些具有代表性的海外项目: Sora(OpenAI):以扩散 Transformer 模型为核心,能生成长达一分钟的高保真视频,支持多种生成方式,在文本理解方面表现出色。 Genie(Google):采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数。 WaveNet(DeepMind):一种生成模型,可生成逼真的人类语音。 MuseNet(OpenAI):一种生成音乐的 AI 模型,可在多种风格和乐器之间组合。 Multilingual v2(ElevenLabs):一种语音生成模型,支持 28 种语言的语音合成服务。
2025-03-08
所以我可以理解为CNN是一种图像分类识别的AI算法技术吗
卷积神经网络(CNN)是一种用于图像分类识别的 AI 算法技术。 ImageNet 成为深度神经网络革命的首选数据集,其中由 Hinton 领导的 AlexNet 就是基于卷积神经网络(CNN)。自 2012 年以来,在深度学习理论和数据集的支持下,深度神经网络算法大爆发,包括卷积神经网络(CNN)等。 连接主义的全面逆袭从 2012 年开始,欣顿教授和他的学生建立的 AlexNet 就是使用反向传播算法训练的卷积神经网络(CNN),其在图像识别方面击败了当时最先进的逻辑程序。 虽然 CNN 模型取得了显著成果并解决了许多问题,但也存在一些缺陷,如不能从整幅图像和部分图像识别出姿势、纹理和变化,池化操作导致模型不具备等变、丢失很多信息,需要更多训练数据来补偿损失,更适合像素扰动极大的图像分类,对某些不同视角的图像识别能力相对较差。因此,在 2011 年,Hinton 和他的同事们提出了胶囊网络(CapsNet)作为 CNN 模型的替代。
2025-03-07
我想批量给书画作品分类,区分他们的内容(国画或者书法),字体,题材(山水、人物、花鸟),技法(工笔、写意),可以使用什么ai
以下是为您提供的相关信息: 在书画作品分类方面,目前没有直接针对您需求的特定 AI 工具。但一些通用的 AI 技术和工具可能会有所帮助,例如利用图像识别技术对书画作品的内容、字体、题材和技法进行初步分析。 对于图像识别,一些常见的 AI 框架如 TensorFlow、PyTorch 等可以用于开发自定义的图像分类模型。 在 AI 绘图中,了解构图、色彩和光影等因素很重要,如构图包括景别(远景、全景、中景、近景、特写)和拍摄视角(俯视、平视、仰视,正面、侧面、背面),构图方式有点中心构图、九宫格构图、三分法构图等。 但需要注意的是,要实现您批量准确分类书画作品的需求,可能需要大量的标注数据和专业的模型训练。
2025-03-07