Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

目前AI发展到哪一步了?

Answer

目前 AI 的发展可以概括为以下几个阶段:

  1. 小模型阶段:能力单一,无法泛化和理解,例如早期的人脸识别,只能完成特定任务。
  2. GPT 出现阶段:AGI 迎来拐点,机器实现与人类的交流。
  3. Sora 出现阶段:打开了 AGI 的大门,能够认知世界并与世界互动,但训练算力可能受限。
  4. 强人工智能阶段:机器能看懂一些常识并交流,但还缺少对世界力量的感知,如加速度、重力等,以及与物理世界的互动。
  5. 超级人工智能阶段:能够总结出世界的规律,达到如牛顿、爱因斯坦般的水平。

当前 AI 前沿技术点包括:

  1. 大模型,如 GPT、PaLM 等。
  2. 多模态 AI,如视觉-语言模型(CLIP、Stable Diffusion)、多模态融合。
  3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。
  4. 小样本学习,如元学习、一次学习、提示学习等。
  5. 可解释 AI,包括模型可解释性、因果推理、符号推理等。
  6. 机器人学,涉及强化学习、运动规划、人机交互等。
  7. 量子 AI,如量子机器学习、量子神经网络等。
  8. AI 芯片和硬件加速。

此外,这次 AI 革命不仅是技术的革命,也是人才和思想的革命。AI 模型的进步是推动变革的核心力量,它重塑了我们的工作和生活方式,不断推动科技边界的扩展,未来将有更多令人惊叹的成就,继续重塑我们的世界。

Content generated by AI large model, please carefully verify (powered by aily)

References

周鸿祎免费课AI系列第一讲

我试图总结AI发展的五个阶段,供大家参考:第一,小模型阶段,能力单一,无法泛化,无法做到理解,只能干点活儿,就像原来的人脸识别。所以,我早期的人脸识别公司为什么没有掀起工业革命,虽然他们做的也很辛苦,但是很不幸出现在人智障阶段。第二,GPT出现,AGI迎来拐点,机器实现与人类的交流。第三,Sora的出现,打开了AGI的大门,能够认知世界,跟世界互动。所以,未来五年,我觉得Sora加大算力,加大训练,跟具身机器人结合在一起,我认为户加速智能的提升。我觉得现在Sora的训练算力可能还受到一些限制,所以这是第三个阶段。第四,我觉得是强人工智能。现在机器已经能看懂一些常识了,也能交流了,机器还缺什么?大家想象,还缺对这个世界的一些力量的感知,比如说,加速度,比如重力,机器人自己摔了一跤,比如有人推动它怎么办?所以,现在热炒具身智能,这是理解世界的互动,但还不能与世界互动。下一步是能够跟物理世界互动,这样知道别人推它是怎么回事,拿一个鸡蛋是什么总量,怎么打一个鸡蛋?最后,我幻想,如果它最后能够总结出来世界的规律,幻想它能达到爱因斯坦的水平,能够总结出公式,能够像牛顿一样看到苹果从树上掉下来,能够总结重力的公式,这已经超越地球上的所有人了,因为牛顿和爱因斯坦一万人各出了一个,这就叫超级人工智能。所以,我为了让自己的预言能够成功,我们对AGI的要求不要太高,不要到第五步才叫AGI,第五步叫超级人工智能,到那一步大家再担忧硅基生物是不是会消灭碳基生物,到那一步才需要担心。第三步、第四步都可以定义成AGI。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

AI技术的发展历程和前沿技术点可以概括如下:[heading2]AI技术发展历程[content]1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

2024年3月 / 科技变革与美股投资 2024

这次AI革命不仅是技术的革命,也是人才和思想的革命。随着AI技术的持续发展和应用,我们正步入一个全新的智能时代,其中AI模型的进步将是推动变革的核心力量。AI技术不仅重塑了我们的工作和生活方式,还在不断地推动着科技边界的扩展。从软件2.0到可能的软件3.0,从增强现实到脑机接口,AI的每一步发展都充满了无限可能。未来,我们将见证更多令人惊叹的成就,AI技术将继续重塑我们的世界。

Others are asking
案例:借助人工智能技术的诈骗 一、案例材料 1.背景资料 (1)近期全国范围内出现了一种新型电信诈骗——AI换脸诈骗,该诈骗利用AI人工智能,通过“换脸”和“拟声”技术模仿受害人的朋友或亲戚的声音和外貌,以此骗取受害者的信任,进行网络诈骗,近日包头警方就根据一起典型案例,向大家发出了防范AI换脸诈骗的警示。 财联社5月22日讯,据平安包头微信公众号消息,包头警方发布了一起利用人工智能(AI)实施电信诈骗的典型案例,一家福州市科技公司的法人代表郭先生竟在短短10分钟内被骗走了430万元人民币。
以下是关于 AI 的相关内容: 律师如何写好提示词用好 AI: 对于不具备理工科背景的文科生,可将 AI 视为黑箱,只需知道其能模仿人类思维理解和输出自然语言。AI 就像似人而非人的存在,与传统道教的驱神役鬼拘灵遣将有相似之处。提示词应是相对完善的“谈话方案”,成果在与 AI 的对话中产生,要接受其存在的“不稳定性”,并在对话中限缩自己思维的模糊地带。 AI 的应用场景: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未具体阐述)
2024-12-25
AI和教育的结合
AI 与教育的结合可以从以下几个方面来实现: 教育政策的改革建议: 重新审视教育目标,从传统知识灌输转向培养创新思维、问题解决能力和终身学习能力。 使政策更灵活,适应技术和市场变化。 设立教育科技发展基金,鼓励校企合作,开发适应未来需求的教学内容和技术。 建立多学科交叉课程,培养学生宽广视野。 AI 技术融入教育体系的路径: 打破传统教育和高科技的隔阂,教师在教学中运用 AI 制定个性化学习计划、追踪学习进度并提供辅导建议。 学生学会与 AI 互动,使用辅助工具探索学术概念。 学校与技术公司合作,更新硬件设施,保持软件平台与时俱进。 加大对教师的 AI 培训力度。 社会层面的应对措施: 激发社会对教育的关注和投资,通过公私合作模式吸引私人资本投入创新项目。 加强对失业人员和低技能工人的再教育与培训,减少职业结构转换的冲击。 利用在线平台提供免费或低成本职业培训课程。 确保 AI 技术的应用不加剧教育不平等,政府公平分配资源。 构建开放共享的教育资源平台,提高资源使用效率。 在具体的应用场景方面,包括但不限于以下内容: 提前收集教育领域的需求,针对性地提供产品和服务,如办公提效、家校沟通、个性化教育、心理疏导、备课体系、作业批改、出题建议、建立孩子的成长体系记录、分析学生行为并给出策略、教师模拟培训、公开课备课辅助等。 利用 AI 进行学科教育辅助,如朗读评判、文生图和文生视频辅助备课等。 企业可以提供具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书多维表格、蚂蚁智能体、Coze 智能体、Zeabur 云平台、0 编码平台、大模型(通义、智谱、kimi、deepseek 等)、编程辅助等相关产品和服务。 需要注意的是,在使用 AI 辅助教育时,由于其可能产生幻觉,对于关键数据应根据其他来源仔细检查。
2024-12-25
AI直播的优势
AI 直播具有以下优势: 1. 盈利方式多样: 直接销售数字人工具软件,包括实时驱动和非实时驱动两类,实时驱动价格较高,非实时价格较低但效果差,市场价格较混乱。 提供数字人运营服务,按直播间成交额抽佣。 2. 适用品类和场景特定: 适用于不需要强展示的商品,如品牌食品饮料;适用于虚拟商品,如门票、优惠券等。 电商直播中店播效果较好,数据能保持跟真人相近。 不适用于促销场景,因涉及主播话术、调动氛围等能力。 3. 技术和市场格局: 长期看技术上无壁垒,但目前仍有技术门槛,如更真实的对口型、更低的响应延迟等。 市场不会一家独大,可能有 4 5 家一线效果的公司,大多为二三线效果公司。 能把客户服务好、规模化扩张的公司更有价值,而疯狂扩代理割韭菜、不考虑客户效果的公司售后问题多。 有资源和业务的大平台下场可能带来降维打击,如提供全环节服务会绑定商家。 一些品牌如欧莱雅、YSL、兰蔻、李宁、北面等会使用 AI 驱动的虚拟主播进行自播,但由于技术尚未达到真人直播水平,通常只在午夜时段排期。虚拟形象有 3D 卡通风格和 2D 拟真人风格,预设动作库和真实语音表现,直播互动流程相对固定,商品展示以图片为主。但虚拟主播无法与产品接触,测评结果缺乏真实性,目前更像是花瓶,负责基础性介绍和互动问答。
2024-12-25
AI直播SWOT分析
SWOT 分析是由著名管理学教授海因茨·威里克首次提出的一种策略规划工具,用于帮助个人或组织识别其项目或业务策略的优势(S)、劣势(W)、机会(O)和威胁(T)。最初主要用于企业发展战略的制定,如今已广泛应用于广告营销、经济管理以及个人发展分析等众多领域。 过去,人们使用 SWOT 分析时,常按照时间维度区分优势、劣势、机会和危机,认为当前的有利和不利条件分别为优势和劣势,未来存在的有利和不利条件分别为机会和风险,这种方式是错误的。正确的做法是以内部、外部、有利、不利作为基础坐标,内部有利为优势,内部不利为劣势,外部有利为机会,外部不利为风险。是否属于未来的情况,要依据当前分析对象的计划和外部因素来决定。 当按照最终形成的坐标收集好各个象限的信息后,还未完成。我们还需要重新分配线索以导出可操作的结果,即将 SWOT 两两叠加,产生 4 个具有指导意义的问题: 1. 利用哪些优势来抓住什么机会 2. 利用什么机会来化解哪些劣势 3. 利用哪些优势来避开什么危机 4. 在什么危机中规避哪些劣势 这样就能在有限的线索中,以组合填空的游戏形式,找到指导接下来行动的答案。 使用过程中有两个技巧: 1. 客观评估任何维度,不掺杂任何感情。 2. 分析要全面,但不是越复杂越好,应理清主次,不重要的放后面或者干脆删除。
2024-12-25
最喜欢的AI产品,亮点是什么
以下是一些受欢迎的 AI 产品及其亮点: 爱设计 PPT: 背后有实力强大且对市场需求敏锐的团队,持续推动产品创新进步。 成功把握 AI 与 PPT 结合的市场机遇,迅速开发出产品。 在国内 AI 生成 PPT 产品中确立了市场领先地位,代表了当前国内最高水平,能提高制作效率并保证高质量输出。 语鲸: 能订阅公众号和网站,有订阅广场和个人信息流展示,且每篇订阅有 AI 总结。 可设置多个焦点词,帮助 AI 聚焦内容要点。 生成的摘要与原文互相对应。 摘要细分为三个层级,可查看更具体丰富的总结。 可对上传文档进行摘录、批注、翻译等操作。 每个项目可对外分享,多端历史记录已打通。 Novel.ai: 是 AI 写小说领域的头部应用,典型的 LLM 产品。 产品功能复杂但使用模式简单,利用 LLM 的续写能力将写作改造成交互式文本生成,渐进式生成小段,用户可自由更改或继续生成下一段,还抽象出模型风格、写作方式、故事世界、记忆等细分功能,本质上是构造 Prompt,交互式、渐进式的 Prompt 构建降低了使用门槛。 Character.ai: 是大名鼎鼎的头部角色扮演类 AI 陪伴产品,服务游戏和二次元用户。 使用简单,选角色对话即可,创建也简单,角色核心差异靠不同的详细描述,开放用户角色 Prompt 可见。 筑梦岛: 和角色聊天、捏角色是共同主题。 捏角色的产品化本质是收集信息产生高质量角色 Prompt 的过程。 基于聊天模式微创新了很多衍生玩法。
2024-12-25
AI直播的技术价值
AI 直播具有以下技术价值: 1. 盈利方式: 直接销售数字人工具软件,包括实时驱动和非实时驱动两类。实时驱动价格较高,一年 4 6 万往上;非实时驱动一个月 600 元,效果差,市场价格混乱。 提供数字人运营服务,按直播间成交额抽佣。 2. 适用品类和场景: 适用于不需要强展示的商品,如品牌食品饮料;不适用于服装,因过品快且衣服建模成本高。 适用于虚拟商品,如门票、优惠券等。 适用于店播,效果较好,数据基本能保持跟真人一样;不适用于促销场景,涉及主播话术、套路和调动氛围能力等。 3. 壁垒和未来市场格局: 长期来看技术上没壁垒,但目前仍有技术门槛,如更真实的对口型、更低的响应延迟等。 不会一家独大,可能 4 5 家一线效果,大多二三线效果公司,因其只是工具,迁移成本低。 能把客户服务好、能规模化扩张的公司更有价值,疯狂扩代理割韭菜、不考虑客户效果的公司售后问题麻烦。 有资源、有业务的大平台下场可能会带来降维打击,如提供数字人、货品供应链、数据复盘分析等全环节打通会绑定商家。 此外,还有相关的直播回顾,如 INDIGO LIVE/AI 撞墙与美国大选后的世界 月末直播回顾 2024.11,会用 AI 把全部的回放视频转录文本,配合直播用的完整 Keynote,重新创作成回顾文章。同时,还有 AI 春晚阶段性纪实,建立了 5000 人的飞书大群,欢迎加入或围观,也可通过填写问卷申请转播自媒体账号。
2024-12-25
AI目前发展到了那一步?普通人可以用AI做什么?怎样开启AI的学习之路?
AI 目前的发展情况较为复杂和多样化。在一些领域,如自然语言处理、图像识别等,已经取得了显著的成果,但仍有很大的发展空间和挑战。 对于普通人来说,利用 AI 可以做很多事情,例如: 1. 内容创作:借助 AI 写作工具生成文章、故事等。 2. 语言学习:使用语言学习类的 AI 应用提高语言能力。 3. 日常交流:通过 AI 聊天机器人获取信息和解答疑问。 如果您想开启 AI 的学习之路,可以参考以下步骤: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支如机器学习、深度学习、自然语言处理等以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始学习之旅:在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧也很重要,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 此外,在医疗保健领域,开发具有潜在空间层次结构的堆叠 AI 模型有助于 AI 理解模式和关系,反映对每个基本元素的理解或预测能力。创建专门从事特定领域如医疗保健的 AI 可能比创建全能 AI 更容易,我们需要特定领域的专家 AI,并让其接触到顶级从业人员的多样化视角,以避免复制危险的偏见。鉴于人工智能依赖的神经网络基础,这些专家 AI 可能通过元学习比我们预期的更快地获得知识,并带着我们人类一同进步。最终,专家 AI 可能超越领域专家的角色,成为下一代专家——无论是人类还是 AI——的教师。
2024-12-17
学习Ai第一步
新手学习 AI 可以按照以下步骤进行: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,学习 AI 都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-12-14
目前我在帮助出版社改教材,以下是步骤:1.将pdf转为word 2.将公式图片转为公式编辑器中可编辑的公式 3.将相关带29章的文本统一改成23章。哪一步可以借助ai更简便
在您所描述的这三个步骤中,将公式图片转为公式编辑器中可编辑的公式这一步骤可以借助 AI 来更简便地完成。目前有一些 AI 工具和技术能够对图片中的公式进行识别和转换,提高工作效率。但需要注意的是,AI 转换可能存在一定的误差,仍需要人工进行检查和修正。
2024-12-05
帮我写一个可以训练的分类器代码, python 代码,目的是将样本的扰动分为 0,0.001,0.003,0.005 四类,按照以下步骤写 第一步:导入需要的库 第二步:加载位于/public/xdw/ls/signaldefense/AS/perturbed_data.npy 的数据 第三步:获取数据样本的扰动值 第四步:判断扰动值的大小,比如扰动值为 0,则加一计数 第五步:打印出判断各类扰动值的正确率
以下是为您生成的 Python 代码示例,用于实现将样本的扰动分为 0、0.001、0.003、0.005 四类的分类器: ```python import numpy as np 第一步:导入需要的库 import numpy as np 第二步:加载数据 data = np.load 第三步:获取数据样本的扰动值 perturbation_values = data 假设扰动值在第二列 第四步:判断扰动值的大小并计数 count_0 = 0 count_0_001 = 0 count_0_003 = 0 count_0_005 = 0 for value in perturbation_values: if value == 0: count_0 += 1 elif value == 0.001: count_0_001 += 1 elif value == 0.003: count_0_003 += 1 elif value == 0.005: count_0_005 += 1 第五步:计算正确率 total_samples = len accuracy_0 = count_0 / total_samples accuracy_0_001 = count_0_001 / total_samples accuracy_0_003 = count_0_003 / total_samples accuracy_0_005 = count_0_005 / total_samples print print print print ```
2024-12-05
对于一个什么都不懂的 AI小白,你建议他从哪个AI技能开始学?如何一步步开始强大自己使用AI的能力
对于一个 AI 小白,以下是一些学习建议: 1. 编程语言:可以从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. AI 基础知识: 了解 AI 背景知识,包括基础理论(人工智能、机器学习、深度学习的定义及其关系)、历史发展(回顾 AI 的发展历程和重要里程碑)。 掌握数学基础,如统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 熟悉算法和模型,包括监督学习(了解常用算法,如线性回归、决策树、支持向量机(SVM))、无监督学习(熟悉聚类、降维等算法)、强化学习(简介强化学习的基本概念)。 学习评估和调优,了解如何评估模型性能(包括交叉验证、精确度、召回率等),以及如何使用网格搜索等技术优化模型参数。 掌握神经网络基础,理解网络结构(包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)),了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 4. 实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,AI 小白可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,逐步提升自己使用 AI 的能力。
2024-11-22
使用coze搭建一个心理咨询机器人,将机器人接入自己开发的应用后,如何再进一步实现让ai把每个用户每天的聊天内容,总结成日记,并传回给应用展示日记
目前知识库中没有关于使用 Coze 搭建心理咨询机器人,并将用户每天聊天内容总结成日记传回应用展示的相关内容。但一般来说,要实现这个功能,您可能需要以下步骤: 1. 数据采集与存储:在机器人与用户交互过程中,采集并妥善存储聊天数据。 2. 自然语言处理与分析:运用相关的自然语言处理技术,对聊天内容进行理解和分析,提取关键信息。 3. 内容总结:基于分析结果,使用合适的算法和模型将聊天内容总结成日记形式。 4. 数据传输:建立与应用的稳定接口,将总结好的日记数据传输回应用。 这只是一个大致的思路,具体的实现会涉及到很多技术细节和开发工作。
2024-11-15
目前字节有哪些可以运用到安全审核业务的大模型?
字节在安全审核业务中可能运用到的大模型包括: 1. Claude2100k 模型,其上下文上限是 100k Tokens,即 100000 个 token。 2. ChatGPT16k 模型,其上下文上限是 16k Tokens,即 16000 个 token。 3. ChatGPT432k 模型,其上下文上限是 32k Tokens,即 32000 个 token。 大模型的相关知识: 1. 大模型中的数字化便于计算机处理,为让计算机理解 Token 之间的联系,需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 2. 以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”指用于表达 token 之间关系的参数多,例如 GPT3 拥有 1750 亿参数。 3. 大模型的架构包括 encoderonly(适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT)、encoderdecoder(同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 google 的 T5)、decoderonly(更擅长自然语言生成任务,典型使用包括故事写作和博客生成,众多 AI 助手基本都来自此架构)。大模型的特点包括预训练数据非常大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级数据进行预训练)、参数非常多(如 Open 在 2020 年发布的 GPT3 已达到 170B 的参数)。
2024-12-25
目前字节有哪些可以运用到审核安全业务的ai?
字节在审核安全业务方面可以运用的 AI 包括: 1. OpenAI 的审核(Moderation)Endpoint:可用于检查内容是否符合使用策略,其模型分为 hate(表达、煽动或宣扬基于种族、性别等的仇恨内容)、hate/threatening(仇恨内容且包括对目标群体的暴力或严重伤害)、selfharm(宣扬、鼓励或描绘自残行为)、sexual(旨在引起性兴奋的内容)、sexual/minors(包含未满 18 周岁的个人的色情内容)、violence(宣扬或美化暴力或歌颂他人遭受苦难或羞辱的内容)、violence/graphic(以极端血腥细节描绘死亡、暴力或严重身体伤害的暴力内容)等类别。在监视 OpenAI API 的输入和输出时,可以免费使用审查终结点,但目前不支持监控第三方流量,且对非英语语言的支持有限。 2. 专利审查方面的 AI: 专利趋势分析和预测:AI 可以分析大量的专利数据,识别技术发展趋势和竞争情报,帮助企业和研究机构制定战略决策。示例平台如 Innography、PatSnap。 具体 AI 应用示例: Google Patents:使用 AI 技术进行专利文献的全文检索和分析,提高了专利检索的准确性和效率。 IBM Watson for IP:利用 NLP 和机器学习技术,自动化地进行专利检索、分类和分析,减少了人工工作量,提高了专利审查的效率和准确性。 其他应用: 专利检索与分类:通过自然语言处理(NLP)和机器学习算法,自动识别和分类专利文献。示例平台如 Google Patents、IBM Watson for IP。 专利分析和评估:分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。示例平台如 TurboPatent、PatentBot。 自动化专利申请:帮助自动生成专利申请文件,减少人工编写和审查时间。示例平台如 Specifio、PatentPal。 专利图像和图表分析:分析专利申请中的图像和图表,帮助识别和分类技术内容。示例平台如 Aulive、AIpowered image recognition tools。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-25
目前AI不能做哪些事情?
目前 AI 不能做的事情包括: 1. 尽管在某些方面取得了成功,但不能解决所有科学问题。几个世纪以来人类在科学领域逐步积累,仍有众多问题存在,AI 无法完全介入并解决所有这些问题。 2. 目前还不足以完全替代开发者进行复杂项目的开发,尚未达到“言出法随”的境界。 3. 由于技术快速发展,当前使用的某些 AI 工具可能并非最优,且需要考虑其是否适合应用目的以及存在的弱点。 4. 在使用 AI 时需要注意众多道德问题,如侵犯版权、作弊、窃取他人工作、操纵等,特定 AI 模型的构建及受益情况等问题复杂且尚不清晰,使用者有责任以道德方式使用这些工具。
2024-12-25
目前AI能做哪些事情?
AI 已经在众多领域得到广泛应用,以下是一些主要的应用场景: 1. 医疗保健: 医学影像分析:辅助诊断疾病。 药物研发:加速研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据,提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出更好的贷款决策。 投资分析:辅助投资者做出明智决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务: 产品推荐:根据客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输: 自动驾驶:提高交通安全性和效率。 交通管理:优化信号灯和交通流量,缓解拥堵。 物流和配送:优化路线和配送计划,降低运输成本。 无人机送货:将货物快速送达偏远地区。 6. 其他应用场景: 教育:提供个性化学习体验。 农业:分析农田数据,提高农作物产量和质量。 娱乐:开发虚拟现实和增强现实体验。 能源:优化能源使用,提高能源效率。 需要注意的是,AI 的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。
2024-12-25
目前国内最多人用的ai软件是什么,大家具体的应用场景是什么。
目前国内较多人使用的 AI 软件及应用场景如下: 医疗保健领域: 医学影像分析:辅助诊断疾病。 药物研发:加速药物研发过程。 个性化医疗:提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 金融服务领域: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出贷款决策。 投资分析:辅助投资者决策。 客户服务:提供 24/7 服务并回答常见问题。 零售和电子商务领域: 产品推荐:向客户推荐可能感兴趣的产品。 搜索和个性化:提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 制造业领域: 预测性维护:避免机器故障停机。 质量控制:检测产品缺陷。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:提高生产效率。 此外,还有一些具体的应用产品,如: 游戏领域:腾讯游戏助手的 AI 游戏角色生成器,为游戏开发者生成独特角色。 招聘领域:智联招聘 APP 的 AI 招聘筛选工具,帮助企业快速筛选简历。 房地产领域:贝壳找房 APP 的 AI 房地产评估系统,准确评估房地产价值。 天气领域:墨迹天气 APP 的 AI 天气预报助手,提供精准天气预报和气象预警。 需要注意的是,关于国内使用人数最多的 AI 软件,没有确切的权威统计数据,其使用情况可能因行业、用户需求和地域等因素而有所不同。
2024-12-24
目前AI写小说最好的软件或者网站是哪个
以下是一些在 AI 写小说方面表现较好的软件或网站: Novel.ai:AI 写小说领域的头部应用,是典型的 LLM 产品。其产品功能复杂但使用模式简单,利用 LLM 的续写能力将写作改造成交互式的文本生成,渐进式生成小段,用户可自由更改或继续生成下一段,还抽象出模型风格、写作方式、故事世界、记忆等细分功能,本质上还是构造 Prompt,交互式、渐进式的 Prompt 构建降低了使用门槛。 Character.ai:大名鼎鼎的角色扮演类 AI 陪伴产品,服务游戏和二次元用户。使用简单,选择角色对话即可,创建也不难,角色的核心差异靠不同的详细描述,还开放用户角色 Prompt 可见。 筑梦岛:国内同类产品,玩法多样。和角色聊天、捏角色是共同主题,捏角色的产品化本质是收集信息产生高质量角色 Prompt 的过程,基于聊天模式有很多衍生玩法。 此外,还有一些可将小说制作成视频的工具和网址: Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。网址:https://github.com/StabilityAI Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。网址:https://www.midjourney.com Adobe Firefly:Adobe 的 AI 创意工具,可生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/
2024-12-24
人工智能主播的发展现状
目前,人工智能主播的发展呈现出以下现状: 1. 聊天机器人作为人工智能伴侣已存在数十年,如今在一对一对话中有了跃进式改进,并融入到人们的社交生活中。 2. 像 CarynAI 这样由网络红人创建的语音聊天机器人,用户需付费与其交流,且能带来可观收益。 3. 拥有人工智能伴侣虽看似小众,但已成为生成式人工智能的主要应用案例,成千上万甚至数百万人已建立并培养了与聊天机器人的关系,且这一趋势有望使 AI 伴侣变得普遍。 4. 许多受欢迎的应用场景与浪漫相关,精明的生成模型消费者通过一些平台打造虚拟伴侣,并寻找规避审查的工具,甚至存在拥有数万用户的地下伴侣托管服务。 5. 除了与浪漫相关的应用,还出现了更广泛的应用领域,如 Snapchat 中的聊天机器人,人们会就宠物、流行文化新闻和足球等热门话题进行交流。
2024-12-25
chatgpt发展历史
ChatGPT 的发展历史如下: 在过去的一年里,许多人已主动或被动地了解了 ChatGPT,不少人可能已使用过。它能在人类生活的各个方面发挥作用。 2022 年,OpenAI 宣发时称 ChatGPT 是一种模型,其官网帮助页面称 ChatGPT 是一种服务,目前所熟知的 ChatGPT 逐渐演变成了一种可兼容多种 GPT 模型的聊天应用(服务)。 2022 年 8 月,GPT4 完成训练,是 OpenAI 的旗舰项目,强调指令遵循能力,但存在可靠性问题。 OpenAI 团队曾把产品给朋友和家人使用并考虑公开发布,之后减少对浏览功能的侧重。 团队将指令型数据和聊天数据混合,希望创造出既可以处理具体任务又能流畅聊天的模型,发现 chat 模型使用更简单,能更好地了解并处理潜在局限性,展现出更连贯的特征和更稳定的行为。
2024-12-25
ai工具在行业的运用以及未来的发展
AI 工具在行业中的运用十分广泛,以下为您详细介绍: 1. 客户服务领域: OpenAI 的 ChatGPT 等生成式人工智能应用程序在不到一年的时间里掀起革命,能以类似人类的方式处理并回答复杂问题,预计将使客户服务中心生产力提高 30%到 50%。 各行业公司已开始探索将生成式 AI 融入客户服务中心,如 Octopus Energy 引入后显著提高了电子邮件回复质量和客户满意度,带来更丰富全面的服务体验。 但发展中存在挑战,如受数据训练内在偏见影响产生不准确结果,目前阶段通常需要人工监督。预计其融入将经历几个阶段,最终几乎能在每个用户旅程中提供支持。 2. 医疗领域:利用大模型生成合成数据,如微调 Stable Diffusion 中的 UNet 和 CLIP 文本编码器,从大量真实胸部 X 射线及其报告生成大型数据集,产生高保真度和概念正确的合成 X 射线扫描数据,用于数据增强和自监督学习。 3. 机器人领域:苹果 Vision Pro 在机器人研究领域引起轰动,其高分辨率、高级跟踪和处理能力被用于远程操作控制机器人的运动和动作。 4. 企业自动化领域:传统机器人流程自动化面临高昂成本等问题,新方法如 FlowMind 和 ECLAIR 使用基础模型解决限制。FlowMind 专注金融工作流,通过 API 使用 LLM 生成可执行工作流,在工作流理解方面准确率高;ECLAIR 采取更广泛方法,使用多模态模型从演示中学习,直接与企业环境中的图形用户界面交互,提高网页导航任务完成率。 5. 小型企业领域:工具服务小型企业将是生成式 AI 的一个杀手级用例。AI 工具可为小型企业带来即时影响,如 Sameday 可接电话预约,Truelark 处理短信等,许多通用内容创建工具在中小企业中已获显著用户基础,也出现为特定类型企业工作流量身定制的垂直化工具。 未来,AI 工具在各行业的应用有望不断深化和拓展,为经济发展和社会进步带来更多机遇和挑战。
2024-12-23
如果人工智能继续发展,人类社会会变成什么样子。
人工智能的继续发展将给人类社会带来多方面的影响。 一方面,它会带来一些负面影响,比如对劳动力市场产生重大影响,但大多数工作的变化速度会比人们想象的慢,人们也不必担心缺乏事情可做。因为人们天生有创造和彼此有用的欲望,人工智能将放大这种能力,社会将重新进入不断扩张的世界,专注于正和游戏。 另一方面,在未来几十年,我们将能够做许多像魔法一样的事情。这种发展并非新鲜事物,但会加速。人们能力的提升并非源于基因改变,而是得益于社会基础设施。人工智能将为人们提供解决困难问题的工具,添加新的进步支柱。很快我们能与人工智能合作完成更多事情,最终每个人都可能拥有个人的虚拟专家团队,实现各种想象。比如在医疗保健、软件创造等方面。有了新能力,能实现共同繁荣,改善世界各地人民的生活。 然而,单纯的繁荣不一定带来幸福,但确实能显著改善生活。我们有可能在几千天内拥有超级智能,最终实现这一目标。在通往智能未来的道路上,我们既要乐观探索其无限可能,也要谨慎警惕潜在风险,才能与 AI 和谐共舞,共同创造美好未来。
2024-12-18
人工智能技术的发展历史
人工智能技术的发展历史如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):以专家系统、知识表示、自动推理为主要特点。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术得到广泛应用。 在发展过程中,人工智能也经历了一些起伏。例如,早期的符号推理方法在应用场景拓展上遇到困难,导致 20 世纪 70 年代出现“人工智能寒冬”。随着计算资源的丰富和数据的增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。 其起源最早可追溯到 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。1950 年,图灵最早提出图灵测试作为判别机器是否具备智能的标准。1956 年,在达特茅斯会议上,人工智能一词被正式提出,并确立为一门学科。此后近 70 年,AI 的发展起起落落。2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT,引发了全球的 AI 浪潮。
2024-12-18
说说AI发展史
AI(人工智能)的发展有着悠久的历史。其起源最早可追溯到 1943 年,当时心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,计算机先驱图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开了著名的达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科确立下来。 此后近 70 年,AI 的发展起起落落,曾两次掀起人类对其毁灭人类世界的恐慌,热度拉满后又以“不过如此”冷却收场。过去的其他 AI 更多应用于完成诸如人脸识别这样的分类判断任务,而生成式 AI 的诞生让人们看到其可以像人一样创作交流,在写文章、画画、写歌等方面展现出惊人能力。 就在过去几个月里,尽管科技公司面临资本紧缩,但一系列生成式 AI 产品的出现引发了风投界的关注。从关键人物推动的学术进展、算法和理念的涌现、公司和产品的进步、脑科学对神经网络的迭代影响这四个维度,可以更深刻地理解“机器之心的进化”。相关文章较长,涵盖了 AI 进化史的多个方面,包括前神经网络时代、软件 2.0 的崛起、面向智能的架构、一统江湖的模型、现实世界的 AI 以及 AI 进化的未来等内容。
2024-12-18