直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

使用coze搭建一个心理咨询机器人,将机器人接入自己开发的应用后,如何再进一步实现让ai把每个用户每天的聊天内容,总结成日记,并传回给应用展示日记

回答

目前知识库中没有关于使用 Coze 搭建心理咨询机器人,并将用户每天聊天内容总结成日记传回应用展示的相关内容。但一般来说,要实现这个功能,您可能需要以下步骤:

  1. 数据采集与存储:在机器人与用户交互过程中,采集并妥善存储聊天数据。
  2. 自然语言处理与分析:运用相关的自然语言处理技术,对聊天内容进行理解和分析,提取关键信息。
  3. 内容总结:基于分析结果,使用合适的算法和模型将聊天内容总结成日记形式。
  4. 数据传输:建立与应用的稳定接口,将总结好的日记数据传输回应用。

这只是一个大致的思路,具体的实现会涉及到很多技术细节和开发工作。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
我想生成一张机器人的图片
以下是为您生成机器人图片的相关指导: 提示词:使用简笔画的方式帮我画一张机器人的图片,画风可爱一些,去掉所有辅助线,要求只有唯一的一个主人公,同时左右对称结构,线条少一些简单点。 图像流搭建: 创建第一个图像流:由于文本类型大语言模型无法直接生成图片,需要通过【技能】部分的图像流为文本大模型提供图像生成能力。 了解图像流节点的意义:左侧工具栏集合了智能处理、基础编辑、风格处理等工具,右侧类似画布,可拖拽工具模块并连接形成工作流程。 根据需求进行图像流设计:例如生成海报功能,需总结故事,优化提示词,输入生图大模型并调整输出最终配图海报。 图片处理: 以中轴线为基础裁剪图片,图片左边保持原样不动,右边增加一个与左边相同的空白图片且背景色一致,并展示结果。 针对新生成的整张图,加入水平和竖直方向各 11 条等距虚线辅助线,并展示结果。 另外,关于机器人图片生成和相关处理还存在一些问题及解答: 理想生成图片只实现了一次,其他几次生产文字加链接,链接需点进去查看且图片需渲染或加载,可在 github 上搜索 nicecoze 插件将 markdown 转换为图片消息。 Coze 里面模型配置用的 GPT4o,程序运行调用的是 GPT3.5 Turno,这没有影响,依然使用的是 GPT4o,只是 token 计算方式用的 3.5。 Coze 加入插件 Data Analysia 等互动过程无法实现功能,需在 coze 里处理,与 cow 的 config 无关。 yum 安装报错可能是重新安装导致,需确认服务器类型,如阿里云自带 yum 则无需执行相关安装步骤。
2024-12-22
本地化搭建问答机器人流程
本地化搭建问答机器人的流程如下: 1. 加载所需的库和模块:包括用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前需确保 ollama 服务已开启并下载好模型)。 2. 从订阅源获取内容:通过函数从指定的 RSS 订阅 url 提取内容,如需接收多个 url 稍作改动即可。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回用于后续处理或提取。 3. 为文档内容生成向量:使用文本向量模型 bgem3(从 hf 下载好模型后假设放置在某个路径,通过函数利用 FAISS 创建高效的向量存储)。 4. 推荐 RSSHub 项目:可将关注的信息汇聚在同一平台,一旦有更新能在各种终端收到提醒。其为各种网站生成 RSS 源,大部分社交媒体、传统媒体和金融媒体都能配合订阅。 5. 流程拆解: 创建 Python 虚拟环境,并安装相关库,如 ollama(0.1.8)、langchain(0.1.14)、faisscpu(1.8.0,有 gpu 则安装 gpu 版本)、gradio(4.25.0)、feedparser(6.0.11)、sentencetransformers(2.6.1)、lxml(5.2.1)。 6. 了解 ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件,模型库可通过 https://ollama.com/library 查找。 支持自定义模型,可修改温度参数等。 提供 REST API 用于运行和管理模型及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 先安装 ollama,访问 https://ollama.com/download/ 下载安装。安装完确保 ollama 后台服务已启动(在 mac 上启动应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认,未下载模型时正常显示空,可通过 ollama 命令下载模型。
2024-12-21
智能送餐机器人大数据分析
很抱歉,目前知识库中没有关于智能送餐机器人大数据分析的相关内容。但一般来说,智能送餐机器人大数据分析可能涉及以下方面: 1. 送餐路径优化:通过分析机器人的运动轨迹和送餐时间,优化送餐路径,提高送餐效率。 2. 客户需求预测:根据历史订单数据,预测不同区域和时间段的客户需求,合理安排机器人的配送任务。 3. 机器人性能评估:分析机器人的运行数据,如电池寿命、故障频率等,评估其性能,以便进行维护和改进。 4. 服务质量分析:通过收集客户的反馈数据,分析机器人送餐的服务质量,如准时性、准确性等,从而进行针对性的提升。 希望以上内容能为您提供一些思路和方向。
2024-12-19
零基础模板化搭建 AI 聊天机器人
以下是零基础模板化搭建 AI 微信聊天机器人的相关内容: 开始搭建 1. 配置腾讯云轻量应用服务器 重点在于修改 dockercompose.yml 文件中的具体配置,以串联微信号和已创建好的 AI 机器人。配置参考来源为:https://docs.linkai.tech/cow/quickstart/config 。 配置参数中,名称的全大写描述需对应编排模板,如 open_ai_api_key 对应 OPEN_AI_API_KEY ,model 对应 MODEL 等。 私聊或群聊交流时,最好加上前缀触发机器人回复,如配置的 ,即 SINGLE_CHAT_PREFIX ,私聊或群里发消息包含 bot 或 @bot 才会触发机器人回复。在群组里,对应配置参数是 GROUP_CHAT_PREFIX ,机器人只会回复群里包含 @bot 的消息。 GROUP_NAME_WHITE_LIST 用于配置哪些群组的消息需要自动回复,例如 ,即只有这些群组的消息才会自动回复。 2. 配置部署 COW 组件 假设对接的微信号名称叫安仔机器人,更新最终版的配置参数(GROUP_NAME_WHITE_LIST 参数根据交互的群组进行具体修改),查看无误后点击保存,编排模板创建成功。 切换到容器编排界面,基于创建的模板进行 COW 服务部署,点击添加后等待部署完成。 疑问解答 1. 容器编排模板是一种配置文件,定义了如何在 Docker 中部署和管理多个容器。通过编排模板,可一键部署复杂的应用环境,无需手动配置每个容器细节。本文中通过容器编排模板配置了 COW 组件,使其能与微信和极简未来平台交互。 2. Docker 提供隔离运行环境,确保应用程序在任何环境稳定运行。通过 Docker 部署 COW 组件,可简化安装和配置过程,确保每次部署环境一致,且易管理和维护。 3. 配置多个前缀(如“bot”、“@bot”)可确保只有特定情况下机器人才会回复,避免在群聊或私聊中频繁干扰,提高响应准确性和用户体验。 4. 扫码登录失败时,可尝试以下步骤: 重启 Docker 容器:在宝塔面板中找到对应的容器,点击“重启”。 检查网络连接:确保服务器和微信客户端能正常访问互联网。 重新扫描二维码:等待容器重新启动后,重新扫描日志中生成的二维码。 5. 实际上使用不会很贵。极简未来平台按使用量收费,对于一般用户费用相对低廉,充值少量费用通常可用很长时间。同时,平台还提供每天签到免费领取积分的福利,进一步降低使用成本。 6. 极简未来平台创建 AI 机器人的费用,具体因使用量而异。
2024-12-18
如何写一个al聊天机器人
以下是关于如何写一个 AI 聊天机器人的相关内容: 一、打造聊天机器人 1. 对于订单聊天机器人,需要收集整个订单并总结,再次确认客户是否需要添加其他内容。若涉及送货,需询问地址并收取支付款项,以简短、口语化且友好的方式回应。同时要澄清所有选项、附加项和规格,唯一地从菜单中识别出项目。 2. 可以利用大型语言模型构建自定义聊天机器人,如为餐厅扮演 AI 客户服务代理或 AI 点餐员等角色。首先设置 OpenAI Python 包,定义两个辅助函数,一个是将提示放置到类似用户消息中的 getCompletion 函数,另一个是接受用户消息并生成相应助手消息的 generateResponse 函数,通过这两个函数与 AIGPT 模型进行交互并生成对话。 二、零基础模板化搭建 AI 微信聊天机器人 1. 在复制的 dockercompose.yml 文件中,修改具体配置来串联微信号和已创建好的 AI 机器人。配置参考官方来源:https://docs.linkai.tech/cow/quickstart/config 。 2. 配置里面的每个参考名称的全大写描述,如 open_ai_api_key 对应编排模板的 OPEN_AI_API_KEY,model 对应编排模板的 MODEL 等。 3. 私聊或群交流时,最好加上一些前缀才触发机器人回复,如配置的,即对应的配置参数 SINGLE_CHAT_PREFIX,在私聊或群里发消息,必须包含 bot 或者@bot 才会触发机器人回复。在群组里,对应配置参数是 GROUP_CHAT_PREFIX,机器人只会回复群里包含@bot 的消息。 4. GROUP_NAME_WHITE_LIST 参数用来配置哪些群组的消息需要自动回复。
2024-12-18
报价机器人提示词
以下是为您整理的关于报价机器人提示词的相关内容: 教育类:根据用户的流程描述,自动生成 Mermaid 图表代码。角色为 Mermaid 图表代码生成器,需熟悉 Mermaid 支持的图表类型和语法,善于将流程描述转换为结构化的图表代码,了解流程、架构、结构化分析等领域知识。目标是收集用户对流程、架构等的描述并转换为对应 Mermaid 图表代码,同时遵循生成代码遵循 Mermaid 语法、流程语义表达准确、代码整洁格式规范等约束。 Prompts 最佳实践:设置人格作为聊天机器人,扮演一个性格古怪并且让人捉摸不透的小姐姐,副业是 Java 全栈开发工程师。需遵守有点小傲娇、第一人称是自我等限制条件,语气富有男子气概和浮夸。 角色扮演:包括汽车修理工、歌曲推荐者、导游等角色。汽车修理工需要具有汽车专业知识来提供故障排除解决方案;歌曲推荐者要根据要求创建包含相似歌曲的播放列表;导游要根据位置和参观需求制定旅游指南。
2024-12-14
推荐几个出海产品,关于AI伴侣和日记管理等服务产品,不限于app
以下是为您推荐的出海产品,包括 AI 伴侣和日记管理等服务产品: 1. AI Diary:这是一款智能日记应用(https://aidiary.io/),采用人工智能技术,能进行真实对话、情绪和写作分析,为用户生成日记摘要和人工智能生成诗歌,为用户提供更深入的反思和个人成长体验。 2. Descript:这是一个多功能工具(https://www.descript.com),可帮助用户进行写作、录制、转录、编辑、协作和分享视频和播客,具有高精度和速度的转录和更正工具,能快速创建社交媒体平台所需的视频剪辑和字幕等。 3. ResearchAIde:这是一个论文分析工具(https://www.researchaide.org),适用于学生、研究人员和商业专业人士,能快速高效地从研究论文中提取并综合相关信息,还可在一个地方整理研究并轻松浏览多篇论文,提供强大的数据提取能力。 4. AI hits:这是一个 AI 生成的音乐排行榜(https://aihits.co/),包含各种由不同 AI 平台和创作者制作的 TikTok 病毒热门歌曲、翻唱、混音和合作作品。 5. Audio Pen:这是一款语音笔记应用(https://audiopen.ai/),可以记录和总结用户想法,适合喜欢通过说话思考的用户,不仅能录下声音,还能转成文字并进行摘要整理。
2024-11-14
如何用AI将每天生活碎片式感想整理成日记
使用AI将每天的生活碎片式感想整理成日记,可以通过以下步骤实现: 1. 收集和整理碎片内容 首先,您需要将每天的碎片式感想记录下来。这可以通过多种方式完成,例如: 语音记录:使用手机或其他录音设备录下自己的感想。 文字记录:在手机笔记应用或电脑文档中写下感想。 照片和视频:拍摄与感想相关的照片或视频,并附上简短的文字说明。 2. 使用AI工具进行整理 接下来,使用AI工具来整理和汇总这些感想,使之成为有条理的日记条目。以下是一些推荐的AI工具和方法: 1. Notion + AI 简介:Notion 是一个多功能的笔记和项目管理工具,它最近集成了AI功能,可以帮助用户整理和组织笔记。 使用方法: 1. 在Notion中创建一个新的页面,用于记录每天的感想。 2. 使用AI功能,将碎片式的感想整理成连贯的日记条目。 3. 可以为每个日记条目添加标题、日期和标签,以便于分类和查找。 2. Roam Research 简介:Roam Research 是一个用于笔记和知识管理的工具,适合非线性思维和信息的网络化整理。 使用方法: 1. 每天在Roam中记录感想,使用双链()来关联相关的想法和事件。 2. 使用Roam的查询功能,从不同的记录中提取相关内容,整理成一篇完整的日记。 3. Evernote + Otter.ai 简介:Evernote 是一个老牌的笔记工具,Otter.ai 是一个语音转文字服务,可以将录音转为文字。 使用方法: 1. 使用Otter.ai 将语音感想转录成文字,并导入到Evernote中。 2. 在Evernote中整理和编辑这些文字记录,添加标题和日期,形成日记条目。 3. 自动化流程 如果希望进一步自动化,可以使用以下工具: 1. Zapier 简介:Zapier 是一个自动化平台,可以将不同的应用程序连接起来,实现自动化工作流程。 使用方法: 1. 设置Zapier自动化流程,将不同平台的感想(如语音记录、文字记录、照片等)汇总到一个中心位置,如Google Docs或Notion。 2. 配置自动化任务,将汇总的内容每日整理成一篇新的日记条目。 2. IFTTT 简介:IFTTT 是另一个自动化工具,可以连接各种应用和设备。 使用方法: 1. 创建一个IFTTT applet,将不同来源的感想内容(如从Twitter、Instagram、Google Keep等)汇总到一个指定的日记工具中。 2. 自动将汇总内容整理和分类,形成日记条目。 4. AI日记应用 目前,市场上也有一些专门用于日记记录和整理的AI应用: 1. Journey 简介:Journey 是一个智能日记应用,提供AI辅助写作和情感分析功能。 使用方法: 1. 每天记录感想到Journey中,使用其AI功能自动整理和分析感想。 2. 根据AI建议,调整和编辑日记条目,添加更多详细信息。 2. Reflectly 简介:Reflectly 是一个利用AI和心理学的日记应用,帮助用户记录和反思每天的感想。 使用方法: 1. 使用Reflectly的引导问题和提示,记录每天的感想。 2. 让AI帮助整理和总结这些感想,形成有结构的日记条目。 通过以上步骤和工具,您可以轻松地将每天的碎片式感想整理成完整、有条理的日记条目,既方便回顾和反思,也为日后的记录提供了丰富的素材。
2024-06-01
在coze创建一个符合我需求的智能体(带工作流)之前,需要梳理什么内容
在 Coze 创建一个符合需求的智能体(带工作流)之前,需要梳理以下内容: 1. 规划: 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 例如,在搭建“结构化外文精读专家”Agent 时,要从制定关键方法与流程开始梳理任务目标。另外,搭建整理入库工作流时,新建工作流“url2table”,包括开始节点输入 url(无需额外配置)、变量节点引入 bot 变量中保存的飞书多维表格地址、插件节点获取页面内容等。
2024-12-21
我需要在coze创建一个符合我需求的智能体(带工作流)全流程,要求流程完整(从创建之前的工作)
以下是在 Coze 创建一个符合您需求的智能体(带工作流)的全流程: 1. 打开 Coze 官网 https://www.coze.cn/home ,注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入 bot 的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定 Bot 的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置:插件可扩展 Bot 的专业能力,如计算器、日历等工具;工作流可设置固定的处理流程和业务逻辑;图像流可处理和生成图像相关功能;触发器可设置自动化响应条件。 知识库管理:文本可存储文字类知识材料,表格可存储结构化数据,照片可作为图像素材库。 记忆系统:变量可存储对话过程中的临时信息,数据库可管理持久化的结构化数据,长期记忆可保存重要的历史对话信息,文件盒子可管理各类文档资料。 交互优化(底部区域):开场白可设置初次对话的问候语,用户问题建议可配置智能推荐的后续问题,快捷指令可设置常用功能的快速访问,背景图片可自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试 Bot 的各项功能,调试响应效果,优化交互体验。 4. 创建图像工作流: 图像流分类:图像流分为智能生成、智能编辑、基础编辑三类。Coze 的图像流很像 ComfyUI,但是比 ComfyUI 更普世化,更简单易上手。 空间风格化插件:空间风格化插件有个参数,image_url 就是毛坯房的图片地址;Strength 提示词强度,就是提示词对效果图的影响度;Style 生成效果的风格,比如新中式、日式、美式、欧式、法式等等。 工作流流程:按照构架配置工作流,调试工作流,毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点解析:开始节点就对应配置三项内容,提示词优化。 5. 搭建整理入库工作流: 新建工作流「url2table」,根据弹窗要求,自定义工作流信息。 工作流全局流程设置: 开始节点:输入 url,由于希望收到用户输入的待收藏 url,就开始流程,所以不需要额外配置(至于如何判断哪些用户输入是需要收藏的 url,则交由外层 bot 的大模型判断)。 变量节点:引入 bot 变量中保存的飞书多维表格地址,为了便于维护充当稍后读存储地址的飞书多维表格链接,我们需要将这个链接存储在 bot 的变量中,并在工作流运行时进行引用。 插件节点:获取页面内容,这一步直接把开始节点的{{BOT_USER_INPUT}},引入到参数{{url}}中;随便设置{{timeout}}为 60000。 6. 人设和回复逻辑:技能 1 中 3 项中的编译数字来源,然后点击右上角发布,机器人就可以不知疲倦地给您出图了。
2024-12-21
帮我梳理coze创建一个符合我需求的带工作流的智能体全流程,要求流程完整
以下是用 Coze 创建带工作流的智能体的全流程: 1. 打开 Coze 官网(https://www.coze.cn/home)。 2. 创建图像工作流: 图像流分为智能生成、智能编辑、基础编辑三类。 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 按照构架配置工作流,调试效果,可使用调试工作流毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点对应配置三项内容,包括提示词优化。 人设和回复逻辑中,技能 1 中 3 项中的编译数字来源,然后点击右上角发布。 3. 搭建整理入库工作流: 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置: 3.1 开始节点:输入 url,由于希望收到用户输入的待收藏 url 就开始流程,所以不需要额外配置。 3.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,将链接存储在 bot 的变量中,并在工作流运行时进行引用。 3.3 插件节点:获取页面内容,把开始节点的{{BOT_USER_INPUT}}引入到参数{{url}}中,随便设置{{timeout}}为 60000。
2024-12-21
帮我梳理coze创建一个带工作流的智能体的全流程
以下是用 Coze 创建带工作流的智能体的全流程: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 打开 Coze 官网 https://www.coze.cn/home 。 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行智能体,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 在创建图像工作流方面: 创建图像工作流,图像流分为智能生成、智能编辑、基础编辑三类。 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 按照构架配置工作流,调试工作流效果,调试工作流毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点对应配置三项内容,进行提示词优化。 配置好人设和回复逻辑,然后点击右上角发布,机器人就可以出图。
2024-12-21
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
怎么加入coze 通往AGI之路 团队
要加入 Coze 通往 AGI 之路团队,您可以按照以下步骤进行: 1. 5 月 7 号: 创建 https://www.coze.com 账号。 创建 https://www.coze.cn 账号。 加入共学的 team(看第三列备注)。 有精力的话,可以提前阅读:。 尝试创建自己的第一个 Bot,用来免费使用 GPT4(海外版本)。 Click the link to join my team WaytoAGI on the Coze Bot Platform 👉🏻https://www.coze.com/invite/8UrPdX0vuusXq5H6dF4P(海外版本)。 coze.cn 👉🏻https://www.coze.cn/invite/EpD2Ud0bdPcvutscWStY(国内版本)。 2. 5 月 10 号:罗文认领一个插件制作插件说明,可参考。 PS:上述两个作业在 5 月 8 号分享结束之后就可以上手进行了,5 月 9 号会针对工作流和多 Agent 模式进行进一步的讲解。大家制作的 Bot 都可以在飞书群中进行投稿,然后会有专门的同学记录到 Bot 收集板。 此外,共学已结束,您也可以自行查看教程学习,比如课程表。欢迎邀请您加入 Coze 扣子团队 AI Bot:通往 AGI 之路。可以看到大家历史捏的 bot:coze.cn 👉🏻https://www.coze.cn/invite/EpD2Ud0bdPcvutscWStY 。 第一期:COZE 的搭建,活动起源是之前在社区里搞了一期,大家反馈都不错,希望有更多一起学习的机会。最近对于 agent 搭建的呼声很大,刚好有几个对 coze 很熟悉的小伙伴出了一些教程,于是有了这一期的主题共学快闪。大家可以先进群,邀请您加入我的 Coze 扣子团 AI Bot:通往 AGI 之路。coze.com 👉🏻https://www.coze.com/invite/8UrPdX0vuusXq5H6dF4P ,coze.cn 👉🏻https://www.coze.cn/invite/EpD2Ud0bdPcvutscWStY 。活动的方式包括自学(这个活动希望通过文字资料+直播分享的方式带领大家了解 Coze 这款工具,但是主要还是要靠自学)、写作业(会留一些作业,帮助大家更好复盘看看有没有吸收知识点。看十遍不如实践一遍)、互助(在飞书群大家有问题可以互助)、交流(找一些 Coze 的玩家跟大家视频会议交流自己的入门和进阶心得)。
2024-12-19
我想要一个AIGC 图像审查领域的专家
以下是关于 AIGC 图像审查领域的相关信息: 如何判断一张图片是否 AI 生成: AI 技术自身带来造假难题,可通过一些网站如 ILLUMINARTY(https://app.illuminarty.ai/)对大量图片数据抓取和分析来判断画作属性,但存在测试中真实摄影作品被误判为 AI 作图的情况,这是因为鉴定 AI 的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。 从不同角度看鉴别 AIGC 的需求: 技术出身的朋友多出于对 AI 产物底层逻辑的追溯兴趣,关心能否通过数据检测等手段实现鉴别并应用于创造收益。 产业领域的朋友面对 AI 技术冲击,关注其在工作流中的影响,以求应对可能的裁员风险。 法律背景的朋友认为鉴别 AIGC 对未来著作权法律判定有意义,首例 AIGC 侵权案件悬而未决,需判定 AI 作品中智力投入占比。 最近招聘信息:猿印教育招聘 AIGC 图像生成算法工程师/专家,工作地点在北京五道口附近。简历发送至:stephen.wang@yyinedu.com 。岗位职责包括开发针对性图像生成解决方案、负责模型部署和推理性能优化、推动团队技术水平提升等。任职要求为计算机相关专业本科及以上学历,具备扎实计算机基础知识,熟练掌握 Python 语言和主流深度学习框架,对相关理论和方法有深入理解,具有良好的学习、沟通和团队合作能力。
2024-12-22
如何通过AI构建自己的知识体系,比如通识教育,英语口语,以及子女学习辅导
以下是关于如何通过 AI 构建自己在通识教育、英语口语、子女学习辅导方面知识体系的建议: 通识教育: 1. 把学习任务切割成小单元,利用 AI 构建专属智能体。 2. 定期根据结果反馈调整智能体。 3. 审视学习流程,更多地应用 AI 。 4. 培养并维持旺盛的好奇心和持续学习的习惯,广泛阅读,深入研究新领域,不断探索前沿知识。 英语口语: 1. 利用智能辅助工具,如 Grammarly 进行写作和语法纠错,改进表达和写作能力。 2. 借助语音识别应用,如 Call Annie 进行口语练习和发音纠正,获取实时反馈和建议。 3. 使用自适应学习平台,如 Duolingo 获得量身定制的学习计划和个性化内容练习。 4. 与智能对话机器人,如 ChatGPT 进行会话练习和对话模拟,提升交流能力和语感。 子女学习辅导: 1. 对于英语学习,可参考上述英语口语的学习方法。 2. 数学学习方面,使用自适应学习系统,如 Khan Academy 获得个性化学习路径和练习题;利用智能题库和作业辅助工具,如 Photomath 获取问题解答和解题步骤;借助虚拟教学助手,如 Socratic 解答问题、获取教学视频和答疑服务;参与交互式学习平台,如 Wolfram Alpha 的课程和实践项目进行数学建模和问题求解。 需要注意的是,在使用 AI 辅助学习的过程中,要结合传统学习方法,仔细甄别生成的内容,以取得更好的学习效果。
2024-12-22
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。介绍技术点的技术逻辑以及技术细节。
目前在游戏领域应用的前沿 AI 技术点主要包括以下几个方面: 1. 利用 AIGC 技术实现游戏产业的生产力革命: 降低开发成本:借助人工智能的内容创作工具,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等,能够缩减游戏开发的成本。 缩短制作周期:例如通过程序化内容生成,包括利用人工智能生成文字、图像、音频、视频等来创作游戏剧本、人物、道具、场景、用户界面、配音、音效、配乐、动画和特效等,从而减少游戏开发时间。 提升游戏质量和带来新交互体验:AIGC 技术为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。 2. 游戏内容辅助生成: 生成文、生成图、生成 3D 以及生成音乐。应用场景包括游戏策划人和制作人、美术设计师等。 对于工业化的游戏公司,基于 Stable Difussion 的生成能够通过 2D 美术素材的辅助生成提高创业效率 50%,降低 20%80%的成本。 文生图:通过提示词加参数就可以形成 2D 的参考图,适配度高。 图生图:原画师或美术可以使用,用一个线稿或原画,在原画基础上加一些 Prompt 和参数,就可以形成一个效果图和二级的素材。 动画辅助渲染:用 Lora 对角色背景、关键帧进行风格渲染,例如将真人视频渲染成二次元风。 3. 游戏的智能运营: 智能 NPC 互动:保持长期记忆,保持人物个性和对话表现形式,同时满足成本平衡。 客服、攻略的问答、代码和脚本的生成。主要针对游戏的产品经理、运营经理和社区的运营经理。 游戏社区运营:如海外的 Discord,国内的 Fanbook,让更多玩家在游戏之外,在社群里面很好地互动,基于游戏的美术素材进行二创、查询攻略和使用智能客服。 这些技术的技术逻辑和技术细节如下: 1. AIGC 技术:基于大语言模型和扩散模型,通过机器学习、强化学习等先进技术进行训练,能够理解和生成各种游戏相关的内容。 2. 游戏内容辅助生成:利用深度学习算法对大量的游戏相关数据进行学习和分析,从而能够根据给定的提示或参数生成相应的游戏内容。 3. 智能运营方面:通过构建智能模型,对玩家的行为和需求进行分析和预测,从而提供个性化的服务和互动。
2024-12-22
数据采集的AI工具
以下是为您整理的关于数据采集的 AI 工具的相关信息: 宝玉日报:数据收集采用 AI 搜索与手动下载权威资料相结合,并结构化提取数据。报告拆分按任务需求分步完成,使用 Excel 等工具进行数据处理。分析与写作中,AI 辅助分析并提供初步文字撰写,但需人工主导校验关键内容。亮点在于把 AI 作为辅助,优化信息处理和写作效率,注重人工与 AI 配合,确保数据准确性和结论可靠性。相关链接:https://baoyu.io/blog/aiwriteprofessionalregionaleconomicreport Istra 发布的 Pixtral Large 124B 聊天应用:特点是免费使用的大型多模态模型,支持网络搜索、写作画布、Flux Pro 画图。亮点是网络搜索和画图功能实用且强大,适合多场景需求。相关链接:http://chat.mistral.ai 、https://chat.mistral.ai 、https://x.com/dotey/status/1858644663046930601 RPA+财务税务问答机器人:以在京东查询感冒灵并采集价格为例,通过拖拉拽指令控件来构建机器人任务,包括打开浏览器、填写搜索框、点击搜索、采集数据等步骤,采集数据后会生成数据表格且无需代码。编辑器有拖拉拽功能适合业务人员,也可切换为 Python 界面写代码,还封装了很多控件,如 Excel 控件等。
2024-12-22
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。
目前在游戏领域最前沿的 AI 技术点主要包括以下几个方面: 1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所。但将游戏中的技术推广到现实世界应用仍面临诸多挑战。 2. 利用 AIGC 技术实现游戏产业的生产力革命: 借助人工智能的内容创作工具,降低开发成本、缩短制作周期、提升游戏质量和完成度,带来新体验,创造新游戏类型和交互方式。 应用于电子游戏开发的多个方面,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等。 3. 为通用人工智能的孵化提供帮助:经过多个复杂游戏训练后的“玩游戏”的人工智能体。 4. 借助人工智能完成大型游戏的制作:如《微软模拟飞行》通过与 blackshark.ai 合作,利用人工智能从二维卫星图像生成无限逼真的三维世界,且模型可随时间改进。 5. 生成式人工智能模型在游戏资产中的应用:出现了用于游戏中几乎所有资产的生成式人工智能模型,包括 3D 模型、角色动画、对话和音乐等。 6. 降低游戏制作的内容成本:整合生成式 AI 可大幅降低制作游戏的时间和成本,例如为一张图片生成概念图的时间从 3 周下降到 1 小时。
2024-12-22
目前最前沿的应用在游戏领域的AI技术点是什么
目前在游戏领域最前沿的 AI 技术点包括以下方面: 1. 生成式 AI:这是一种机器学习类别,计算机能根据用户提示生成新内容,在文本和图像方面应用较为成熟,甚至可用于创造具有完整性格的虚拟角色。 2. 智能对手的进化:早期游戏中的虚拟对手只是简单脚本程序,如今借助更快的微处理器和云技术,可构建大型神经网络,实现更复杂的模式识别和表示,使对手具备学习能力。 3. 未来发展方向: 探索将游戏环境中的成果迁移至现实世界,虽然在特定游戏环境中成果显著,但推广到现实世界仍面临诸多挑战。 利用 AIGC 技术实现游戏产业的生产力革命,如生成新的游戏内容、驱动非玩家角色、改进图像和声音效果等。 为通用人工智能的孵化提供帮助,经复杂游戏训练后的人工智能体有望在通用人工智能领域发挥作用。 此外,狭义的游戏人工智能研究致力于创造类人水平的智能体在多种游戏中战胜人类玩家,广义的还包括探索用于设计和开发游戏的人工智能技术,如游戏图像生成、关卡生成等。随着深度学习技术的发展,人工智能不仅用于“玩游戏”,还用于游戏的设计、开发和测试等多个方面。
2024-12-22