Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

目前AI能做哪些事情?

Answer

AI 已经在众多领域得到广泛应用,以下是一些主要的应用场景:

  1. 医疗保健:
    • 医学影像分析:辅助诊断疾病。
    • 药物研发:加速研发过程,识别潜在药物候选物和设计新治疗方法。
    • 个性化医疗:分析患者数据,提供个性化治疗方案。
    • 机器人辅助手术:提高手术精度和安全性。
  2. 金融服务:
    • 风控和反欺诈:降低金融机构风险。
    • 信用评估:帮助做出更好的贷款决策。
    • 投资分析:辅助投资者做出明智决策。
    • 客户服务:提供 24/7 服务,回答常见问题。
  3. 零售和电子商务:
    • 产品推荐:根据客户数据推荐可能感兴趣的产品。
    • 搜索和个性化:改善搜索结果,提供个性化购物体验。
    • 动态定价:根据市场需求调整产品价格。
    • 聊天机器人:回答客户问题并解决问题。
  4. 制造业:
    • 预测性维护:预测机器故障,避免停机。
    • 质量控制:检测产品缺陷,提高产品质量。
    • 供应链管理:优化供应链,提高效率和降低成本。
    • 机器人自动化:控制工业机器人,提高生产效率。
  5. 交通运输:
    • 自动驾驶:提高交通安全性和效率。
    • 交通管理:优化信号灯和交通流量,缓解拥堵。
    • 物流和配送:优化路线和配送计划,降低运输成本。
    • 无人机送货:将货物快速送达偏远地区。
  6. 其他应用场景:
    • 教育:提供个性化学习体验。
    • 农业:分析农田数据,提高农作物产量和质量。
    • 娱乐:开发虚拟现实和增强现实体验。
    • 能源:优化能源使用,提高能源效率。

需要注意的是,AI 的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

问:请问 AI 有哪些应用场景?

自动驾驶:AI可以用于开发自动驾驶汽车,提高交通安全性和效率。交通管理:AI可以用于优化交通信号灯和交通流量,缓解交通拥堵。物流和配送:AI可以用于优化物流路线和配送计划,降低运输成本。无人机送货:AI可以用于无人机送货,将货物快速送达偏远地区。6.其他应用场景:教育:AI可以用于个性化学习,为每个学生提供定制化的学习体验。农业:AI可以用于分析农田数据,提高农作物的产量和质量。娱乐:AI可以用于开发虚拟现实和增强现实体验。能源:AI可以用于优化能源的使用,提高能源效率。人工智能的应用场景还在不断扩展,未来人工智能将对我们的生活产生更加深远的影响。内容由AI大模型生成,请仔细甄别

沃尔夫勒姆:人工智能能解决科学问题吗?

Won’t AI Eventually Be Able to Do Everything?Particularly given its recent surprise successes,there’s a somewhat widespread belief that eventually AI will be able to“do everything”,or at least everything we currently do.So what about science?Over the centuries we humans have made incremental progress,gradually building up what’s now essentially the single largest intellectual edifice of our civilization.But despite all our efforts,there are still all sorts of scientific questions that remain.So can AI now come in and just solve all of them?特别是考虑到它最近取得的令人惊讶的成功,人们普遍相信人工智能最终将能够“做一切”,或者至少是我们目前所做的一切。那么科学又如何呢?几个世纪以来,我们人类取得了渐进的进步,逐渐建造了现在基本上是我们文明中最大的智力大厦。但尽管我们付出了一切努力,仍然存在各各样的科学问题。那么人工智能现在可以介入并解决所有这些问题吗?To this ultimate question we’re going to see that the answer is inevitably and firmly no.But that certainly doesn’t mean AI can’t importantly help the progress of science.At a very practical level,for example,LLMs provide a new kind of linguistic interface to the computational capabilities that we’ve spent so long building in the Wolfram Language.And through their knowledge of“conventional scientific wisdom”LLMs can often provide what amounts to very high-level“autocomplete”for filling in“conventional answers”or“conventional next steps”in scientific work.对于这个终极问题,我们将看到答案不可避免且坚决是否定的。但这当然并不意味着人工智能不能重要地帮助科学进步。例如,在非常实用的层面上,LLMs为我们花了很长时间在Wolfram语言中构建的计算功能提供了一种新的语言接口。通过他们的“传统科学智慧”知识LLMs通常可以提供相当于非常高水平的“自动完成”,用于填写科学工作中的“传统答案”或“传统的后续步骤”。

Others are asking
两张照片还原人脸,用什么AI工具
以下是一些可用于两张照片还原人脸的 AI 工具和方法: 1. Stable Diffusion: 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够时放大图片。 利用 GFPGAN 算法将人脸变清晰,可参考文章。 将图片发送到图生图中,打开 stableSR 脚本放大两倍,切换到 sd2.1 模型进行修复,vae 选择 vqgan,提示词可不写。 2. Midjourney(MJ):加上简单的相机参数、写实风格,使用 MJ v 6.0 绘图,可调整图片比例。 3. InsightFaceSwap: 输入“/saveid”,idname 可随意填写,上传原图。 换脸操作输入“/swapid”,id 填写之前设置的名称,上传分割好的图。 选择效果较好的图片,注意插件每日免费使用次数。 此外,还会用到 PS 进行图片的角度调整、裁切、裁剪、拼接等操作。
2025-02-21
AI编程的落地场景是什么
以下是 AI 编程的一些落地场景: 1. 智能体开发:从最初只有对话框的 chatbot 到具有更多交互方式的应用,低代码或零代码的工作流在某些场景表现较好。 2. 证件照应用:以前实现成本高,现在可通过相关智能体和交互满足客户端需求。 3. 辅助编程: 适合原型开发、架构稳定且模块独立的项目。 对于像翻译、数据提取等简单任务,可通过 AI 工具如 ChatGPT 或 Claude 解决,无需软件开发。 支持上传图片、文档,执行代码,甚至生成视频或报表,大幅扩展应用场景。 4. 自动化测试:在模块稳定后引入,模块变化频繁时需谨慎。 5. 快速迭代与发布 MVP:尽早发布产品,不追求完美,以天或周为单位快速迭代。 需要注意的是,AI 编程虽强,但目前适用于小场景和产品的第一个版本,在复杂应用中可能导致需求理解错误从而使产品出错。在进度不紧张时可先尝试新工具,成熟后再大规模应用。同时,压缩范围,定义清晰的 MVP(最小可行产品),先完成一个 1 个月内可交付的版本,再用 1 个月进行优化迭代。
2025-02-21
不同ai模型的应用场景
以下是不同 AI 模型的应用场景: 基于开源模型: Civitai、海艺 AI、liblib 等为主流创作社区,提供平台让用户利用 AI 技术进行图像创作和分享,用户无需深入了解技术细节即可创作出较高质量的作品。 基于闭源模型: OpenAI 的 DALLE 系列: 发展历史:2021 年初发布 DALLE,2022 年推出 DALLE 2,2023 年发布 DALLE 3,不断提升图像质量、分辨率、准确性和创造性。 模型特点:基于变换器架构,采用稀疏注意力机制,DALLE 2 引入 CLIP 模型提高文本理解能力,DALLE 3 优化细节处理和创意表现。 落地场景:2C 方面可控性强于 Midjourney,但复杂场景和细节处理能力不如 Midjourney;2B 方面与 Midjourney 场景类似。 商业化现状:通过提供 API 服务,使企业和开发者能集成到应用和服务中,采取分层访问和定价策略。 伦理和合规性:加强对生成内容的审查,确保符合伦理和法律标准。 大模型: 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 编程和代码辅助:用于代码自动补全、bug 修复和代码解释。 翻译和跨语言通信:促进不同语言背景用户之间的沟通和信息共享。 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 教育和学习辅助:创建个性化学习材料、自动回答学生问题和提供语言学习支持。 图像和视频生成:如 DALLE 等模型可根据文本描述生成相应图像,未来可能扩展到视频内容生成。 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家沉浸式体验。 医疗和健康咨询:理解和回答医疗相关问题,提供初步健康建议和医疗信息查询服务。 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务门槛。 这些只是部分应用场景,随着技术进步和模型优化,AI 模型在未来可能会拓展到更多领域和场景。同时,也需注意其在隐私、安全和伦理方面的挑战。
2025-02-21
爆款AI视频
以下是关于爆款 AI 视频的相关内容: 2025AI 春晚: 行业身份:首届 AI 春晚发起人&总导演,包括央视总台论坛&直播、TEDxAI 演讲、得到分享等。 爆款视频案例:快手&国家反诈中心合作,微博 650w+热搜,快手 520w+热搜(6 月 28 日);央视&海尔冰箱首支 AI 概念短片(6 月 29 日);个人制作视频,无推流,快手平台 636w 播放(6 月 29 日)。 社区与企业关系:涉及 WaytoAGI、AIGCxChina 等聚会,以及德必集团、万兴集团、福布斯 AItop50 等的论坛分享,还有嘉定区政府颁奖、温州 AI 音乐大会、腾讯研究院论坛、江西财经大学分享、宣亚集团分享等。 WTF:1w 粉 10w 粉仅仅用时 13 天,像素级拆解《动物时装秀》: 作者模仿动物时装秀账号效果不错并分享教程。一个爆款视频至少要满足以下几点: 切片:短视频通过不断切片,增加信息密度,从长视频和其他短视频中脱颖而出。 通感:利用人的直觉脑,不让观众动脑子,如头疗、水疗直播间靠声音让人舒服,美食直播间靠展示美食吸引人。 反差:可参考抖音航线里行舟大佬的相关文档。 视频模型:Sora: OpenAI 突然发布首款文生视频模型 Sora,能够根据文字指令创造逼真且充满想象力的场景,生成 1 分钟的超长一镜到底视频,女主角、背景人物等都有惊人的一致性和稳定性,远超其他 AI 视频工具。
2025-02-21
AI音频与数字人
以下是关于 AI 音频与数字人的相关信息: 数字人口播配音: 操作指引:输入口播文案,选择期望生成的数字人形象及目标语言,选择输出类型,点击开始生成。 支持的数字人形象和语言多样,能让视频制作更高效。 图片换脸: 操作指引:上传原始图片和换脸图片,点击开始生成。 图片大小上限 5M,支持 JPG、PNG 格式。 视频换脸: 操作指引:上传原始视频和换脸图片,点击生成。 音频合成数字人: 操作指引:上传音频文件,选择数字人角色和输出类型,点击开始生成。 支持 MP3 和 WAV 格式的音频文件,文件大小上限 5M,工具支持使用 100+数字人模板,可解决无素材冷启问题。 AI 配音: 多语种(包含菲律宾语、印地语、马来语等小语种)智能配音,同时支持区分男声和女声。 操作指引:输入需配音文案,选择音色,点击立即生成。 注意输入的配音文案需和选择音色语种保持一致。 AI 字幕: 操作指引:点击上传视频,开始生成,字幕解析完成后下载 SRT 字幕。 支持 MP4 文件类型,大小上限为 50M。 在数字人语音合成方面,提到了声音克隆,有新的声音克隆且音质很不错。算法驱动的数字人相关开源代码仓库有: ASR 语音识别:openai 的 whisper(https://github.com/openai/whisper)、wenet(https://github.com/wenete2e/wenet)、speech_recognition(https://github.com/Uberi/speech_recognition)。 大模型:ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。 Agent 部分:可以使用 LangChain 的模块去做自定义(https://www.langchain.com/)。 TTS:微软的 edgetts(https://github.com/rany2/edgetts)、VITS(https://github.com/jaywalnut310/vits)、sovitssvc(https://github.com/svcdevelopteam/sovitssvc)。 构建简单数字人的方式包括通过手动建模(音频驱动)或者 AIGC 的方式生成人物的动态效果(例如 wav2lip 模型),但仍存在一些问题,如如何生成指定人物的声音、TTS 生成的音频如何精确驱动数字人口型以及做出相应的动作、数字人如何使用知识库做出某个领域的专业性回答等。
2025-02-21
现阶段最智能的AI工具是哪一款?
现阶段很难确切地指出哪一款 AI 工具是最智能的,因为这取决于不同的应用场景和需求。以下为您介绍一些表现出色的 AI 工具: Unity 推出的两款 AI 工具: Copliot 工具:可通过与 Muse Chat 聊天快速启动创建游戏项目,如生成塔防类游戏基础框架、创建人物角色动作,还能协助编码和熟悉工程环境。 Unity Sentis:能在 Unity 运行时为游戏或应用程序嵌入 AI 模型,增强玩法和功能,是首个将 AI 模型嵌入实时 3D 引擎的跨平台解决方案。 基于 2022 年 9 月至 2023 年 8 月访问量的 10 个最佳人工智能工具: ChatGPT:访问量达 146 亿次,在美国使用率最高,男性用户占比较大,多用于写作和内容创作、教育和常识等方面。 Character AI QuillBot Midjourney Hugging Face Google Bard NovelAI CapCut JanitorAI Civitai 不同类型的 AI 工具在不同领域各有优势,例如聊天机器人在流量份额上占比较大,而图像生成器、视频生成器、语音和音乐工具等也在各自领域表现出色。您可以根据具体需求选择适合的工具。
2025-02-21
你能回答关于AI以外的事情吗?有关于AI的方面你又知道多少。
以下是关于 AI 的相关知识: 1. 基础方面: 背景知识:包括人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 2. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 3. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 4. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 关于 WaytoAGI 网站,它提供以下功能: 1. 和 AI 知识库对话:您可以在这里问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,可以复制到 AI 对话网站来使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 请注意,我只能为您提供与 AI 相关的知识和指导,对于其他非 AI 领域的内容,我的知识库中没有相关信息。
2025-02-16
目前大家用AI做得最多的事情是什么?
目前大家用 AI 做的事情较多,主要集中在以下几个方面: 1. 内容创作:包括营销以及小说和短剧创作等。例如开发智能营销矩阵平台,为各细分行业的头部企业服务。 2. 写代码:写小脚本方便且能在短时间内完成较大工作量,但存在 debug 困难、技术局限性以及无法完成大型任务等问题。 3. 日常活动自动化:如交通监测系统使通勤更顺畅,银行账户欺诈检测等。 4. 工业中的大规模安全关键实践:像控制核聚变过程。 5. 科学研究:加速新药物的发现和应对气候变化的技术等。 6. 提升工作效率和安全性:支持人们更好地完成现有工作。 总之,AI 在多个领域都展现出了巨大的潜力和应用价值。
2025-02-13
关于Deepseek的所有事情
以下是关于 DeepSeek 的相关信息: 媒体报道和网络文章: 通往 AGI 之路:关于 DeepSeek 的所有事情【知识库持续更新中】,链接:https://mp.weixin.qq.com/s/n0WrrJL0fVX6zLeTBWpZXA 数字生命卡兹克:DeepSeek 的提示词技巧,就是没有技巧,链接:https://mp.weixin.qq.com/s/KwFfItlMvS9FCDwNbvVWu7A 宝玉:教你如何破解 DeepSeek R1 系统提示词,链接:https://mp.weixin.qq.com/s/vAp2wI5ozTw7R6jreLMw 橘子汽水铺:中国开源,震撼世界:DeepSeek R1 的变革、启示与展望,链接:https://mp.weixin.qq.com/s/yGUgehbxKisVaHlOkxhuaw 橘子汽水铺:自学成才之路,DeepSeek R1 论文解读,链接:https://mp.weixin.qq.com/s/gmdHyh6fsUdj1JhM1sV9bg 新智元:史上首次,DeepSeek 登顶中美 AppStore!NYU 教授:全球「AI 霸权」之争已结束,链接:https://mp.weixin.qq.com/s/ybvV8RMX0yyS5YfG1qNWgg 一支烟花 AI:用流程图对比 DeepSeekR1,OpenAI O1,Claude 说明强化学习在 AI 大模型训练、推理的创新和意义,链接:https://mp.weixin.qq.com/s/mdGtOcg1RuQOEBn31KhxQ 腾讯科技:一文读懂|DeepSeek 新模型大揭秘,为何它能震动全球 AI 圈,链接:https://mp.weixin.qq.com/s/cp4rQx09wygE9uHBadI7RA 张小珺腾讯科技:一场关于 DeepSeek 的高质量闭门会:比技术更重要的是愿景,链接:https://mp.weixin.qq.com/s/a7C5NjHbMGh2CLYk1bhfYw 评论集合: 游戏科学创始人、黑神话悟空制作人冯骥认为 DeepSeek 是一个超级了不起的突破,它做到了以下六点: 1. 强大。比肩 OpenAI O1 的推理能力,暂时没有之一。 2. 便宜。参数少,训练开销与使用费用小了一个数量级。 3. 开源。任何人均可自行下载与部署,提供论文详细说明训练步骤与窍门,甚至提供了可以运行在手机上的 mini 模型。 4. 免费。官方目前提供的服务完全免费,任何人随时随地可用。 5. 联网。暂时唯一支持联网搜索的推理模型(OpenAI O1 还不支持)。 6. 本土。深度求索是一家很小规模的年轻中国公司,由没有海外经历甚至没有资深从业经验的本土团队开发完成。 冯骥还给出了使用建议: 1. 请直接访问:网页链接马上用起来,也有移动 APP。 2. 使劲用,疯狂用,尝试用它基本取代传统搜索。请想象你已经认识每个领域的顶尖专家,而且他们都是你随时在线的好朋友,把所有可能需要“请教别人”的问题,都拿去先问它——无论是构建一个复杂函数,搞清楚附近哪个游泳池最好,检查合同里的法律陷阱,让新写的歌词再押韵点,或者帮父母确认某个保健品是否真的有效。 3. 去看看别人是怎么用的,去试试其他大模型,了解 AI 擅长什么,不擅长什么,如何调教,然后继续解锁与迭代属于自己的用法与更多工具。 冯骥希望 DeepSeek R1 会让人们对当前最先进的 AI 祛魅,让 AI 逐渐变成生活中的水和电。并感慨这样震撼的突破来自一个纯粹的中国公司,知识与信息平权又往前迈出了坚实的一步。
2025-02-13
我是一个AI小白,我使用AI的主要目的是使用这些工具,简化我工作中费时费力的事情,比如:表格的制作,筛选数据;图片的抠图,渲染,产品的口播介绍;日常工厂管理文件的编写及执行步骤;工作手册及岗位绩效的编写;作业指导书的编写
以下是为您整合的相关内容: 对于 AI 小白来说,使用 AI 工具简化工作中的费时费力之事是可行的。 在接触 AI 工具时,对于超出自己理解范围的事情,最简单有效的方法就是尝试。学习新事物,实践比听闻更重要。 比如在 AI 视频制作方面,人物设定与剧本是关键部分,包括主体、动作、场景等要素;分镜处理也较为重要,要考虑用几个镜头表述内容;生成环节如同抽卡,可多尝试,最后进行粗检和后期处理,如 AI 配音剪辑、加过渡滤镜等。小白制作 AI 视频要做好脚本即提示词,有耐心抽卡,并不断提升撰写提示词的能力。撰写提示词时要了解主体、动作、场景,避免使用专有名词和网络名词,给 AI 清晰描述。工具选用方面,没有绝对好的工具,只有适合的,如小白可使用剪映,主力机是 MacBook Pro 可使用 final cut。还可向 ChatGPT 询问获取灵感。 另外,在“AI 布道”活动中发现,AI 工具虽强大能做很多事,但也在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。无论是什么身份、什么年龄段的人,都可以尝试使用 AI 工具。 如果您想要跟相关作者交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-01-30
我在写小说,怎么让AI在写作时能很好地根据整体故事情节和上下文进行故事的展开和描写
以下是一些让 AI 在写作小说时能很好地根据整体故事情节和上下文进行故事展开和描写的方法: 1. 创作穿越故事的 Prompt 时,明确以下内容: 标题:“generate:小说的标题” 设置:“generate:小说的情景设置细节,包括时间段、地点和所有相关背景信息” 主角:“generate:小说主角的名字、年龄、职业,以及他们的性格和动机、简要的描述” 反派角色:“generate:小说反派角色的名字、年龄、职业,以及他们的性格和动机、简要的描述” 冲突:“generate:小说故事的主要冲突,包括主角面临的问题和涉及的利害关系” 对话:“generate:以对话的形式描述情节,揭示人物,以此提供一些提示给读者” 主题:“generate:小说中心主题,并说明如何在整个情节、角色和背景中展开” 基调:“generate:整体故事的基调,以及保持背景和人物的一致性和适当性的说明” 节奏:“generate:调节故事节奏以建立和释放紧张气氛,推进情节,创造戏剧效果的说明” 其它:“generate:任何额外的细节或对故事的要求,如特定的字数或题材限制” 根据上面的模板生成为特定题材小说填充内容,并分章节,生成小说的目录。 2. 接下来,让 AI 一段一段进行细节描写。为确保文章前后一致,先让 AI 帮助写故事概要和角色背景介绍,并在其基础上按自己的审美略做修改。 3. 可以让 AI 以表格的形式输出细节描述。这样做有三个好处: 打破 AI 原本的叙事习惯,避免陈词滥调。 按编号做局部调整很容易,指哪改哪,别的内容都能够稳定保持不变。 确保内容都是具体的细节,避免整段输出时缩减导致丢光细节只有笼统介绍。 4. 把生成的表格依次复制粘贴,让 AI 照着写文章,偶尔根据需要给 AI 提供建议。 5. 注意小说大赛的要求,如最后的作品必须是 AI 直接吐出来的,不能有任何改动,不能超过规定字数等。如果需要修改,可能会遇到像 GPT4 记性不好或 Claude 改掉关键情节等问题。
2025-01-26
目前AI不能做哪些事情?
目前 AI 不能做的事情包括: 1. 尽管在某些方面取得了成功,但不能解决所有科学问题。几个世纪以来人类在科学领域逐步积累,仍有众多问题存在,AI 无法完全介入并解决所有这些问题。 2. 目前还不足以完全替代开发者进行复杂项目的开发,尚未达到“言出法随”的境界。 3. 由于技术快速发展,当前使用的某些 AI 工具可能并非最优,且需要考虑其是否适合应用目的以及存在的弱点。 4. 在使用 AI 时需要注意众多道德问题,如侵犯版权、作弊、窃取他人工作、操纵等,特定 AI 模型的构建及受益情况等问题复杂且尚不清晰,使用者有责任以道德方式使用这些工具。
2024-12-25
AI目前能帮企业做什么
AI 目前能为企业带来多方面的帮助,主要包括以下几个方面: 1. 工作流程优化:许多公司将 AI 融入工作流程,实现工作流程自动化,例如 ServiceNow 通过 AI 驱动的 Now Assist 实现了近 20%的事件避免率,Palo Alto Networks 利用 AI 降低了处理费用的成本,Hubspot 利用 AI 扩大了能够支持的用户规模。瑞典金融科技公司 Klarna 通过将 AI 融入用户支持,在运行率方面节省了 4000 多万美元。成千上万的公司正在将 AI 整合到他们的工作流程中,以扩张规模和降低成本。 2. 业务拓展与管理变革:未来的公司会加速步入数字化,业务的拓展更多依托于算力的增加,不用加人,加 AI 即可,管理沟通成本很低。会建立更有效的公司运转机制,可能会有越来越多的特别高效的小团队公司出现。 3. 人和 AI 协同工作模式:根据 AI 使用的多少,人和 AI 协同的方式分为嵌入式模式、协作模式和智能体模式。基于目前 AI 发展的程度,协作模式是最常使用的。 4. 具体应用程序: 聊天机器人:分为信息型和实用型,可大幅减少客户服务方面的人力成本。 AI 撰写内容:如 ChatGPT 等工具能快速生成高质量文本内容,提高内容创作效率。 语音搜索优化:适应语音搜索普及的趋势,优化网站以提高理解度。 网站个性化:为每位访客提供定制化体验,增强客户参与度和忠诚度。 利用 AI 分析客户数据:通过机器学习算法发现模式和趋势,为营销活动或个性化体验提供洞见。 社交媒体管理与情绪分析:深入了解客户反馈,调整产品和营销策略。
2025-02-21
目前有哪些专门的培训设计的AI工具
目前专门用于培训设计的 AI 工具包括: 1. MindShow: 网址:国内网站,不需要魔法。地址:https://www.mindshow.fun//home 输入大纲和要点:提供导入大纲和要点、输入主题自动生成大纲和要求两种方式。 选择模版并生成 PPT。 导出。 2. 爱设计: 网址:国内网站,不需要魔法。输入地址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite,进行注册和登录。 输入大纲和要点:确定操作方式,提供导入大纲和要点、输入主题自动生成大纲和要求两种方式。 选择模版并生成 PPT。 导出。 此外,用于产品原型设计的 AIGC 工具包括: 1. UIzard:利用 AI 技术生成用户界面。 2. Figma:基于云的设计工具,提供自动布局和组件库,社区有 AI 插件。 3. Sketch:流行的矢量图形设计工具,插件系统中有利用 AI 技术辅助设计的插件。
2025-02-20
目前通过AI工具的结合是否可以根据已调研完成的病例数据输出一份医学报告
目前,通过 AI 工具的结合,在一定程度上可以根据已调研完成的病例数据输出医学报告。例如 GPT4V 在医学图像理解方面显示出了有效性,能够为各种医学图像生成完整的放射学报告。在一些案例中,如腹部 X 射线图像和右膝的 MRI 图像,GPT4V 能正确识别研究并提供准确诊断。但也存在一些错误,比如在手部/腕部 X 射线图像中错过远侧桡骨骨折,在胸部 CT 中错误识别结节位置和产生测量误差。尽管生成的报告能保持高质量格式,可作为模板减轻医学专业人士起草报告的工作负担,但由医学专业人士评估生成的报告以确保其正确性和准确性仍是至关重要的。
2025-02-20
目前通过AI给自己擅长的领域赋能,且已经产生收益的案例有哪些
以下是一些通过 AI 给自己擅长的领域赋能且已经产生收益的案例: 在法律法规领域,AI 已在多个方面带来重大进展和效率提升,如交通监控、银行账户欺诈检测、工业大规模安全关键实践的控制,以及加速新药发现和应对气候变化的技术等。 在企业应用方面,工作流程自动化平台 ServiceNow 通过 AI 驱动的 Now Assist 实现了近 20%的事件避免率;Palo Alto Networks 利用 AI 降低了处理费用的成本;Hubspot 利用 AI 扩大了能够支持的用户规模;瑞典金融科技公司 Klarna 通过将 AI 融入用户支持,在运行率方面节省了 4000 多万美元。如今,成千上万的公司正在将 AI 整合到他们的工作流程中,以扩张规模和降低成本。
2025-02-20
目前ai可以给电商做什么?
目前 AI 在电商领域有以下应用: 1. 产品照片生成:像 Flair、Booth 和 Bloom 等工具帮助品牌创建引人注目的产品照片,例如将静态的连衣裙照片变成女人穿着裙子在花园里行走的形象,未来还可能极度个性化,展示商品在用户特定场景中的效果。 2. 内容创作:AdCreative 和 Pencil 可以制作用于电子邮件或社交媒体的营销材料,Frase 或 Writesonic 可以编写经过 SEO 优化的产品描述。未来用户有望仅通过描述期望的审美并点击按钮,就能创建完整的电商商店及市场营销材料。 3. 产品推荐:AI 可以分析客户数据,向每个客户推荐他们可能感兴趣的产品。 4. 搜索和个性化:改善搜索结果,为每个客户提供个性化的购物体验。 5. 动态定价:根据市场需求动态调整产品价格。 6. 聊天机器人:提供服务,回答客户问题并解决他们的问题。 此外,AI 还在其他领域有广泛应用,如医疗保健(医学影像分析、药物研发、个性化医疗、机器人辅助手术等)、金融服务(风控和反欺诈、信用评估、投资分析、客户服务等)、制造业(预测性维护、质量控制、供应链管理、机器人自动化等)、交通运输等。同时,AI 具有多种能力,包括生成文本、理解和处理图像与视频、进行推理和作答、生成图像等,其图像生成应用广泛,可帮助进行各种设计,电商平台上已有很多商品图片是 AI 生成的。
2025-02-19
目前各大高校有哪些场景会实用算力
目前各大高校实用算力的场景可能包括以下方面: 1. 科研计算:如在物理学、化学、生物学等学科的研究中,进行复杂的模拟和数据分析。 2. 人工智能研究:包括模型训练、算法优化等。 3. 图形和图像处理:例如在设计、动画制作等专业中的应用。 4. 数据分析和处理:用于处理大规模的数据集,以支持学术研究和决策制定。 需要注意的是,具体的应用场景会因高校的学科设置、研究方向和教学需求而有所不同。
2025-02-19