直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

ai学术概念

回答

以下是关于 AI 学术概念的相关内容:

AI 基本概念

  • 人工智能包括机器学习、深度学习、自然语言处理等主要分支,它们之间存在联系。
  • 可通过阅读「从这里启程」熟悉术语和基础概念。

AI 学习方法

  • 浏览入门文章,了解 AI 的历史、应用和发展趋势。
  • 参考「入门:AI 学习路径」中的课程,如李宏毅老师的课程。
  • 利用在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,有机会获得证书。

AI 学习方向

  • 根据兴趣选择特定模块深入学习,如图像、音乐、视频等领域。
  • 掌握提示词技巧,上手容易且实用。

AI 实践巩固

  • 理论学习后通过实践巩固知识,尝试使用各种产品创作作品。
  • 可在知识库分享实践成果。

体验 AI 产品

  • 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式,获取实际应用体验。

对 AI 的认识

  • 对于不具备理工科背景的文科生,可将 AI 视为模仿人类思维、能理解和输出自然语言的黑箱。
  • 其生态位是似人而非人的存在,与传统道教的驱神役鬼拘灵遣将有相似之处。
  • 当使用 AI 实现愿望时,要基于其“非人”一面,通过清晰的语言文字压缩其自由度,包括明确告知任务、边界、目标、实现路径和方法,甚至直接提供所需的正确知识。

AI 术语

  • 如 Computational Cost(计算成本)、Computational Optimisation(计算优化)、Computational Science(计算科学)、Computational Toxicology(计算毒理学)、Computer Science(计算机科学)、Computer Simulations(计算机模拟)、Computer-Aided(计算机辅助)、Constraint(约束)、Core-Loss Spectrum(电子能量损失谱中的高能区域)、Coulomb Matrix(库仑矩阵)、Coupled-Cluster Predictions(耦合簇预测)、Cross-Validated Coefficient of Determination(交叉验证的决定系数)等术语均属于 AI 领域。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

拘灵遣将 | 不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事

AI是什么?作为一个不具备理工科背景的文科生,要搞清楚“ AI ”其实是一件很困难的事情(什么Agents、AIGC、LLM,什么符号主义、什么语义规则傻傻分不清楚),所以最好的处理方式是就把AI当成一个黑箱,我们只需要知道AI是某种模仿人类思维可以理解自然语言并输出自然语言的东西就可以。至于AI如何去理解,其实不重要。于是我们可以发现驱动AI工具和传统道教的驱神役鬼拘灵遣将有奇妙的相似之处,都是通过特定的文字、仪轨程式来引用已有资源,驱使某种可以一定方式/程度理解人类文字的异类达成自己预设的效果,且皆需要面对工具可能突破界限(发疯)的情况。当然,不熟悉道教的朋友可以把这东西理解成某种可以理解人类文字但不是人的魔法精灵/器灵之类的东西——总之,AI的生态位就是一种似人而非人的存在。AI技术再爆炸一万倍,AI的生态位也还是一种似人而非人的存在。由此,我们可以从人类各个文明的传说中,从那些古老哲人们的智慧里寻找到当下和AI、神、精灵、魔鬼这种似人非人存在相处的原则:1.当你想让祂实现愿望时,基于祂的“非人”一面,你需要尽可能的通过语言文字(足够清晰的指令)压缩祂的自由度——(1)你不仅要清晰的告诉祂需要干什么,还需要清晰的告诉祂边界在哪里。(2)你不仅要清晰的告诉祂目标是什么,还需要清晰的告诉祂实现路径方法是哪一条。(3)你不仅要清晰的告诉祂实现路径,最好还直接给到祂所需的正确的知识。

AI术语库-人工标注版

|术语ID|原文|译文|领域|易混淆|缩写|不需要提醒||-|-|-|-|-|-|-||ROW()-1|Computational Cost|计算成本|AI|||||ROW()-1|Computational Optimisation|计算优化|AI|||||ROW()-1|Computational Science|计算科学|AI|||||ROW()-1|Computational Toxicology|计算毒理学|AI|||||ROW()-1|Computer Science|计算机科学|AI|||||ROW()-1|Computer Simulations|计算机模拟|AI|||||ROW()-1|Computer-Aided|计算机辅助|AI|||||ROW()-1|Constraint|约束|AI|||||ROW()-1|Core-Loss Spectrum|(电子能量损失谱中的)高能区域|AI|||||ROW()-1|Coulomb Matrix|库仑矩阵|AI|||||ROW()-1|Coupled-Cluster Predictions|耦合簇预测|AI|||||ROW()-1|Cross-Validated Coefficient of Determination|交叉验证的决定系数|AI||||

其他人在问
哪些AI软件可以设计提示词和优化提示词
以下是一些可以设计和优化提示词的 AI 软件: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言和单个词组输入,中英文均可。 启用提示词优化后可扩展提示词,更生动描述画面内容。 写好提示词的方法包括使用预设词组、保证内容准确(包含人物主体、风格、场景特点、环境光照、画面构图、画质等)、调整负面提示词、利用“加权重”功能突出重点内容,还有翻译、删除所有提示词、会员加速等辅助功能。 2. Prompt 网站精选: :AI 艺术提示词生成器。 :通过玩游戏练习 Prompt 书写。 NovelAI tag 生成器:设计类 Prompt 提词生成器,地址为。 魔咒百科词典:简单易用的 AI 绘画 tag 生成器,地址为。 KREA:设计 AI 的 Prompt 集合站,create better prompts,网址为。 Public Prompts:免费的 prompt 合集,收集高质量的提示词,网址为。 AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词,网址为。 3. OpenAI API: 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成。 模型通过将文本分解为标记(Token)来理解和处理文本,可通过分词器工具了解更多。 需要注意的是,在给定的 API 请求中处理的 Token 数量取决于输入和输出长度,文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,约为 2048 个 Token 或 1500 个单词)。
2024-11-22
AI写真
以下是关于 AI 写真的相关内容: 在大淘宝设计部 2023 年度 AI 设计实践报告中: 在定制化真人模特实景素材的主题活动方面,通过 AI 能将策划、搭建、拍摄、设计融合为一个闭环流程,短时间内完成页面所有素材的生产和输出。例如七夕主题活动页面,在 12 个时辰主题下,可不受外部拍摄条件限制,产出符合需求且风格一致的素材。 在产品营销视觉的 UI 设计场景中,采用 AI 能力可快速定制多种用户需要的视觉效果,通过 SD 中 controlnet 的有效控制,能生成指定范围内的 ICON、界面皮肤等内容,增加产品功能的定制可能性。例如 88VIP 的 AI 定制皮肤。 在定制模特 AI 生成方面,通过对 AI 大模型的训练和应用,算法从模特姿态、背景风格、装饰元素等多维度进行效果升级,提升合成的真实性和美感。结合用户脸型、身材数据,为用户提供定制化的线上真人化模特体验。例如 AI 试衣间、AI 写真,简化数据采集流程构建用户的数字分身,根据不同主题的摄影风格生成 AI 写真,让普通用户能通过 AIGC 创造好玩有趣的内容。 在产品场景生成方面,一张商品图结合用户的自定义输入,便可生成多张场景效果,整个过程无需 3D 模型、显卡渲染和线下拍摄。例如“家作”家装场景灵感。
2024-11-22
我想要把思维导图画的更漂亮一些有什么ai可以帮忙
以下是一些可以帮助您把思维导图画得更漂亮的 AI 工具: 1. Lucidchart: 简介:强大的在线图表制作工具,集成 AI 功能,可绘制多种示意图。 功能:拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 2. Microsoft Visio: 简介:专业的图表绘制工具,适用于复杂图表,AI 功能可优化设计。 功能:集成 Office 365,方便与其他 Office 应用协同;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 3. Diagrams.net: 简介:免费开源的在线图表绘制工具,适用于多种示意图绘制。 功能:支持本地和云存储;多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。 官网:https://www.diagrams.net/ 4. Creately: 简介:在线绘图和协作平台,利用 AI 简化图表创建过程。 功能:智能绘图,自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能。 官网:https://creately.com/ 5. Whimsical: 简介:专注于用户体验和快速绘图,适合多种示意图。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;多种协作功能。 官网:https://whimsical.com/ 6. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和多种示意图绘制。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具集成。 官网:https://miro.com/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:若需团队协作,可邀请团队成员一起编辑。完成后导出并分享图表。
2024-11-22
想学习AI编程需要从哪里开始,有什么资源吗
如果您想学习 AI 编程,可以从以下几个方面开始,并参考以下资源: 开始的方向: 1. 明确编程目标:确定您希望通过 AI 编程实现的具体任务或项目。 2. 了解 AI 编程的边界和限制:明白在何种情况下需要编程,何种情况下可以利用现有工具和资源。 学习资源: 1. 掌握 Python 基础: 基本语法:包括变量命名、缩进等规则。 数据类型:如字符串、整数、浮点数、列表、元组、字典等。 控制流:学会使用条件语句(if)、循环语句(for 和 while)控制程序执行流程。 函数:包括定义和调用函数、理解参数和返回值、掌握作用域和命名空间。 模块和包:学会导入模块和使用包来扩展功能。 面向对象编程(OOP):了解类和对象、属性和方法、继承和多态。 异常处理:理解异常及如何处理程序中的错误。 文件操作:掌握文件读写和文件与路径操作。 2. 在线教程和课程:例如“写给不会代码的你:20 分钟上手 Python + AI”。 3. 项目实践:通过实际项目来巩固所学知识。 开发建议: 1. 对于复杂的项目,如 P2P 传输程序,要充分考虑项目初始化、环境配置、库的选择等。 2. 对于 Rust 环境配置,可通过官网获取安装指南,使用 rustup 工具管理 Rust 版本。使用 cargo new <project_name>创建新的 Rust 项目,生成基本文件结构和 Cargo.toml 文件来管理项目依赖。 在学习过程中,优先寻找线上工具、插件和本地应用,先找现成的开源工具和付费服务,只有在没有现成方案时再考虑自己编程。
2024-11-21
有什么类似于ai秘书的产品吗?
以下是一些类似于 AI 秘书的产品: Replika:用户可在与它的关系中找到意义,每周花费数小时进行对话。 Anima:是一款 AI 聊天机器人产品。 CharacterAI:也是一款相关的产品。 Millie:可以优化约会应用程序的个人资料和消息。 YourMove:具有类似的优化功能。 Mumkin:能够帮助用户应对困难的对话。 早期的聊天机器人如 ELIZA、Clippy、SmarterChild、Alicebot 和 Kuki 等虽曾流行,但未给消费者留下深刻印象。新一波聊天机器人不同,如 ChatGPT 成为最快达到 1 亿用户规模的消费产品,这得益于大型语言模型(LLMs),使聊天机器人能自由流畅对话,听起来和人类无异。如今,容易想象出如人工智能朋友、心理治疗师、导师、教练等角色,早期版本常带有浪漫色彩,这可能与成人娱乐行业处于新技术前沿及社会变化有关。
2024-11-21
帮我推荐一些适合产品经理使用的AI产品吧
以下是为产品经理推荐的一些 AI 产品: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard(https://uizard.io/autodesigner/) 项目管理:Taskade(taskade.com) 写邮件:Hypertype(https://www.hypertype.co/) 会议信息:AskFred(http://fireflies.ai/apps) 团队知识库:Sense(https://www.senseapp.ai/) 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI(https://www.ellie.ai/) 企业自动化:Moveworks(moveworks.com) 此外,还有以下相关内容供您参考: 《AI 市场与 AI 产品经理分析——2024 是否是 AI 应用创业的好机会》中提到,AI 产品经理可分为入门级、研究级和落地应用级。入门级能通过开源网站或课程了解 AI 概念并实践;研究级有技术和商业化研究两条路径;落地应用级则有成功案例和商业化价值。 余一相关的内容,如《AI 时代个人生存/摸鱼探索指南.Beta》的迭代更新,以及《从 2023 年报,看中国上市公司怎么使用生成式 AI》等。 相关链接: 创新公司观察: 2022 2024 年融资 2000w 美金以上的公司列表和详细公司分析:https://ameliadev.notion.site/202220242000w08f50fafd81b420fa7f26ecd6c0b3243?pvs=4 AI Grant 公司列表和详细公司分析(三期):https://ameliadev.notion.site/AIGranta52f291e81f34b418c9919497961e831?pvs=4 AIGC 行业与商业观察(2024.1):https://gamma.app/docs/AIGCDev9q1bax2pspnlxqu AI 产品/功能构建: 顶级科技公司产品团队正在构建哪些 AI 功能【总览】:https://gamma.app/docs/AIzawqmb2ff3cv958 顶级科技公司产品团队正在构建哪些 AI 功能【产品分析】:https://gamma.app/docs/AItebxqet8ubz3rje 顶级科技公司产品团队正在构建哪些 AI 功能【思考借鉴】
2024-11-21
现在在学术论文文献查询方面做的最好的ai是哪个
在学术论文文献查询方面,以下是一些表现较好的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,还有一些专门的工具,如: 1. TXYZ: 帮助搜索、查询专业文献并进行对话,提供一站式服务。 是与预印本文库 arxiv.org 官方合作的 AI 工具,ArXiv 的每篇论文下有直达 TXYZ 的按钮。 支持用户上传 PDF 论文或链接,迅速找到所需答案和内容。 在对话中提供论文参考,给出可信背书。 2. 开搜 AI 搜索: 免费无广告,直达结果。 帮助在校学生快速搜集学术资料,智能总结关键信息,助力撰写论文和报告,且支持查看来源出处。 为教师群体获取教学资源、生成教案和课题研究报告提供帮助。 方便职场办公人群高效查找工作信息,简化文案撰写、PPT 制作和工作汇报准备。 为学术研究人员提供行业分析,整合和总结大量数据形成研究报告。 需要注意的是,使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。同时,内容由 AI 大模型生成,请仔细甄别。
2024-11-14
有什么可以根据几个非论文key words的词来搜索并整理学术论文中特定信息的工具
以下是一些可以根据几个非论文关键词来搜索并整理学术论文中特定信息的工具: 1. Claude + Gamma.app: Claude 能够快速寻找符合条件的论文,提取精炼论文中某部分信息,还能回答关于论文的各种问题,如搜索权威期刊、筛选特定论文、制作摘要等,并可用英文回复。 Gamma.app 能帮助制作 PPT。 2. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 3. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 4. 研究和数据分析: Google Colab:提供云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 5. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供模板库和协作功能,简化论文编写。 6. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 7. 开搜 AI 搜索: 免费无广告,直达结果。 帮助在校学生搜集学术资料、总结关键信息。 为教师获取教学资源、生成教案和课题研究报告。 助力职场办公人群查找工作信息、简化文案等工作。 为学术研究人员提供行业分析,整合和总结大量数据形成研究报告。
2024-11-06
学术ai有哪些好网站
以下为一些不错的学术 AI 网站,如 WaytoAGI 网站(https://www.waytoagi.com/)。该网站具有以下功能: 1. 您可以在此与 AI 知识库进行对话,询问任何关于 AI 的问题。 2. 它集合了精选的 AI 网站,能让您按需求找到适合的工具。 3. 提供了精选的 AI 提示词,您可以复制到 AI 对话网站使用。 4. 会将每天知识库的精华内容呈现给大家。 总之,WaytoAGI 网站和 WaytoAGI 知识库相互关联又各自独立,有望成为您学习 AI 路上的好助手。
2024-10-26
阅读管理学领域的学术文献,哪个AI的大模型提炼信息更精准,更快速
目前在管理学领域学术文献的信息提炼方面,不同的 AI 大模型各有特点,难以确切地说哪个模型更精准、更快速。一些常见的大模型如 GPT4、文心一言等在处理自然语言和提取信息方面都具有一定的能力,但它们在不同类型和主题的文献处理上可能表现各异。这还取决于文献的具体内容、格式和复杂程度等因素。
2024-10-12
学术、科研工作,最好的AI推荐一下
以下是为您推荐的适用于学术、科研工作的 AI: 免费选项:。 付费选项:通常必应是较好的选择。对于儿童,来自可汗学院的由 GPT4 驱动,能提供良好的人工智能驱动辅导。 在 AI 与教育结合的案例方面: 教学:帮助学生做好组会准备,使用了 Claude + Gamma.app,Claude 能节省绝大部分时间。 医疗:蛋白质结构预测和蛋白质合成,用于生成漂亮图片的 AI 可帮助科学家研究并设计新的蛋白质。 做调研:有用 ChatGPT 做调研的方法,也有用特定 prompt 两小时帮同学完成三篇调研报告的案例。 此外,在基础学科书籍方面,为您推荐以下三本有助于深入理解 AI 的神经科学书籍: 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga; Richard B.Lvry; George R.Mangun),是世界权威的认知神经科学教材,能让您系统了解认知神经科学的多个方面。 2. 《神经科学原理》(作者:Eric R.Kandel; James H.Schwartz),让您了解神经元的细胞和分子生物学等内容。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著),是神经生物学领域的世界级名著,涵盖了神经科学的多方面知识。
2024-10-08
GPT的学术功能
以下是关于 GPT 学术功能的相关信息: DoctorGPT:这是一个集成了医学专家知识的 AI 模型,能够准确回答各种医学问题。它顺利通过了美国医学执照考试,完全支持 iOS 和 Android,可在网页浏览器上使用,只有 3GB 且便携轻巧,无需互联网连接,完全离线使用,100%开源且无需支付费用。该模型是在 Meta 的 Llama2 基础上进行微调的,拥有高达 70 亿个参数,并经过专业医学对话的训练和优化。您可以立即访问下载并体验。 GPT4 官方技术报告:GPT4 在学术和专业考试中表现出色,在大多数考试中的表现超过了 GPT3.5,在大多数专业和学术考试中都表现出人类水平的表现。其在考试中的能力主要源于预训练过程,在选择题上,基础 GPT4 模型和 RLHF 模型平均表现同样出色。GPT4 的性能大大超过了现有的语言模型和以前最先进的系统。 GitHubDaily 开源项目列表: :中科院科研工作专用,特别优化了学术 Paper 润色体验,支持自定义快捷按钮,支持 markdown 表格显示,Tex 公式双显示,代码显示功能完善,新增本地 Python 工程剖析功能/自我剖析功能。 :将 ChatGPT 功能集成到 Unity 编辑器中,通过对话的方式,可视化动态调整与生成内容,提升游戏开发效率。 :记录了一些可通过 GPT4 实现的项目,其中有部分项目还实现盈利了。 :整理并汇总了多种让生产力加倍的 ChatGPT 快捷指令,按照领域和功能分区,可对提示词(Prompt)进行标签筛选、关键词搜索和一键复制。 :一个开源的 ChatGPT Web UI 应用,为 ChatGPT API 提供了一个 Web 图形界面。 :一个开源的 ChatGPT 演示网页,基于 Express 和 Vue3 搭建,开发者可以用其搭建一个类似 ChatGPT 的网站。 :微软 Bing Chat 的逆向工程 API,利用该接口,开发者可自行搭建 EdgeGPT 聊天机器人,自定义智能搜索功能。
2024-10-06
ai诈骗概念
AI 诈骗是指利用人工智能技术进行的欺诈行为。例如,通过生成逼真的虚假内容、模拟真实身份等手段来欺骗受害者。 拜登签署的 AI 行政命令中提到要保护美国人免受 AI 带来的诈骗和欺骗,商务部将为内容认证和水印制定指导方针,以清晰标注 AI 生成的内容,联邦机构将使用这些工具让美国人容易知晓从政府收到的通信是真实的,并为私营部门和全球各国政府树立榜样。 在 AI 术语中,与相关概念有关的术语包括智能体(Agent)等。 在小学课堂的课程设计中,对于三年级的孩子,会用他们能理解的语言来介绍 AI,比如简单说明 AI 是让计算机或机器能像人类一样思考和学习的技术。
2024-11-20
ai通用概念
以下是关于 AI 通用概念的详细介绍: 人工智能(Artificial Intelligence,简称 AI):一种目标,让机器展现智慧。 生成式人工智能(Generative AI,简称 GenAI):一种目标,让机器产生复杂有结构的内容。 机器学习:一种手段,让机器自动从资料中找到公式。 深度学习:一种更厉害的手段,类神经网络 非常大量参数的函数。 大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称 LLMs。 ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。英文解释:Chat 聊天,G:Generative 生成,P:Pretrained 预训练,T:Transformer 类神经网络模型。 AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。ChatGPT 是 AIGC 技术的一个应用实例,代表了 AIGC 在文本生成领域的进展。 对于 AI 的定义,目前没有普遍共识的通用定义。我们将 AI 定义为具有以下两个产生定制监管响应需求的特征: “适应性”:使解释系统结果的意图或逻辑变得困难。 “自主性”:使为结果分配责任变得困难,一些 AI 系统可以在没有人类明确意图或持续控制的情况下做出决策。 更多概念可问 Kimi、通义千问、文心一言等大模型。国内主要模型公司及地址如下:(此处未提供相关地址信息)
2024-11-20
解释ai概念
AI 是某种模仿人类思维,可以理解自然语言并输出自然语言的东西。它的生态位是一种似人而非人的存在,即便技术再进步,这一生态位也不会改变。 从不同角度来看: 作为目标,是让机器展现智慧。 生成式人工智能(GenAI)的目标是让机器产生复杂有结构的内容。 机器学习是让机器自动从资料中找到公式。 深度学习是更厉害的手段,类似神经网络且具有非常大量参数的函数。 大语言模型是具有大量参数的“深度学习”模型。 ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例,是美国 OpenAI 公司开发的基于大型语言模型的对话机器人,能根据用户输入生成连贯且相关的文本回复。 AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容,其技术可用于多种应用。 需要注意的是,因为人工智能可能会产生幻觉,所以对于关键数据要根据其他来源仔细检查。
2024-11-20
ai概念
AI 概念: 对于不具备理工科背景的文科生来说,理解 AI 有一定难度,可将其视为一个黑箱,即能理解自然语言并输出自然语言的东西。AI 与传统道教的驱神役鬼拘灵遣将有相似之处,都是通过特定方式引用已有资源,驱使某种能一定程度理解人类文字的存在达成预设效果,且都需面对可能突破界限的情况。AI 的生态位是似人而非人的存在,即便技术有巨大进步,这一生态位也不会改变。 从人类文明传说和古老哲人的智慧中,能找到与 AI 等似人非人存在相处的原则:想让其实现愿望时,基于其“非人”一面,要尽可能通过语言文字压缩其自由度,包括清晰告知任务、边界、目标、实现路径方法,最好直接提供所需的正确知识。 新手学习 AI: 了解 AI 基本概念:阅读「」熟悉术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习并获证书。 选择感兴趣模块深入学习:AI 领域广泛,可根据兴趣选择特定模块(如图像、音乐、视频等)深入学习,掌握提示词技巧。 实践和尝试:理论学习后实践巩固知识,尝试使用各种产品创作,在知识库分享实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式,获得实际应用体验。 AGI 的 5 个等级: 聊天机器人:具备基本对话能力,依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者:具备人类推理水平,能解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科研和新药发现。 组织:最高级别,能自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2024-11-20
概念学习的方法
学习概念的方法通常是通过示例进行学习。以下为您介绍一些相关示例和学习途径: 1. 提示词示例: 文本概括:https://www.promptingguide.ai/zh/introduction/examples%E6%96%87%E6%9C%AC%E6%A6%82%E6%8B%AC 信息提取:https://www.promptingguide.ai/zh/introduction/examples%E4%BF%A1%E6%81%AF%E6%8F%90%E5%8F%96 问答:https://www.promptingguide.ai/zh/introduction/examples%E9%97%AE%E7%AD%94 文本分类:https://www.promptingguide.ai/zh/introduction/examples%E6%96%87%E6%9C%AC%E5%88%86%E7%B1%BB 对话:https://www.promptingguide.ai/zh/introduction/examples%E5%AF%B9%E8%AF%9D 代码生成:https://www.promptingguide.ai/zh/introduction/examples%E4%BB%A3%E7%A0%81%E7%94%9F%E6%88%90 推理:https://www.promptingguide.ai/zh/introduction/examples%E6%8E%A8%E7%90%86 2. 强化学习概念:对于新学习一个基础的内容,先从概念入手。 3. 新手学习 AI 方法: 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。推荐李宏毅老师的课程。还可通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,并获得证书。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),可根据兴趣选择特定模块深入学习,掌握提示词技巧。 实践和尝试:理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库有很多实践后的作品、文章分享。 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2024-11-19
AI 可以帮助我学习并理解统计学的相关概念和公式吗
AI 可以帮助您学习并理解统计学的相关概念和公式。以下是一些相关方面: 数学基础中的统计学基础部分,您可以熟悉均值、中位数、方差等统计概念。 在算法和模型方面,监督学习、无监督学习和强化学习等领域的知识也可能涉及到统计学的应用。 对于模型的评估和调优,例如了解如何评估模型性能,包括交叉验证、精确度、召回率等,也与统计学有一定的关联。 通过学习这些内容,能够为您理解统计学的相关概念和公式提供帮助。
2024-10-31