Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI的基本概念

Answer

AI(人工智能)是一种能够模仿人类思维、理解自然语言并输出自然语言的技术。它主要分支包括机器学习、深度学习、自然语言处理等。

从概念上看,生成式 AI 生成的内容称为 AIGC。相关技术名词众多,如机器学习包括监督学习、无监督学习、强化学习;监督学习有标签的训练数据,目标是学习输入和输出的映射关系;无监督学习的数据无标签,算法自主发现规律,经典任务如聚类;强化学习从反馈中学习以最大化奖励或最小化损失;深度学习参照人脑有神经网络和神经元,可用于多种学习方式;生成式 AI 能生成文本、图片、音频、视频等内容;LLM 是大语言模型,如谷歌的 BERT 模型可用于语义理解。

技术方面,2017 年 6 月谷歌团队发表的论文《Attention is All You Need》首次提出 Transformer 模型,它基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。

对于没有理工科背景的文科生,可以将 AI 当成一个黑箱,只需要知道它是能理解和输出自然语言的东西即可,其生态位是一种似人而非人的存在。在使用时,基于其“非人”一面,需要通过清晰的语言文字压缩其自由度,明确告诉它任务、边界、目标、实现路径和所需知识。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

拘灵遣将 | 不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事

AI是什么?作为一个不具备理工科背景的文科生,要搞清楚“AI”其实是一件很困难的事情(什么Agents、AIGC、LLM,什么符号主义、什么语义规则傻傻分不清楚),所以最好的处理方式是就把AI当成一个黑箱,我们只需要知道AI是某种模仿人类思维可以理解自然语言并输出自然语言的东西就可以。至于AI如何去理解,其实不重要。于是我们可以发现驱动AI工具和传统道教的驱神役鬼拘灵遣将有奇妙的相似之处,都是通过特定的文字、仪轨程式来引用已有资源,驱使某种可以一定方式/程度理解人类文字的异类达成自己预设的效果,且皆需要面对工具可能突破界限(发疯)的情况。当然,不熟悉道教的朋友可以把这东西理解成某种可以理解人类文字但不是人的魔法精灵/器灵之类的东西——总之,AI的生态位就是一种似人而非人的存在。AI技术再爆炸一万倍,AI的生态位也还是一种似人而非人的存在。由此,我们可以从人类各个文明的传说中,从那些古老哲人们的智慧里寻找到当下和AI、神、精灵、魔鬼这种似人非人存在相处的原则:1.当你想让祂实现愿望时,基于祂的“非人”一面,你需要尽可能的通过语言文字(足够清晰的指令)压缩祂的自由度——(1)你不仅要清晰的告诉祂需要干什么,还需要清晰的告诉祂边界在哪里。(2)你不仅要清晰的告诉祂目标是什么,还需要清晰的告诉祂实现路径方法是哪一条。(3)你不仅要清晰的告诉祂实现路径,最好还直接给到祂所需的正确的知识。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

Others are asking
通俗易懂地解释一下什么叫AGI,和我们平常理解的AI有什么区别
AGI 即通用人工智能,指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能。 与平常理解的 AI 相比,平常的 AI 往往是针对特定领域或任务进行设计和优化的,例如下围棋、图像识别等。而 AGI 涵盖了更广泛的认知技能和能力,不仅限于特定领域,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等,并且要求这些能力达到或超过人类水平。 在 AI 发展历程中,早期的研究有对智能的宏伟目标追求,但很多研究进展是狭义地关注明确定义的任务。直到 2000 年代初,“通用人工智能”(AGI)这一名词流行起来,强调从“狭义 AI”向更广泛的智能概念转变,回应了早期 AI 研究的长期抱负和梦想。 例如,GPT3 及其后续版本在某种程度上是朝着 AGI 迈出的巨大一步,早期的语言模型则没有像 GPT3 这样连贯回应的能力。
2025-03-22
如何用ai写一篇本科毕业论文
使用 AI 写本科毕业论文需要谨慎,虽然可以借助其提供帮助,但不能完全依赖。以下是一些可能的步骤和注意事项: 1. 明确论文的主题和要求:清晰地确定您的研究方向、问题和目标。 2. 提供详细的背景信息:例如您的研究领域、相关课程学习经历、个人观点等。 3. 向 AI 提出具体的指令:例如“根据以下信息,为我生成一篇关于的本科毕业论文大纲”。 4. 对 AI 生成的内容进行评估和修改:AI 生成的内容可能存在不准确、不完整或不符合学术规范的地方,需要您进行仔细的检查和修正。 需要注意的是,使用 AI 写论文并非道德的方式,并且可能存在各种问题。接收方也需要做好检测 AI 生成内容的准备。同时,您可以通过学校教务系统查询相关的论文格式要求等信息。
2025-03-22
ai音乐
AI 音乐相关内容如下: 关于 AI 短片配音:AI 音乐部分,点击后有直观界面,可选人声歌曲或纯音乐,选择后描述想要的音乐风格,如民谣、流行、嘻哈、国风等。若为人声歌曲,可自己写歌词或让 AI 写,通过智能歌词按钮输入简单词语给 AI 提示即可生成歌词。还有音乐库选项,可选择合适风格的音乐添加到音轨。音效库方面,在搜索框输入相关音效词,如开门声,试听后选择合适的添加到音轨。 人工智能音频初创公司:包括被 Apple 收购的。 AI 生成音乐的工具:是利用人工智能技术,特别是机器学习和深度学习算法创作、编排和生成音乐的软件平台。能分析大量音乐数据,学习模式和结构,根据用户输入或指令创作新作品。推荐的 AI 音乐产品有:由前 Google DeepMind 工程师开发的 Udio()。
2025-03-22
你觉得小智ai怎么样?直播如何使用并销售小智ai产品?
小智 AI 的情况如下: 关于小智 AI 本身的评价未在提供的内容中有明确提及。 对于直播使用并销售类似的 AI 产品,以下是一些相关信息: 变现渠道包括直播带货、橱窗带货、商单、介绍粉丝接项目、广告等。 直播带货方面: 数字人直播工具软件可分为实时驱动和非实时驱动两类,实时驱动价格较高,非实时效果差且价格混乱。 数字人运营服务可按直播间成交额抽佣。 适用品类和场景: 适用于不需要强展示的商品,如品牌食品饮料;适用于虚拟商品,如门票、优惠券等;店播效果较好,不适用于促销场景。 面临的问题: 平台限制,如平台担心直播观感而有打压限制。 技术限制,形象依赖大模型技术提升。 需求限制,目前更多是体验新鲜感。 伦理/法律限制,如声音、影像版权等。
2025-03-22
AI产品经理学习路径
以下是为您提供的 AI 产品经理学习路径: 1. 入门级: 可以通过 WaytoAGI 等开源网站或一些课程来了解 AI 的概念。 能够使用 AI 产品,并尝试动手实践应用搭建。对应的画像可能是喜欢听小宇宙 APP 的播客或浏览 AI 相关的文章。 2. 研究级: 有两个路径,一个是技术研究路径,一个是商业化研究路径。 这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用: 这一阶段的画像就是有一些成功落地应用的案例,如产生商业化价值。 对应传统互联网 PM 也有三个层级: 负责功能模块与执行细节。 负责整体系统与产品架构。 熟悉行业竞争格局与商业运营策略。 总结来说,对 AI 产品经理要求懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI 说到底也是工具和手段,产品经理要关注的还是场景、痛点、价值。
2025-03-22
AI现在的局限是什么,在代码方面的具体说说
AI 在代码方面存在以下局限: 1. 传统观念的局限性:AI 圈子实际影响有限,模型能力有限,初体验不佳导致误解和怀疑。企业实践中,AI 普及存在门槛,需要成功案例或外部引导建立信任。 2. 编程辅助方面:使用不频繁时被视作高级自动化工具,用于生成代码或完成重复性任务,处于辅助角色,即命令式。具体表现为执行单一、线性任务,如生成排序算法代码,简单执行模式限制了更广泛应用。 3. 问题点:命令式的“指令执行”模式忽略了 AI 在创意激发和解决问题中的潜力,局限于简单代码生成,未能在设计优化、逻辑推理和需求分析等方面发挥作用。 4. 输出方式的局限:交互方式主要以文本和代码为主,输出局限在“写”层面,存在交互效率低下、表达能力受限、认知负担重和应用场景局限等问题。例如,用户需大量文字表达需求,AI 解释结果冗长,多轮反复才能达成共识;在设计方案等场景中,图形图表表达更优;人类处理图形信息效率高于文本;纯文本输出无法满足原型设计等领域实际需求。
2025-03-22
介绍AI基本概念和目前发展阶段
AI 的基本概念: 人工智能(AI)是指让计算机模拟人类智能的技术。 主要分支包括机器学习、深度学习、自然语言处理等,它们之间存在密切联系。 目前发展阶段: 已取得显著进展,如聊天机器人具备基本对话能力,能用于客户服务和简单查询响应。 推理者如 ChatGPT 能解决复杂问题并提供详细分析和意见。 智能体虽能执行部分自动化业务,但仍需人类参与。 创新者如谷歌 DeepMind 的 AlphaFold 模型能协助人类完成新发明。 最高级别的组织型 AI 能自动执行组织的全部业务流程,但尚未完全实现。 对于新手学习 AI: 建议阅读「」熟悉术语和基础概念。 浏览入门文章了解历史、应用和发展趋势。 在「」中找到初学者课程,特别推荐李宏毅老师的课程。 通过在线教育平台按自己节奏学习并获取证书。 根据兴趣选择特定模块深入学习,掌握提示词技巧。 理论学习后进行实践,尝试使用各种产品并分享实践成果。 体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人。 如果希望继续精进 AI: 了解 AI 背景知识,包括基础理论、历史发展。 掌握数学基础,如统计学、线性代数、概率论。 熟悉算法和模型,如监督学习、无监督学习、强化学习。 学会评估和调优模型性能。 了解神经网络基础,包括网络结构和激活函数。
2025-03-20
提供几篇讲解AI 相关的基本概念、知识框架的文章
以下是为您提供的讲解 AI 相关的基本概念、知识框架的文章: 1. 新手学习 AI 方面: 建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,并获得证书。 2. 书籍推荐方面: 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让您系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。 3. 相关文章方面: 《》:这是公众号琢磨事翻译的领英工程师的一篇文章,分享了在领英开发 AI 驱动产品的经验,重点探讨了生成式 AI 的相关内容。 《麻省理工科技评论》发布的《》:万字长文探讨了人工智能的定义和发展,详细阐述了人工智能的基本概念、技术背景及其在各个领域的应用,分析了当前的技术挑战和未来的发展方向,还讨论了人工智能对社会、经济和伦理的影响。
2025-02-06
了解 AI 视频制作的基本概念和常见工具
AI 视频制作的基本概念: 将小说或其他创意内容通过一系列步骤转化为视频,通常包括文本分析、角色与场景生成、视频编辑与合成等环节。 常见工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):用于创建小说中的场景和角色图像的 AI 图像生成工具。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,能生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 制作 AI 短片的故事来源和剧本写作: 1. 故事来源: 原创(直接经验):自身或周围人的经历、做过的梦、想象的故事等。 改编(间接经验):经典 IP、名著改编、新闻改编、二创等。 2. 剧本写作: 编剧是有一定门槛的手艺,不能单纯套剧作理论和模板,要多写多实践,再结合看书总结经验。 对于短片创作,可从自身或朋友的经历改编入手,或者对触动自己的短篇故事进行改编。 多与他人讨论故事,有助于修改和进步。 AI 春晚的制作分工: 1. 制片人AJ:负责影片的制作管理,包括团队组建、日程安排、信息收集、资料整理、各处岗位工作缺失时及时补上等。 2. 图像创意??:负责用 AI 生成富有想象力的角色和场景等所有出现在视频中的画面,并为每个角色赋予人物小传。 3. 视频制作??:将做好的角色场景等图像素材进行 AI 图生文的工作,需要擅长运营工具的笔刷等控制工具,更好的契合剧本。 4. 编剧?:负责撰写剧本,包括故事情节、角色串联、人物台词等。 5. 配音和配乐?:涉及背景音乐、音效、角色配音、声音克隆,用各种声音类 AI 工具捏出来。 6. 剪辑师?:负责把后期剪辑,包括镜头选择、节奏控制和音效配合。 AI 春晚团队高效协作的方法: AI 的创造速度快,每个分工职责中有擅长的共创同学,人员分工明确,形成了高效的 SOP,从而可以快速产出。
2024-10-21
0基础中老年学习者必须知道的AI基本概念和知识 是哪几个
对于 0 基础的中老年学习者,以下是必须知道的 AI 基本概念和知识: 一、Python 基础 1. 基本语法:包括变量命名、缩进等规则。 2. 数据类型:如字符串、整数、浮点数、列表、元组、字典等。 3. 控制流:条件语句(if)、循环语句(for 和 while)控制程序执行流程。 4. 函数:定义和调用函数,理解参数和返回值,以及作用域和命名空间。 5. 模块和包:导入模块,使用包来扩展程序功能。 6. 面向对象编程(OOP):类和对象的定义与实例化,属性和方法的定义与调用。 二、AI 背景知识 1. 基础理论:了解人工智能、机器学习、深度学习的定义及相互关系。 2. 历史发展:回顾 AI 的发展历程和重要里程碑。 三、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等基本概念。 3. 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 四、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:了解其基本概念。 五、评估和调优 1. 性能评估:知道如何评估模型性能,如交叉验证、精确度、召回率等。 2. 模型调优:学习使用网格搜索等技术优化模型参数。 六、文件操作 1. 文件读写:学习打开文件、读取文件内容和写入文件。 2. 文件与路径操作:理解如何处理文件路径,列举目录下的文件。 七、异常处理 1. 理解异常:了解什么是异常以及在 Python 中的工作方式。 2. 异常处理:学会使用 try 和 except 语句处理程序错误。
2024-09-13
如何了解AI的基本概念,是否有词条清单
以下是帮助您了解 AI 基本概念的一些途径和内容: 阅读相关资料:建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能、机器学习、深度学习的定义及其之间的关系,以及 AI 的主要分支和它们之间的联系。 浏览入门文章:这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 学习数学基础:包括统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 了解算法和模型:监督学习(如线性回归、决策树、支持向量机)、无监督学习(如聚类、降维)、强化学习(简介强化学习的基本概念)。 掌握评估和调优知识:如性能评估(包括交叉验证、精确度、召回率等)、模型调优(学习如何使用网格搜索等技术优化模型参数)。 您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。同时,AI 领域广泛,您可以根据自己的兴趣选择特定的模块(比如图像、音乐、视频等)进行深入学习。
2024-09-12