Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI的基本概念

Answer

AI(人工智能)是一种能够模仿人类思维、理解自然语言并输出自然语言的技术。它主要分支包括机器学习、深度学习、自然语言处理等。

从概念上看,生成式 AI 生成的内容称为 AIGC。相关技术名词众多,如机器学习包括监督学习、无监督学习、强化学习;监督学习有标签的训练数据,目标是学习输入和输出的映射关系;无监督学习的数据无标签,算法自主发现规律,经典任务如聚类;强化学习从反馈中学习以最大化奖励或最小化损失;深度学习参照人脑有神经网络和神经元,可用于多种学习方式;生成式 AI 能生成文本、图片、音频、视频等内容;LLM 是大语言模型,如谷歌的 BERT 模型可用于语义理解。

技术方面,2017 年 6 月谷歌团队发表的论文《Attention is All You Need》首次提出 Transformer 模型,它基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。

对于没有理工科背景的文科生,可以将 AI 当成一个黑箱,只需要知道它是能理解和输出自然语言的东西即可,其生态位是一种似人而非人的存在。在使用时,基于其“非人”一面,需要通过清晰的语言文字压缩其自由度,明确告诉它任务、边界、目标、实现路径和所需知识。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

拘灵遣将 | 不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事

AI是什么?作为一个不具备理工科背景的文科生,要搞清楚“AI”其实是一件很困难的事情(什么Agents、AIGC、LLM,什么符号主义、什么语义规则傻傻分不清楚),所以最好的处理方式是就把AI当成一个黑箱,我们只需要知道AI是某种模仿人类思维可以理解自然语言并输出自然语言的东西就可以。至于AI如何去理解,其实不重要。于是我们可以发现驱动AI工具和传统道教的驱神役鬼拘灵遣将有奇妙的相似之处,都是通过特定的文字、仪轨程式来引用已有资源,驱使某种可以一定方式/程度理解人类文字的异类达成自己预设的效果,且皆需要面对工具可能突破界限(发疯)的情况。当然,不熟悉道教的朋友可以把这东西理解成某种可以理解人类文字但不是人的魔法精灵/器灵之类的东西——总之,AI的生态位就是一种似人而非人的存在。AI技术再爆炸一万倍,AI的生态位也还是一种似人而非人的存在。由此,我们可以从人类各个文明的传说中,从那些古老哲人们的智慧里寻找到当下和AI、神、精灵、魔鬼这种似人非人存在相处的原则:1.当你想让祂实现愿望时,基于祂的“非人”一面,你需要尽可能的通过语言文字(足够清晰的指令)压缩祂的自由度——(1)你不仅要清晰的告诉祂需要干什么,还需要清晰的告诉祂边界在哪里。(2)你不仅要清晰的告诉祂目标是什么,还需要清晰的告诉祂实现路径方法是哪一条。(3)你不仅要清晰的告诉祂实现路径,最好还直接给到祂所需的正确的知识。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

Others are asking
在日常工作中,AI可以做什么 ?
在日常工作中,AI 具有广泛的应用,主要包括以下方面: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新治疗方法。 提供个性化医疗方案。 控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 评估借款人信用风险,辅助贷款决策。 分析市场数据,辅助投资决策。 提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 分析客户数据,推荐可能感兴趣的产品。 改善搜索结果,提供个性化购物体验。 动态调整产品价格。 提供聊天机器人服务,解决客户问题。 4. 制造业: 预测机器故障,避免停机。 检测产品缺陷,提高产品质量。 优化供应链,提高效率和降低成本。 控制工业机器人,提高生产效率。 5. 交通运输: 智能推荐路线,预测交通拥堵。 此外,AI 还能在工作中帮助人们从单调重复的任务中解放出来,例如输入数据、填写文件等,让人们有更多时间从事专业训练相关的工作。同时,流媒体服务利用 AI 推荐节目和影片,导航软件利用 AI 规划最佳路线等,这些都是 AI 在日常生活中的应用实例。
2025-02-20
我是ai小白,该如何学习ai。并利用ai赚钱
以下是为 AI 小白提供的学习 AI 并利用其赚钱的建议: 一、学习 AI 1. 了解基本概念 阅读「」,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始学习之旅 参考「」中的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 4. 实践和尝试 理论学习后进行实践,巩固知识。 尝试使用各种产品制作作品,并在知识库分享实践成果。 5. 体验 AI 产品 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 二、利用 AI 赚钱 目前利用 AI 赚钱的方式多样,例如: 1. 开发 AI 相关应用或服务,满足特定市场需求。 2. 利用 AI 提升工作效率,在现有工作中创造更多价值从而获得更高收入。 3. 为企业提供 AI 咨询和解决方案服务。 但要注意,成功利用 AI 赚钱需要深入的知识和技能积累,以及对市场需求的敏锐洞察。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其中作者分享了适合纯小白的学习模式,即输入→模仿→自发创造。同时,学习资源大多免费开源,可减轻学习成本。另外,《【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)》中也有关于 AI 技术原理和相关概念的详细介绍,有助于建立知识框架。
2025-02-20
AI 阅读
以下是为您整理的关于 AI 阅读的相关内容: 1. 1 月 19 日的 Xiaohu.AI 日报中提到: AWPortrait 1.3 人像模型更新,优化了棚拍质感、皮肤肌理,增强户外场景优化,提高对面部表情的识别。 Meta AI 的自奖励语言模型采用新型训练方法,自生成训练数据,在 AlpacaEval 2.0 排行榜上表现优异。 微软推出为学生设计的 AI 阅读教练工具,能创造 AI 生成故事,通过语音转文本 AI 分析阅读流利性。 Stefano Rivera 的 AI 交互式“MR 木偶秀”利用多种 AI 工具,包括 3D 渲染、场景构建、音乐和语音技术。 KREA AI 实时生图有新功能,提供文本到图像、背景去除和橡皮擦工具,可实时生成图像提高创作便捷性。 推荐开源知识库程序 Outline,其特点为美观、实时协作、功能丰富,支持 Markdown、即时搜索、与 Slack 集成等。 2. GPT1 到 Deepseek R1 所有公开论文《The 2025 AI Engineer Reading List》中提到:挑选了 50 篇涉及人工智能工程 10 个领域(LLMs、基准、提示、RAG、代理、CodeGen、视觉、语音、扩散、微调)的论文/模型/博客。如果从零开始,可以从此处入手。该系列中所有演讲者的精选文章为 2024 年做了总结,因开办论文俱乐部的文章,多次被要求为从零开始的人推荐阅读清单。这里为人工智能工程师策划了“必读书目”。
2025-02-20
ai入门学习
以下是新手学习 AI 的全面指南: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还有以下相关的学习内容: 1. 入门指南:强化学习: 原文地址:https://mp.weixin.qq.com/s/pOO0llKRKL1HKG8uz_Nm0A 学习深度强化学习的第一个算法可以选择 DQN,并以搞懂它作为入门目标。 2. 写给不会代码的您:20 分钟上手 Python+AI: 在深入学习 AI 时,编程可能会带来挑战,但这份指南旨在让大家更快掌握 Python 和 AI 的相互调用。 您可以在接下来的 20 分钟内,循序渐进地完成以下任务:完成一个简单程序、完成一个爬虫应用抓取公众号文章、完成一个 AI 应用为公众号文章生成概述。 关于 Python:Python 拥有丰富的标准库,还可以通过 pip 工具从类似 GitHub 的平台订购新的工具,在 AI 领域被广泛使用。 关于 OpenAI API:OpenAI 通过 ChatGPT 提供开箱即用的服务,也通过 OpenAI API 提供更加灵活的服务,可通过代码调用完成更多自动化任务。
2025-02-20
免费生成音乐的ai 软件
以下是一些免费生成音乐的 AI 软件: :与 DAW 集成的生成音乐工具,100%免版权费。 :为创意媒体提供的伦理音乐 AI。 :AI 音乐创作平台和探索声音宇宙的个人音乐制作人。 :通过音乐赋予您新的创作和表达方式。 :使用 AI 改变您的歌唱声音。 :为您的创造力和生产力提供 AI 音乐。 :使用 AI 生成声音、音效、音乐、样本、氛围等。 :带有 AI 助手并支持本地 VST 插件的网页 DAW。 :Audacity®音频编辑器的网页版。 此外,Riffusion 推出了 FUZZ 这一全新音乐生成模型,基于扩散模型,支持永久免费开放(只要服务器能撑住)。FUZZ 通过生成声谱图(Spectrogram)并转换为音频,可输入提示词(音乐类型、乐器、情绪等)生成风格匹配的音乐,支持无缝风格过渡,如从“爵士小号独奏”平滑切换到“电子舞曲节奏”。
2025-02-20
雪梅May的AI学习笔记
以下是雪梅 May 的 AI 学习笔记相关内容: 1. 作者介绍: 适合纯 AI 小白,可参考此日记,学习模式为输入→模仿→自发创造。 学习内容因 AI 节奏快可能不适用,可去 waytoAGI 社区找感兴趣的最新内容。 学习时间有空就进行,目前作者进行到 90 天。 2024 年保持较好学习状态,若觉得难做到不用有压力。 学习资源免费开源。 2. 第一阶段: DAY5 2024.5.26:开始使用 kimi,抱着每天问 100 个问题的心态调整思考模式。 DAY6 2024.5.31:应朋友推荐学习吴恩达生成式人工智能课程,在 B 站有资源,抽空 3 天学完。 DAY7 2024.6.1:探索用 AI 解决真实问题,如写行业研究报告。 3. 2024 年 12 月 31 日历史更新(归档): 雪梅 May 挑战 100 天与 AI 学习的过程,分为系统性学习、模仿实践、研究 Prompt 提示词阶段,学习路线图适合新人参考。 Meta 首席 AI 科学家 LeCun 访谈,指出 AI 根本局限,阐述不同于主流 LLM 的技术路径。 少卿的《AI 帮你赢,谈双重主体性》,强调将 AI 视为方法,提供实用应用框架。
2025-02-20
提供几篇讲解AI 相关的基本概念、知识框架的文章
以下是为您提供的讲解 AI 相关的基本概念、知识框架的文章: 1. 新手学习 AI 方面: 建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,并获得证书。 2. 书籍推荐方面: 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让您系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。 3. 相关文章方面: 《》:这是公众号琢磨事翻译的领英工程师的一篇文章,分享了在领英开发 AI 驱动产品的经验,重点探讨了生成式 AI 的相关内容。 《麻省理工科技评论》发布的《》:万字长文探讨了人工智能的定义和发展,详细阐述了人工智能的基本概念、技术背景及其在各个领域的应用,分析了当前的技术挑战和未来的发展方向,还讨论了人工智能对社会、经济和伦理的影响。
2025-02-06
了解 AI 视频制作的基本概念和常见工具
AI 视频制作的基本概念: 将小说或其他创意内容通过一系列步骤转化为视频,通常包括文本分析、角色与场景生成、视频编辑与合成等环节。 常见工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):用于创建小说中的场景和角色图像的 AI 图像生成工具。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,能生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 制作 AI 短片的故事来源和剧本写作: 1. 故事来源: 原创(直接经验):自身或周围人的经历、做过的梦、想象的故事等。 改编(间接经验):经典 IP、名著改编、新闻改编、二创等。 2. 剧本写作: 编剧是有一定门槛的手艺,不能单纯套剧作理论和模板,要多写多实践,再结合看书总结经验。 对于短片创作,可从自身或朋友的经历改编入手,或者对触动自己的短篇故事进行改编。 多与他人讨论故事,有助于修改和进步。 AI 春晚的制作分工: 1. 制片人AJ:负责影片的制作管理,包括团队组建、日程安排、信息收集、资料整理、各处岗位工作缺失时及时补上等。 2. 图像创意??:负责用 AI 生成富有想象力的角色和场景等所有出现在视频中的画面,并为每个角色赋予人物小传。 3. 视频制作??:将做好的角色场景等图像素材进行 AI 图生文的工作,需要擅长运营工具的笔刷等控制工具,更好的契合剧本。 4. 编剧?:负责撰写剧本,包括故事情节、角色串联、人物台词等。 5. 配音和配乐?:涉及背景音乐、音效、角色配音、声音克隆,用各种声音类 AI 工具捏出来。 6. 剪辑师?:负责把后期剪辑,包括镜头选择、节奏控制和音效配合。 AI 春晚团队高效协作的方法: AI 的创造速度快,每个分工职责中有擅长的共创同学,人员分工明确,形成了高效的 SOP,从而可以快速产出。
2024-10-21
0基础中老年学习者必须知道的AI基本概念和知识 是哪几个
对于 0 基础的中老年学习者,以下是必须知道的 AI 基本概念和知识: 一、Python 基础 1. 基本语法:包括变量命名、缩进等规则。 2. 数据类型:如字符串、整数、浮点数、列表、元组、字典等。 3. 控制流:条件语句(if)、循环语句(for 和 while)控制程序执行流程。 4. 函数:定义和调用函数,理解参数和返回值,以及作用域和命名空间。 5. 模块和包:导入模块,使用包来扩展程序功能。 6. 面向对象编程(OOP):类和对象的定义与实例化,属性和方法的定义与调用。 二、AI 背景知识 1. 基础理论:了解人工智能、机器学习、深度学习的定义及相互关系。 2. 历史发展:回顾 AI 的发展历程和重要里程碑。 三、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等基本概念。 3. 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 四、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:了解其基本概念。 五、评估和调优 1. 性能评估:知道如何评估模型性能,如交叉验证、精确度、召回率等。 2. 模型调优:学习使用网格搜索等技术优化模型参数。 六、文件操作 1. 文件读写:学习打开文件、读取文件内容和写入文件。 2. 文件与路径操作:理解如何处理文件路径,列举目录下的文件。 七、异常处理 1. 理解异常:了解什么是异常以及在 Python 中的工作方式。 2. 异常处理:学会使用 try 和 except 语句处理程序错误。
2024-09-13
如何了解AI的基本概念,是否有词条清单
以下是帮助您了解 AI 基本概念的一些途径和内容: 阅读相关资料:建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能、机器学习、深度学习的定义及其之间的关系,以及 AI 的主要分支和它们之间的联系。 浏览入门文章:这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 学习数学基础:包括统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 了解算法和模型:监督学习(如线性回归、决策树、支持向量机)、无监督学习(如聚类、降维)、强化学习(简介强化学习的基本概念)。 掌握评估和调优知识:如性能评估(包括交叉验证、精确度、召回率等)、模型调优(学习如何使用网格搜索等技术优化模型参数)。 您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。同时,AI 领域广泛,您可以根据自己的兴趣选择特定的模块(比如图像、音乐、视频等)进行深入学习。
2024-09-12