Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

100 万 tokens 什么概念

Answer

100 万 tokens 具有以下重要意义和影响:

  • 算法视角:更宽的上下文窗口允许模型在推理时纳入训练数据中未找到的大量新的、特定于任务的信息,从而提高各种自然语言或多模式任务的性能。对越来越长的上下文进行数据建模的能力经历了从 Shannon 1948 提出的 2-gram 语言模型、到 1990 年代和 2000 年代的现代 n-gram 模型(5 个上下文 token),2010 年代的循环神经网络(RNN)达到数百个 token(Jozefowicz 等),到 2023 年 Anthropic 将上下文扩展到几十万 token 的发展历程。
  • 产品视角:长上下文意味着 LLM 理解能力增强。从提示词到 RAG,都是为了增加给模型的上下文,进而让需求更明确,让模型理解得更好。从用数据训练模型、到指令微调,到提示词和 RAG,到大模型的超长下文,机器越来越像人了。提示词和 RAG 正在快速被弱化,但出于工程和商业考量,目前在很多领域还是主流,未来依然可能是一个混合状态。模型上下文长度覆盖了书籍、电影、长视频等产品的通用长度,应该会引发相关链路上产品交互层的变化。
  • 具体应用:Gemini1.5 支持 100 万 token,可以一次性处理大量信息,比如 1 小时的视频,11 小时的音频,超过 30,000 行代码或超过 700,000 个单词的代码库。Claude-2-100 k 模型的上下文上限是 100k Tokens,即 100000 个 Token。ChatGPT-16 k 模型的上下文上限是 16k Tokens,即 16000 个 Token;ChatGPT-4-32 k 模型的上下文上限是 32k Tokens,即 32000 个 Token。Token 限制同时对一次性输入和一次对话的总体上下文长度生效,当达到上限时,会遗忘最前面的对话。若想直观查看 GPT 如何切分 token,可以打开[https://platform.openai.com/tokenizer]。此外,英文的 Token 占用相对于中文较少,因此很多中文长 Prompt 会被建议翻译成英文设定,然后要求中文输出。
Content generated by AI large model, please carefully verify (powered by aily)

References

Gemini1.5笔记 | 100万token上下文意味着什么

算法视角:更宽的上下文窗口允许模型在推理时纳入训练数据中未找到的大量新的、特定于任务的信息,从而提高各种自然语言或多模式任务的性能……对越来越长的上下文进行数据建模的能力follow了这个发展历程:从Shannon 1948提出的2-gram语言模型、到1990年代和2000年代的现代n-gram模型(5个上下文token),2010年代的循环神经网络(RNN)达到数百个token(Jozefowicz等),到2023年Anthropic将上下文扩展到几十万token。产品视角:长上下文意味着LLM理解能力增强。从提示词到RAG,都是为了增加给模型的上下文,进而让需求更明确,让模型理解得更好。从用数据训练模型、到指令微调,到提示词和RAG,到大模型的超长下文,机器越来越像人了。提示词和RAG正在快速被弱化,但出于工程和商业考量,目前在很多领域还是主流,未来依然可能是一个混合状态。模型上下文长度覆盖了书籍、电影、长视频等产品的通用长度,应该会引发相关链路上产品交互层的变化,这一点值得观察。One more thing:在公众号发送“1.5",获取Gemini1.5技术报告的中英文版。-END-

Gemini1.5笔记 | 100万token上下文意味着什么

原创李光华DavidLee David的AI全景图2024-02-25 18:58北京原文地址:https://mp.weixin.qq.com/s/JO3LrZTN0haIr6cNOAXhxAGemini1.5在2月15日的更新非常重磅,不然也不会触发OpenAI武器库中的Sora发布。继续践行Learn in public精神,分享一下当时看Gemini blog和技术报告的笔记。[heading3]1、Gemini1.5相比于Gemini1.0的主要更新:[content]1.5 Pro的质量与1.0 Ultra相当,而计算量却更少。支持100万token,可以以一次性处理大量信息:比如1小时的视频,11小时的音频,超过30,000行代码或超过700,000个单词的代码库。

小七姐:Prompt 喂饭级系列教程小白学习指南(三)

Claude-2-100 k模型的上下文上限是100k Token s,也就是100000个TokenChatGPT-16 k模型的上下文上限是16k Token s,也就是16000个TokenChatGPT-4-32 k模型的上下文上限是32k Token s,也就是32000个Token但似乎很多小伙伴不理解这个限制具体影响在哪些方面。所以我替你们问了一下GPT从回答可以看出,这个Token限制是同时对下述两者生效的:一次性输入一次对话的总体上下文长度,值得注意的是这个长度不是达到上限就停止对话,而是遗忘最前面的对话,你可以理解为鱼的记忆只有7秒,第8秒的时候他会忘记第1秒的事,第9秒的时候……(某些同学是不是恍然大悟了)三、怎么看我使用了多少Token如果我们想要直观的查看GPT是如何切分token的话,我们可以打开:[https://platform.openai.com/tokenizer](https://platform.openai.com/tokenizer)在下图可以看到实时生成的tokens消耗和对应字符数量请注意,GPT3和GPT3.5/4的token计算方式是不一样的。(GPT3用的编码是p50k/r50k,GPT3.5是cl100K_base)在这里值得注意的是,英文的Token占用相对于中文是少很多的,这也是为什么很多中文长Prompt会被建议翻译成英文设定,然后要求中文输出的原因。四、Token限制对Prompt编写有什么影响当你理解了前面的一、二、三之后,这个问题的答案应该已经在你脑子里有雏形了:

Others are asking
分析一下a16z 的ai top100榜单
以下是对 a16z 的 AI top100 榜单的分析: A16Z 的 AI top100 榜单聚焦生成式 AI 应用。自 ChatGPT 将生成式 AI 引入公众视野以来,已涌现出成千上万面向消费者的相关产品。 在 AI 陪伴方面,它已成为生成式 AI 的主流应用场景之一。例如,Character.AI 在网页端和移动端榜单上表现出色。网页端有八家 AI 陪伴公司进入榜单,移动端有两家。其中,多数产品自诩“无限制”,用户可进行不受限的对话或互动,且访问主要通过移动网页,平均 75%的流量来自移动设备。对于有移动应用的陪伴产品,用户参与度高,如 Character.AI 每位用户平均每月会话次数达 298 次,Poly.AI 为 74 次。 时隔六个月更新分析,超过 40%的公司是首次出现在榜单上。与六个月前相比,有 30%的新公司。名次进步最大的是 Suno,从第 36 名到第 5 名。移动端最多的应用是图像和视频编辑,占 22%。Luzia 服务西班牙语用户值得关注。字节多款应用上榜,包括 Coze、豆包、CiCi、醒图、Gauth。美学和约会应用开始增加,为用户提供相关建议。此外,Discord 流量值得关注,相当多的应用在其平台完成 PMF 验证。 原文链接:https://a16z.com/100genaiapps/ 作者:A16Z Olivia Moore 发布时间:2024.03.13 去年 9 月的报告:
2025-01-02
AI 100天学习日志
以下是关于雪梅 May 的 AI 学习日记的相关内容: 1. 适合人群:适合纯 AI 小白,若还在观望不知如何入手,可参考此日记。 2. 学习模式:学习模式为输入→模仿→自发创造。若对费曼学习法没自信,可尝试此模式。 3. 学习内容:日记中的学习内容因 AI 节奏快可能不适用,可去 waytoAGI 社区发现感兴趣的领域并学习最新内容。 4. 学习时间:在半年多时间跨度中,其中 100 天学习 AI,并非每天依次进行,有空时学习,目前作者已进行到 90 天。 5. 学习费用:学习资源免费开源。 此外,作者在第九阶段的感受是,想明白从让个人更优秀角度前进就有很多灵感,其学习路径为迈出第一步→大量的学习输入→疯狂的模仿→开始自己创造→学的越来越宽越来越杂→积累的量变产生质变→开始分享。在第二阶段,作者因自身工作选择了 AI agent 领域的 coze 进行学习,认为可根据自身熟悉领域选择学习方向,coze 适用所有人,无需代码基础和图文审美,只要能发现智能体需求,就可用工作流实现。
2025-01-02
coze 如何 100% 调用插件
在 Coze 中调用插件并非能 100% 保证成功,以下是一些相关信息: Coze 的工作流中,节点是基本单元,插件节点可用于扩展大语言模型本身的限制,实现特定功能,如抓取网页内容。 加入智能体后,会有调用次数的统计。 即使是官方插件也可能存在不稳定的情况,需要自行尝试找到适合当前场景的插件。 例如在微信图片助手的打造中,有以下操作: 任务 1 总结图片内容对应【识图小能手】等任务与相应插件存在对应关系,已在 Coze 插件商店上架,搜索关联即可。 配置插件时,需准备好 Glif 的 Token,在 Coze 中编辑参数选项填入 Token 并保存,同时关闭对大模型的可见按钮。 通过已有服务 api 创建插件时: 进入 Coze 个人空间选择插件,新建并命名,填入 ngrok 随机生成的 https 链接地址,配置输出参数,测试后发布。 手捏插件后可创建 bot 并接入插件,在 prompt 中要求调用插件。 需要注意的是,Coze 调用插件有一定随机性,对输入输出内容会有过滤,如果多次尝试不成功,可优化提示词使其更准确识别输入意图,且不要使用违规字词和图片内容。
2024-12-28
coze 如何 100% 调用工作流或插件
要 100% 调用 Coze 的工作流或插件,您可以参考以下内容: 实现工作流方面: 上传输入图片。 理解图片信息,提取图片中的文本内容信息。 进行场景提示词优化/图像风格化处理。 返回文本/图像结果。 搭建流程时,主要步骤包括上传图片(将本地图片转换为在线 OSS 存储的 URL,以便在平台中进行调用),以及将图片理解大模型和图片 OCR 封装为工作流插件(若市场中有可直接使用)。 Coze 简介: 插件:Coze 提供丰富的插件选项,允许通过 API 连接集成各种平台和服务,扩展 Bot 功能,可轻松调用或创建定制插件。 工作流:是强大的工具,用于设计和实施复杂的功能逻辑,通过拖拽不同任务节点构建多步骤任务,提高 Bot 处理任务效率。 图像流:提供可视化操作界面,允许灵活添加处理节点,设计图像处理流程。 触发器:允许 Bot 在设定的特定时间或发生特定事件时自动执行任务,是自动化处理的关键组件。 知识库:使您能够添加和利用本地或在线的文本内容和数据表,支持 Bot 提供更准确和实用的回答。 变量:帮助 Bot 存储用户的个人信息,如语言偏好,使回复更加个性化和精准。 数据库:提供简单高效的方式管理和操作结构化数据,支持自然语言的数据插入和查询,还支持多用户模式,提供灵活读写权限控制。 长期记忆:使 Bot 能够形成对用户的个人记忆,基于这些记忆提供个性化回复,提升用户体验。 卡片:允许自定义 Bot 生成内容的格式,以卡片形式展示,增强交互体验。 大模型:通过人设与回复逻辑中的一系列设定,编排 Bot 的具体执行任务和执行逻辑。 此外,判断任务/Prompt 是否需要拆解为工作流时,通常先从当前性能最强的 LLM 着手,用单条 Prompt 或 Prompt Chain 测试任务执行质量和稳定性,再根据实际情况逐步拆解子任务。对于场景多样、结构复杂、对输出格式要求严格的内容,基本可预见需要拆解为工作流。鉴于 LLM 只能处理文本输入输出的特性,涉及生成多媒体内容或从网络自主获取额外信息等能力时,必然需要通过工作流来调用相应的插件。
2024-12-28
撰写一篇汽车领域人工智能自动驾驶应用系统方案,参照以下要求:(1) 选题应为课程相关的技术或者原理的应用。 (2) 重点撰写第2部分技术与服务,必须要使用到课程中所学到或者相关技术。 (3) 第6部分财务分析可根据情况适当缩减。 (4) 整体架构可以根据选题进行调整,可适当增加章节或者删减。 (5) 字体大小、标题等必须和模板相同。篇幅20页以上,不少于10000字,小四,宋体。 以下为一篇样稿,可参考其框架撰写 城市智能停车服务系统建设方案 目 录 1 项目背景 1 1.1 项目背景
以下是为您撰写的汽车领域人工智能自动驾驶应用系统方案的部分内容,您可以根据实际需求进行进一步的完善和补充: 一、项目背景 人工智能在汽车行业的应用已经十分广泛,正在深刻改变汽车的各个方面。自动驾驶技术利用 AI 进行图像识别、传感器数据分析和决策制定,使汽车能够自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司都在积极开发和测试自动驾驶汽车。车辆安全系统中,AI 用于增强自动紧急制动、车道保持辅助和盲点检测等功能,通过分析摄像头和传感器数据预防事故。个性化用户体验方面,AI 可根据驾驶员偏好调整车辆设置,包括座椅位置、音乐选择和导航系统。预测性维护通过分析车辆实时数据,预测潜在故障和维护需求,提高车辆可靠性和效率。在汽车制造中,AI 用于自动化生产线,优化生产流程和质量控制。汽车销售和市场分析中,AI 帮助分析市场趋势、消费者行为和销售数据,优化营销策略和产品定价。电动化和能源管理方面,AI 在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。共享出行服务借助 AI 优化路线规划、车辆调度和定价策略,提升服务效率和用户满意度。语音助手和车载娱乐由 AI 驱动,允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。车辆远程监控和诊断利用 AI 系统远程监控车辆状态,提供实时诊断和支持。 二、技术与服务 1. 自动驾驶技术 传感器融合:采用多种传感器,如激光雷达、摄像头、毫米波雷达等,收集车辆周围环境信息。利用 AI 算法对这些多源数据进行融合和分析,提高环境感知的准确性和可靠性。 深度学习决策:基于深度神经网络,训练车辆的决策模型。通过大量的真实驾驶数据,让模型学习如何在各种复杂场景下做出最优的驾驶决策,如加速、减速、转向等。 模拟训练:利用虚拟仿真环境进行大规模的自动驾驶训练。在模拟环境中,可以快速生成各种复杂和罕见的交通场景,加速模型的训练和优化。 2. 车辆安全系统 实时监测与预警:利用 AI 实时分析来自车辆传感器的数据,如车速、加速度、转向角度等,以及外部环境信息,如道路状况、天气条件等。当检测到潜在的危险情况时,及时向驾驶员发出预警。 自动紧急制动:基于 AI 的图像识别和距离检测技术,当判断车辆即将与前方障碍物发生碰撞且驾驶员未采取制动措施时,自动启动紧急制动系统,降低事故风险。 3. 个性化用户体验 偏好学习:通过收集驾驶员的日常操作数据,如座椅调整习惯、音乐播放喜好、常用导航路线等,利用机器学习算法分析和学习驾驶员的偏好模式。 智能推荐:根据学习到的偏好,为驾驶员提供个性化的推荐,如座椅自动调整、音乐推荐、导航路线规划等。 4. 预测性维护 数据采集与分析:安装各类传感器收集车辆的运行数据,如发动机转速、油温、轮胎压力等。利用 AI 算法对这些数据进行分析,挖掘潜在的故障模式和趋势。 故障预测模型:建立基于机器学习的故障预测模型,提前预测可能出现的故障,并及时通知驾驶员和维修人员,安排预防性维护。 5. 生产自动化 质量检测:利用机器视觉技术和 AI 算法,对生产线上的汽车零部件进行自动检测,识别缺陷和瑕疵,提高产品质量。 生产流程优化:通过分析生产数据,如设备运行状态、生产节拍等,利用 AI 优化生产流程,提高生产效率,降低生产成本。 三、财务分析(可根据情况适当缩减) 1. 初始投资 技术研发费用:包括自动驾驶算法开发、硬件设备采购、测试场地建设等方面的费用。 车辆改装和设备安装成本:为实现自动驾驶功能,对车辆进行改装和安装相关传感器、计算设备等的成本。 2. 运营成本 数据采集和处理费用:持续收集车辆运行数据和环境数据,并进行处理和分析的费用。 维护和升级成本:对自动驾驶系统进行定期维护、软件升级和硬件更换的费用。 3. 收益来源 车辆销售增值:配备自动驾驶和智能功能的汽车可以提高售价,增加销售收入。 服务订阅费用:为用户提供个性化服务、远程监控和诊断等服务的订阅收费。 4. 盈利预测 根据市场需求、成本控制和收益增长情况,进行短期和长期的盈利预测。 以上内容仅供参考,您可以根据具体的项目需求和实际情况进一步完善和细化各个部分。
2024-12-27
如何利用ai日赚100元
以下是一些利用 AI 日赚 100 元的方式和相关信息: 1. 开发基于通义千问的 AI 助理模型,例如高一的“小朱婷”开发的“航天小飞侠”,通过设计抽奖环节等方式吸引用户,从而获得收益。 2. 利用 AI 进行调酒,如在 AI 玩聚摊位,根据用户的 MBTI 和星座生成专属的鸡尾酒配方,并现场调制售卖。 3. 利用以下 2023 年的 AI 工具进行创作或相关服务以获取收益: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 等。 图片处理:DallE、Leonardo、BlueWillow、Midjourney 等。 版权写作:Rytr、Copy AI、Wordtune、Writesonic 等。 设计:Canva、Clipdrop、Designify、Microsoft Designer 等。 网站搭建:10Web、Framer、Hostinger、Landingsite 等。 视频处理:Klap、Opus、Invideo、Heygen 等。 音频处理:Murf、LovoAI、Resemble、Eleven Labs 等。 SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope 等。 Logo 设计:Looka、LogoAI、Brandmark、Logomaster 等。 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 等。 自动化工具:Make、Zapier、Bardeen、Postman 等。 市场营销。
2024-12-24
智谱 注册送2000万 tokens
智谱 BigModel 共学营第二期相关信息如下: 本期共学应用为人人可打造的微信助手。 注册智谱 Tokens:智谱 AI 开放平台的网址为 https://bigmodel.cn/ 。参与课程至少需要有 token 体验资源包,获取资源包有三种方式: 新注册用户,注册即送 2000 万 Tokens。 充值/购买多种模型的低价福利资源包,直接充值现金,所有模型可适用的网址为 https://open.bigmodel.cn/finance/pay 。 共学营报名赠送资源包。 语言资源包:免费 GLM4Flash 语言模型/ 。 多模态资源包: 。 多模态资源包: 。所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 。 先去【财务台】左侧的【资源包管理】看看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 进入智能体中心我的智能体,开始创建智能体。 会议 ID:185 655 937 ,会议链接:https://vc.feishu.cn/j/185655937 ,共学营互动群。 BigModel 开放平台是智谱一站式的大模型开发及应用构建平台。基于智谱自研的全模型矩阵,面向企业客户及合作伙伴,支持多样化模型和自定义编排。平台提供即插即用的智能工具箱,包括 API 接口、模型微调及部署功能,同时具备流程编排以适应复杂业务场景。还提供免费、好用、高并发的 GLM4Flash 模型,0 元上手大模型,新用户注册登录即送 2000 万 Tokens,调用智谱全家桶模型。更多应用场景包括: 。
2024-12-05
上下文窗口和 tokens限制
以下是关于上下文窗口和 tokens 限制的详细解释: Token 方面: Token 是大模型语言体系中的最小单元。人类语言发送给大模型时,会先被转换为大模型自己的语言,大模型推理生成答案后再翻译为人类能看懂的语言输出。 不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。 大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 上下文方面: 上下文指对话聊天内容前、后的内容信息,其长度和窗口都会影响大模型回答的质量。 上下文长度限制了模型一次交互中能够处理的最大 token 数量,上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 目前常见模型的 token 限制: Claude 2 100k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT 16k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT 4 32k 模型的上下文上限是 32k Tokens,即 32000 个 token。 Token 限制的影响: 对一次性输入和一次对话的总体上下文长度同时生效。 当达到上限时,不是停止对话,而是遗忘最前面的对话,类似于鱼的短暂记忆。 查看 token 使用量: 对于 GPT,可以打开查看实时生成的 tokens 消耗和对应字符数量。 需注意 GPT3 和 GPT3.5/4 的 token 计算方式不同,且英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。 Token 限制对 Prompt 编写的影响:理解前面的内容后,答案应在您的脑海中有雏形。
2024-11-15
各个大模型tokens价格
截止 2024 年 5 月,我查询到的大模型Token价格供您参考: !
2024-05-13
AI的基本概念
AI(人工智能)是一种能够模仿人类思维、理解自然语言并输出自然语言的技术。它主要分支包括机器学习、深度学习、自然语言处理等。 从概念上看,生成式 AI 生成的内容称为 AIGC。相关技术名词众多,如机器学习包括监督学习、无监督学习、强化学习;监督学习有标签的训练数据,目标是学习输入和输出的映射关系;无监督学习的数据无标签,算法自主发现规律,经典任务如聚类;强化学习从反馈中学习以最大化奖励或最小化损失;深度学习参照人脑有神经网络和神经元,可用于多种学习方式;生成式 AI 能生成文本、图片、音频、视频等内容;LLM 是大语言模型,如谷歌的 BERT 模型可用于语义理解。 技术方面,2017 年 6 月谷歌团队发表的论文《Attention is All You Need》首次提出 Transformer 模型,它基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。 对于没有理工科背景的文科生,可以将 AI 当成一个黑箱,只需要知道它是能理解和输出自然语言的东西即可,其生态位是一种似人而非人的存在。在使用时,基于其“非人”一面,需要通过清晰的语言文字压缩其自由度,明确告诉它任务、边界、目标、实现路径和所需知识。
2025-01-18
各种AI概念
以下是关于各种 AI 概念的介绍: 基础概念: 人工智能(AI):一种目标,让机器展现智慧,Artificial Intelligence,简称 AI。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容,Generative AI 简称 GenAI。 机器学习:一种手段,让机器自动从资料中找到公式。 深度学习:一种更厉害的手段,类神经网络 非常大量参数的函数。 大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称 LLMs。 ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。英文解释:Chat 聊天,G:Generative 生成,P:Pretrained 预训练,T:Transformer 类神经网络模型。 相关概念: AIGC(Artificial Intelligence Generated Content):是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。ChatGPT 是 AIGC 技术的一个应用实例,代表了 AIGC 在文本生成领域的进展。 概念之间的关系:可参考相关图示。 区别与理解:AGI、GenAI、AIGC 几个概念的区别与理解可参考相关图示。 更多概念:可问 Kimi、通义千问、文心一言等大模型。 国内主要模型公司及地址:(未给出具体内容) AI 的应用场景: 医疗保健:医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未给出具体内容)
2025-01-07
智能体与工作流是同一个概念吗
智能体和工作流不是同一个概念。 智能体是一个能够执行特定任务、具有一定自主性和智能的实体。例如,在扣子平台上,可以通过添加插件和设置工作流等方式让智能体变得更强大,以完成各种复杂的任务。 工作流则像是一个可视化的拼图游戏,由多个小块块(节点)组成,如插件、大语言模型、代码块等,这些小块块可以像拼图一样组合在一起,从而创造出复杂但稳定的业务流程。当面对多步骤、对结果要求严格的任务时,工作流最为适用。工作流有开始和结束的小块块,不同小块块可能需要不同的信息才能工作。 在构建稳定可用的 AI 智能体时,通常会先测试单条 Prompt 或 Prompt Chain 的执行质量和稳定性,然后根据实际情况逐步拆解子任务,对于场景多样、结构复杂、对输出格式要求严格的任务,基本可以预见到需要将其拆解为工作流。此外,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,也必然需要通过工作流来调用相应的插件。
2024-12-26
请解释一下AI智能体的概念及功能
AI 智能体是指类似于 AI 机器人小助手的存在。简单理解,参照移动互联网,它类似 APP 应用的概念。AI 大模型是技术,而面向用户提供服务的产品形式就是智能体,所以很多公司关注 AI 应用层的产品机会。 在 C 端,比如社交方向,用户注册后先创建自己的智能体,然后让其与他人的智能体聊天,聊到一起后真人再介入,这是一种有趣的场景;还有借 Onlyfans 入局打造个性化聊天的创业公司。在 B 端,如果字节扣子和腾讯元器是面向普通人的低代码平台,类似 APP 时代的个人开发者,那还有帮助 B 端商家搭建智能体的机会,类似 APP 时代专业做 APP 的。 目前有不少大厂推出自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。AI 智能体拥有各项能力,能帮我们做特定的事情。它包含了自己的知识库、工作流,还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。AI 智能体的出现是为了解决像 GPT 或者文心一言大模型存在的胡编乱造、时效性、无法满足个性化需求等问题,结合自身业务场景和需求,定制出适合自己的智能体来解决问题。 例如,扣子(Coze)是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论用户是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot,开发完成后还可将其发布到各种社交平台和通讯软件上供用户交互聊天。创建智能体通常包括起名称、写介绍、使用 AI 创建头像等简单步骤。
2024-12-17
ai诈骗概念
AI 诈骗是指利用人工智能技术进行的欺诈行为。例如,通过生成逼真的虚假内容、模拟真实身份等手段来欺骗受害者。 拜登签署的 AI 行政命令中提到要保护美国人免受 AI 带来的诈骗和欺骗,商务部将为内容认证和水印制定指导方针,以清晰标注 AI 生成的内容,联邦机构将使用这些工具让美国人容易知晓从政府收到的通信是真实的,并为私营部门和全球各国政府树立榜样。 在 AI 术语中,与相关概念有关的术语包括智能体(Agent)等。 在小学课堂的课程设计中,对于三年级的孩子,会用他们能理解的语言来介绍 AI,比如简单说明 AI 是让计算机或机器能像人类一样思考和学习的技术。
2024-11-20
ai学术概念
以下是关于 AI 学术概念的相关内容: AI 基本概念: 人工智能包括机器学习、深度学习、自然语言处理等主要分支,它们之间存在联系。 可通过阅读「」熟悉术语和基础概念。 AI 学习方法: 浏览入门文章,了解 AI 的历史、应用和发展趋势。 参考「」中的课程,如李宏毅老师的课程。 利用在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,有机会获得证书。 AI 学习方向: 根据兴趣选择特定模块深入学习,如图像、音乐、视频等领域。 掌握提示词技巧,上手容易且实用。 AI 实践巩固: 理论学习后通过实践巩固知识,尝试使用各种产品创作作品。 可在知识库分享实践成果。 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式,获取实际应用体验。 对 AI 的认识: 对于不具备理工科背景的文科生,可将 AI 视为模仿人类思维、能理解和输出自然语言的黑箱。 其生态位是似人而非人的存在,与传统道教的驱神役鬼拘灵遣将有相似之处。 当使用 AI 实现愿望时,要基于其“非人”一面,通过清晰的语言文字压缩其自由度,包括明确告知任务、边界、目标、实现路径和方法,甚至直接提供所需的正确知识。 AI 术语: 如 Computational Cost(计算成本)、Computational Optimisation(计算优化)、Computational Science(计算科学)、Computational Toxicology(计算毒理学)、Computer Science(计算机科学)、Computer Simulations(计算机模拟)、ComputerAided(计算机辅助)、Constraint(约束)、CoreLoss Spectrum(电子能量损失谱中的高能区域)、Coulomb Matrix(库仑矩阵)、CoupledCluster Predictions(耦合簇预测)、CrossValidated Coefficient of Determination(交叉验证的决定系数)等术语均属于 AI 领域。
2024-11-20