AI 在学术上的应用十分广泛,以下为您详细介绍:
chatgpt,google bard在日常工作生活中很有用,这些技术也极大加速了医疗健康生物制药的研究,ai已经在抗癌,抗衰老,早期疾病防治等的研究应用中起着重要作用。以下是一些最新的进展:1、ai提前三年诊断胰腺癌,如果当年有这个,也许乔布斯还在世:https://hms.harvard.edu/news/ai-predicts-future-pancreatic-cancerImage:Rasi Bhadramani/iStock/Getty Images Plus2、两名高中生与医疗技术公司Insilico Medicine及其人工智能平台PandaOmics合作,发现了与胶质母细胞瘤相关的三个新靶基因,这些基因对于有效对抗这种癌症至关重要:https://finance.yahoo.com/news/teenage-geniuses-ai-uncover-cancer-163541619.html3、ai帮助抗衰老;由Integrated Biosciences领导的一项最新研究通过使用人工智能筛查了超过800,000种化合物,专家们发现了三种高效的药物候选物,其药理学性质优于目前已知的抗衰老物质:https://www.earth.com/news/artificial-intelligence-identifies-new-anti-aging-compounds/4、使用ai寻找阿尔兹海默症的治疗方法;亚利桑那大学与哈佛大学共同利用人工智能对健康神经元在疾病进展过程中的分子变化研究,以识别阿尔茨海默病的原因和潜在药物靶点。https://medicalxpress.com/news/2023-05-scientists-ai-drug-alzheimer.html5 ai帮助早期诊断帕金森;悉尼新南威尔士大学的科学家与波士顿大学研究人员使用神经网络分析患者体液中的生物标志物,在帕金森病的第一个症状出现前几年就可以发现该疾病。
最重要的突破是——在2024年,诺贝尔物理学奖和化学奖先后颁给AIAI不仅推动了机器学习的理论创新,还揭示了蛋白质折叠问题。其标志了人工智能AI已经真正成为一门科学学科和加速科学的工具。AI在生物医学气象等突破应用有哪些?基于深度学习和Transformer架构的蛋白质结构预测模型——AlphaFold 3由DeepMind和Isomorphic Labs发布的AlphaFold 3是一个基于深度学习和Transformer架构的蛋白质结构预测模型,能够高精度地预测包括蛋白质、DNA、RNA、配体等生物分子的结构和相互作用。它的出现将为细胞功能解析、药物设计和生物科学的发展提供有力支持。DeepMind展示新的实验生物学能力——AlphaProteo其秘密蛋白质设计团队推出第一个模型AlphaProteo是一种能够设计出具有三到三百倍亲和力的亚纳米摩尔蛋白结合剂的生成模型。生物学前沿模型的扩展:进化规模ESM3自2019年以来,Meta一直在发布基于Transformer的语言模型(进化规模模型),这些模型是通过大型氨基酸和蛋白质数据库进行训练的。今年,他们发布了ESM3,这是一种前沿多模态生成模型,它是在蛋白质序列、结构和功能上进行训练的,而不是仅仅在序列上进行训练。与传统的掩码语言建模不同,ESM3的训练过程使用可变掩码计划,使模型暴露于各种掩码序列、结构和功能的组合。ESM3能够学习预测任何模态组合的完成情况。学习设计人类基因组编辑器的语言模型——CRISPR-Cas图谱
苹果Vision Pro成为必备的机器人研究工具尽管消费者对Vision Pro的需求平淡无奇,但它在机器人研究领域引起了轰动,在那里其高分辨率、高级跟踪和处理能力被研究人员用于远程操作控制机器人的运动和动作。如Open-TeleVision和Bunny-Vision Pro使用它来帮助实现精确控制多指机械手(例如前者距离为3000英里),展示比以前的方法更复杂的任务的改进性能,如实时控制、通过碰撞避免的安全性和有效的双臂协调。在医学中利用大模型生成合成数据微调Stable Diffusion中的U-Net和CLIP文本编码器,从大量真实胸部X射线(CXR)及其相应的放射科医生报告中生成一个大型数据集,从而产生由权威放射科医生评估为高保真度和概念正确性的合成CXR扫描数据,并且生成的X射线图像可用于数据增强和自监督学习。企业自动化获得人工智能后将优先升级传统的机器人流程自动化(RPA),如UiPath,面临着高昂的设置成本、脆弱的执行和繁重的维护。两个新颖的方法,FlowMind(JP Morgan)和ECLAIR(斯坦福大学),使用基础模型来解决这些限制。FlowMind专注于金融工作流,通过API使用LLM来生成可执行的工作流。在对NCEN-QA数据集进行实验时,FlowMind在工作流理解方面达到了99.5%的准确率。ECLAIR采取了更广泛的方法,使用多模态模型从演示中学习,并直接与各种企业环境中的图形用户界面交互。在网页导航任务上,ECLAIR将完成率提高了从0%到40%。