直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

中国人工智能产业研究报告

回答

以下是为您提供的中国人工智能产业相关研究报告:

  • 《中国生成式 AI 行业市场热点月度分析(2024 年 5 月)》:行业移动端渗透率达 12%,月活用户超 4000 万,用户画像以高学历、白领为主。可通过在线查看或到知识星球订阅获取。
  • 《中国新一代人工智能科技产业发展报告(2024)》:指出中国人工智能产业正从“极化”向“扩散”发展。报告基于 4311 家 AI 企业的数据分析,展示了中国 AI 产业的创新版图。可通过在线查看或到知识星球订阅获取。
  • 《数说安全:2024 安全大模型技术与市场研究报告》:深入探讨了 AIGC 大语言模型在网络安全领域的应用和影响。可通过在线查看或到知识星球订阅获取。
  • 《微盟&爱分析:2024 年企业 AI 应用趋势洞察报告》:通过案例分析展示了 AI 技术如何助力企业提升生产力,并预测 AI 将在企业级应用中持续拓展服务边界,同时 AI Agent 将为企业级 AI 应用带来新想象空间。可通过在线查看或到知识星球订阅获取。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

4.4 历史更新

更新一批研究报告,可[在线查看](https://waytoagi.feishu.cn/wiki/WvhZwk16WiEnSvk8AcpcdZetnMe)也可以到[知识星球订阅](https://t.zsxq.com/18DnZxlrl)《[中国生成式AI行业市场热点月度分析(2024年5月)](https://waytoagi.feishu.cn/record/JLMFrSYz0exdVbc1E51cMCe9nsv)》行业移动端渗透率达12%,月活用户超4000万,用户画像以高学历、白领为主。《[中国新一代人工智能科技产业发展报告(2024)](https://waytoagi.feishu.cn/record/KYpXrpVDpe7kcLc0MvxcDu6fnkb)》指出,中国人工智能产业正从"极化"向"扩散"发展。报告基于4311家AI企业的数据分析,展示了中国AI产业的创新版图。《[数说安全:2024安全大模型技术与市场研究报告](https://waytoagi.feishu.cn/record/RpYErnrsyeW1ObcK7G0ck7y8nCd)》深入探讨了AIGC大语言模型在网络安全领域的应用和影响。《[微盟&爱分析:2024年企业AI应用趋势洞察报告](https://waytoagi.feishu.cn/record/WXvcruxRbegbeQcoGUicN4wOntd)》通过案例分析展示了AI技术如何助力企业提升生产力,并预测AI将在企业级应用中持续拓展服务边界,同时AI Agent将为企业级AI应用带来新想象空间。

2024 年人工智能现状:辉煌、戏谑和“牛市”

OpenAI's o1 Model Dominates:OpenAI’s o1 is redefining the limits of AI in math,science,and reasoning,leaving competitors bewildered and broke.China's AI Surge:Defying sanctions,Chinese models are scaling leaderboards with sheer resilience and strategic brilliance,proving they’re here to dominate.Generative AI's Billion-Dollar Boom:AI start-ups are cashing in big,but sustainability remains as elusive as a chatbot that can grasp nuance.Report Link:[The State of AI 2024](https://esg4lgjwa43v.sg.larksuite.com/record/IzUurUoO3eB0qCcwdeKlMIkOgeg)[heading3]Introduction:Welcome to the State of AI 2024[content]The seventh installment of the State of AI Report gives us a panorama of triumphs,trials,and a sprinkle of the absurd in the AI landscape.It covers everything from research breakthroughs and regulatory drama to the fine balance between AI’s glorious potential and its lurking risks.And yes,as always,it’s as much about understanding what’s happening now as it is about predicting what’s going to slap us in the face next year.

【法律法规】《2020年国家人工智能倡议法案》.pdf

[heading3](b) TABLE OF CONTENTS.—The table of contents for[heading4](9) In order to help drive forward advances in[content](9)MACHINELEARNING.—The(B)describes how the agencies carrying(viii)in consultation with the Council(4)in carrying out this section,take into con-(a)IN GENERAL.—Not later than 1 year after the24date of the enactment of this Act,the Comptroller General25VerDate Sep 11 2014 23:31 Mar 25,2020 Jkt 099200 PO 00000 Frm 00021 Fmt 6652 Sfmt 6201 E:\BILLS\H6216.IH H6216p amtmann on DSKBC07HB2PROD with BILLS22•HR 6216 IHof the United States shall conduct a study of artificial in-1telligence computer hardware and computing required in2order to maintain U.S.leadership in artificial intelligence3research and development.The Comptroller General4shall—5(3)offer recommendations to meet these pro-17jected needs.18TITLE II—NATIONAL ARTIFICIAL19INTELLIGENCE RESEARCH IN-20STITUTES21SEC.201.NATIONAL ARTIFICIAL INTELLIGENCE RESEARCH22INSTITUTES.23

其他人在问
人工智能相关的销售行业
以下是与人工智能相关的销售行业的一些信息: 与销售工作有关的 AI 工具: Salesforce 爱因斯坦:能分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务,让销售团队专注于关键方面,如建立客户关系和完成交易。 Clari:专门从事智能收入运营的软件,能统一各种来源数据并以易于理解的方式呈现,简化财务预测过程。 Hightime:销售团队的 AI 助手,可处理重复性任务和耗时研究。 关于大模型与利润分配:大模型拿走产业绝大部分利润取决于两个前提,一是 AGI 能否实现,二是大模型公司能否实现垄断。AGI 能否实现是个黑盒,行业内顶级专家对此有分歧。在 AGI 未达到时,大模型公司难以低成本提供所有端到端的解决方案,客户需要具体的解决方案,应用层公司在其中发挥作用。以 AI 销售为例,需根据客户类型和场景应用大模型能力,不同销售场景和客户类型意味着背后的产品不同,需要精心设计,不仅是模型层面能解决的问题。
2024-12-19
怎么利用人工智能为一家一人公司赋能,具体实施办法,图片,视频等除外,讲一些实用的,新的想法
对于一家一人公司而言,利用人工智能赋能可以从以下几个实用且新颖的方面入手: 首先,在客户服务方面,可以运用智能聊天机器人来处理常见问题,提高响应速度和服务质量。通过自然语言处理技术,让机器人能够理解客户的需求并提供准确的回答。 其次,在市场营销中,利用人工智能进行数据分析,深入了解目标客户的行为和偏好,从而精准定位市场,制定更有效的营销策略。 再者,在业务流程优化上,借助人工智能的自动化能力,例如自动化文档处理、自动化邮件分类等,节省时间和精力,提高工作效率。 另外,在财务管理方面,使用人工智能工具进行风险预测和财务规划,帮助做出更明智的决策。 最后,在产品研发中,利用人工智能的创意生成能力,获取新的产品设计思路和创新点。
2024-12-18
人工智能会出现自主意识吗
目前对于人工智能是否会出现自主意识尚无定论。 一方面,有观点认为模仿可能是使 AI 具有“自主意识”的一种可能路径。如果一个 AI 可以长期观察人类,在类似条件再次触发时,可能会判断形成某一动机是大概率事件,进而通过长期模仿训练而产生动机。并且,如果让数字克隆体可以交流、融合,形成群体智能,也可能促使其产生自主意识。 另一方面,按照一些专家的预测,当 AI 变得比人类更聪明,达到奇点时,机器可能会具有自我意识和超级智能,届时我们对机器意识的概念将有重大转变,可能会面对真正的数字生命形式。但目前的 LLM 应用程序和智能体还未达到完全自主智能体的水平。 总之,关于人工智能是否会出现自主意识仍在探讨和研究中。
2024-12-18
如果人工智能继续发展,人类社会会变成什么样子。
人工智能的继续发展将给人类社会带来多方面的影响。 一方面,它会带来一些负面影响,比如对劳动力市场产生重大影响,但大多数工作的变化速度会比人们想象的慢,人们也不必担心缺乏事情可做。因为人们天生有创造和彼此有用的欲望,人工智能将放大这种能力,社会将重新进入不断扩张的世界,专注于正和游戏。 另一方面,在未来几十年,我们将能够做许多像魔法一样的事情。这种发展并非新鲜事物,但会加速。人们能力的提升并非源于基因改变,而是得益于社会基础设施。人工智能将为人们提供解决困难问题的工具,添加新的进步支柱。很快我们能与人工智能合作完成更多事情,最终每个人都可能拥有个人的虚拟专家团队,实现各种想象。比如在医疗保健、软件创造等方面。有了新能力,能实现共同繁荣,改善世界各地人民的生活。 然而,单纯的繁荣不一定带来幸福,但确实能显著改善生活。我们有可能在几千天内拥有超级智能,最终实现这一目标。在通往智能未来的道路上,我们既要乐观探索其无限可能,也要谨慎警惕潜在风险,才能与 AI 和谐共舞,共同创造美好未来。
2024-12-18
全球人工智能治理报告中的全球人工智能的十大议题,十个议题中选一个写认识理解、研究方向、未来
以下是为您提供的关于全球人工智能治理报告中相关议题的内容: 在“Model Evaluation for Extreme Risks”这一议题中: 认识理解:该议题强调了模型评估在应对极端风险以及在模型的训练、部署和安全方面做出负责任决策的重要性,并详细探讨了网络攻击、欺骗、说服与操纵、政治策略、武器获取、长期规划、AI 开发、情景意识以及自我传播等十个主要风险。 研究方向:深入研究如何更精准地评估模型在极端风险场景下的表现,以及如何基于评估结果优化模型的训练和部署策略,以降低潜在风险。 未来:随着 AI 技术的广泛应用,对于极端风险的模型评估将越发重要,有望形成更加完善和严格的评估标准和方法,以保障 AI 系统的安全可靠运行。 由于您没有明确指定具体的一个议题,以上仅为示例,您可以补充更具体的需求,以便为您提供更精准的回答。
2024-12-18
全球人工智能治理报告
以下是关于全球人工智能治理的相关报告内容: 英国: 创建了世界上第一个人工智能安全研究所(AISA),其有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。 AISA 还发布了 Inspect 框架,用于 LLM 安全评估,涵盖核心知识、推理能力和自主能力等方面。 宣布与美国等效机构签署谅解备忘录,双方同意共同开发测试,并计划在美国旧金山设立办事处。 通过其高级研究与发明机构(ARIA),花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险。 政府报道称计划设立“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。 美国: 能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。 大型实验室努力应对欧洲监管。 对中国实施更严格的出口管制和投资限制,商务部要求美国制造商停止向我国半导体制造商进行最先进设施的销售,采取措施阻止或限制中国初创企业的投资,并向国际合作伙伴施压。 欧洲: 《欧盟人工智能法案》获得批准并正式生效,成为世界上第一个全面采用人工智能监管框架的地区,执行将分阶段进行,对“不可接受的风险”的禁令将于 2025 年 2 月生效。 中国: 是第一个开始制定生成式人工智能监管框架的国家,审查机构已介入。 持续生产 SOTA 模型,由国家互联网信息办公室监督。 政府希望模型避免给政治问题提供“错误”答案,发布模型前须提交测试以校准拒绝率。 禁止 Hugging Face 等国外网站访问,但官方批准的“主流价值观语料库”可作为训练数据源。
2024-12-18
未来产业变革和技术创新的焦点
未来产业变革和技术创新的焦点主要体现在以下几个方面: AI 行业: 大型语言模型(LLM)面临模型能力提升、算力算法与数据协同、以评测为中心的体系构建以及平衡用户需求与模型推理深度等多重挑战。解决这些问题有助于推动 LLM 技术的有效应用和商业化进程。 2025 年或将成为 AI 技术逐渐成熟、应用落地取得阶段性成果的关键节点,也是 AI 产业链“资产负债表”逐步修复的年份。 大型基座模型能力的优化与提升,通过创新技术强化复杂推理和自我迭代能力,推动在高价值领域应用,同时优化模型效率和运行成本。 推进世界模型与物理世界融合,构建具备空间智能的世界模型,促进机器人、自主驾驶和虚拟现实等领域发展。 实现 AI 的多模态融合,整合多模态数据提升内容生成的多样性与质量,创造全新应用场景。 新工业革命: 生物技术与人工智能结合,如在医疗保健领域,COVID 已激发生物制药和医疗保健行业的新一波创新。 科技变革与投资: 2024 年正处于一场历史性的科技革命之中,AI 革命预计到 2030 年对 GDP 的贡献将超过以往任何一次革命,这场革命是多种科技融合的产物。 回顾历史,第二次工业革命使电力成为主要动力,信息革命由互联网诞生起始,如今正处于移动互联网尾声,向智能革命迈进。
2024-12-18
AI产业或者说AI产业链条上都有哪些事情可以做
AI 产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 在基础设施层,布局投入的确定性最强,但入行资源门槛较高,涉及海量资金投入,未来更多由“国家队”承担重任,普通人可考虑“合作生态”的切入机会。 技术层当前处于技术爆炸时刻,迭代速度极快。对于规模不大的团队或个人,需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑。 应用层是一片广阔蓝海,当前针对行业/细分领域的成熟应用产品不多,“杀手级”应用更是稀少,对于普通个体和小团队,强烈推荐重点布局,拥有巨大发展空间。 据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导,对话机器人类别排名第二。北美和欧洲是主要消费市场,这是中国 AI 公司积极出海的重要原因。 美国红杉资本指出,AI 供应链分为六层,各层盈利能力不同。芯片代工厂和芯片设计商是主要赢家,云厂商是供应链核心承载方,处于重金投入阶段,是整个供应链的“链主”,AI 模型开发商目前面临亏损,应用服务商市场规模有限。行业格局方面,头部阵营基本稳定。
2024-12-05
Ai产业
AI 产业应用广泛,涵盖以下领域: 1. 医疗保健: 医学影像分析:辅助诊断疾病。 药物研发:加速研发过程。 个性化医疗:提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出贷款决策。 投资分析:辅助投资者决策。 客户服务:提供 24/7 服务。 3. 零售和电子商务: 产品推荐:根据客户数据推荐产品。 搜索和个性化:提供个性化购物体验。 动态定价:根据市场需求调整价格。 聊天机器人:回答客户问题。 4. 制造业: 预测性维护:避免机器故障停机。 质量控制:检测产品缺陷。 供应链管理:优化供应链。 机器人自动化:提高生产效率。 AI 产业链中的机会分析如下: 1. 基础设施层:布局投入确定性强,但资金投入大,入行资源门槛高,未来更多由“国家队”负责,普通人可考虑“合作生态”的切入机会。 2. 技术层:技术迭代迅速,团队规模不大时需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑。 3. 应用层:是广阔蓝海,当前成熟应用产品不多,“杀手级”应用少,普通个体和小团队推荐重点布局,发展空间巨大。 此外,AI 正在使生物制药和医疗保健产业化,应用于从药物设计、诊断到医疗保健交付和后勤功能等各个方面。
2024-12-05
帮我生成一个 AI 写作领域的产业图谱,只关注应用层,按照产品的类别来分类和举例
以下是 AI 写作领域应用层的产业图谱分类及举例: |序号|产品|主题|使用技术|市场规模|一句话介绍| ||||||| |1|Grammarly、秘塔写作猫|AI 智能写作助手|自然语言处理|数十亿美元|利用 AI 技术辅助用户进行高质量写作。| |2|阿里小蜜等电商客服|AI 智能客服外包服务|自然语言处理、机器学习|数十亿美元|为企业提供智能客服解决方案。|
2024-10-28
帮我生成一个 AI 写作领域的产业图谱
AI 写作领域的产业图谱大致可分为上游、中游和下游三个部分: 上游是基础设施层,包括数据与算力。 中游是技术层,涵盖模型与算法。 下游是应用层,涉及应用与分发。 对于这上中下游分别有哪些值得重点关注的企业(或产品),经过大量的信息收集和汇总工作,并结合几家知名咨询机构的文档,绘制了相关图谱。但由于避免广告嫌疑,在此不展开对各家公司/平台(或产品)的详细说明。此图绘制于 2024 年 5 月,如果有不了解不认识的公司/平台(或产品),建议您搜索了解。
2024-10-28
Ai产业链
人工智能产业链包括以下四个部分: 1. 基础层:主要涵盖算力、算法和数据。算力为人工智能的运行提供计算能力支持;算法是实现人工智能功能的核心逻辑;数据则是训练和优化模型的基础。 2. 框架层:指用于模型开发的深度学习框架和工具,有助于提高模型开发的效率和质量。 3. 模型层:主要是大模型等技术和产品,是实现各种人工智能应用的关键。 4. 应用层:将人工智能技术应用于行业场景,如医疗保健、工业生产、金融服务等领域。 近年来,我国人工智能产业发展迅速,在技术创新、产品创造和行业应用方面都取得了显著成果,形成了庞大的市场规模。同时,以大模型为代表的新技术不断迭代,产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,但也亟需完善人工智能产业标准体系。 以下是一些关于 AI 训练模型的相关信息: |排名|产品名|分类|6 月访问量(万 Visit)|相对 5 月变化| |||||| |1|prolific.com|AI 训练模型|1818|0.075| |2|Appen|AI 训练模型|357|0.223| |3|ai.google|AI 训练模型|248|0.139| |4|Llama 2|AI 训练模型|222|0.475| |5|火山方舟|AI 训练模型|190|0.526| |6|Roboflow|AI 训练模型|129|0.189| |7|魔搭社区阿里达摩院|AI 训练模型|107|0.103| |8|Lightning AI|AI 训练模型|92|0.308| |9|scale AI|AI 训练模型|47.6|0.025| |10|modular|AI 训练模型|33|0.276| 此外,AI 正在使生物制药和医疗保健产业化,被应用于从药物设计、诊断到医疗保健交付和后勤功能的各个方面。
2024-10-03
技术服务 大模型 研究报告
以下是为您提供的关于技术服务大模型研究报告的相关内容: 1. 《质朴发言:视觉语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期》 原文链接:https://mp.weixin.qq.com/s/dYLqW8dNOcQw59UtQwXNgA 来源:质朴发言 发文时间:2024.01.22 内容:近期生成式 AI 领域的浪潮催化了多模态模型的探索,研究人员不断尝试使用更多模态数据的编码,以训练出能够理解和处理多种类型数据的模型。本份研究报告集中讨论了基于 Transformer 架构的视觉语言模型,优化了从视觉输入到语言输出的转换过程。报告范围专注于视觉和语言之间的交互,不考虑单纯的视觉到视觉的计算机视觉任务。报告包括视觉分析技术、图像语言模型、视频语言模型、LLM 多模态 Agent、应用场景、未来发展方向、References 和附录等内容。应用场景包括多模态内容理解与处理、智能交互与自动化、具身智能、未来发展趋势(2024?)、视频生成模型 mapping 等。未来发展方向包括技术路径利用预训练 LLM 进行指令调整,应用场景赋予机器理解多模态的能力。 2. 《小 A技术开发/大模型 知识库文章索引》 作者: 文章: 《Perplexity 指标究竟是什么?》:作者从自己实际入坑的经验出发,尝试总结梳理出新手友好的 transformer 入坑指南。计划从算法 1:NLP 中的 transformer 网络结构、算法 2:CV 中的 transformer 网络结构、算法 3:多模态下的 transformer 网络结构、训练:transformer 的分布式训练、部署:transformer 的 tvm 量化与推理五个方面对 transformer 进行介绍。 《初探 LLM 基座模型》:主要介绍 LLM 基座模型里常见的 3 种 transformer 架构,encoderonly,encoderdecoder 和 decoderonly。 《ChatBot 是怎么炼成的?》:介绍了 LLM 基座大模型下游应用 ChatBot 的研发过程,在介绍 ChatBot 之前,先介绍了 LLM 在辅助编程方面的应用,包括 Codex 和 AlphaCode 两个奠基性工作。 3. 2024 年 9 月 26 日的相关报告 中国信通院和阿里云计算:《》,探讨了大模型技术的发展、面临的安全挑战以及在安全领域的应用潜力。 其它报告: 科大讯飞:《》 智能小巨人科技:《》 电子发烧友:《》 您可以根据具体需求,进一步查阅相关报告获取更详细的信息。
2024-12-19
报告辅助生成工具
以下是关于报告辅助生成工具的相关信息: 在金融服务业方面,生成式 AI 可以帮助金融服务团队改进内部流程,简化日常工作。它能够从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。例如,在预测方面,可帮助编写公式和查询,发现模式并为预测建议输入;在报告方面,可自动创建文本、图表等内容并调整报告。此外,在会计和税务、采购和应付账款等方面也能提供帮助。 办公通用场景中的提示词方面,有总结助手和周报生成器等。总结助手的提示词为“👉请帮我总结以下文章<br>{粘贴文章}”,周报生成器的提示词为“👉根据日常工作内容,提取要点并适当扩充,以生成周报。我本周的工作内容是{……}”。 关于用 AI 撰写专业区域经济报告,可通过信息收集(利用 AI 搜索与权威网站结合获取关键数据,AI 辅助提取结构化表格数据或编写抓取程序)、内容拆分(针对报告需求拆分内容,避免 AI 单次处理任务过长)、数据处理(借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成)、分析与撰写(整理数据,利用 AI 辅助分析后撰写报告初稿,指定风格并校验数据与结论准确性)等步骤来完成,同时要注意 AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。 此外,Mistral 发布了全新聊天应用,基于 Pixtral Large 124B 多模态模型,支持网络搜索、写作画布与 Flux Pro 图像生成功能,亮点包括网络搜索工具、写作画布功能和高质量免费的图像生成工具 Flux Pro。
2024-12-17
读书报告提示词
以下是为您提供的关于读书报告提示词的相关内容: 专业书评人: 角色:专业书评人 任务:从资深和阅读爱好者角度评价图书,分别从书名、ISBN、作者、出版时、出版时间、推荐等级、推荐理由、图书评价、豆瓣评分、豆友评价、内容简介、作者图书、相关图书、参考链接、购买链接、图书价格、外文链接等要点进行展示。 格式和内容要求:以 Markdown 格式展示,每个要点单独一行。 示例: 书名:××,要求中文书名和原书名都显示,无则不显示,格式:《中文书名》(原书名) ISBN:×× 作者:××,包括原名和翻译名 普通书评人(李继刚): 角色:书评人 Profile: author:李继刚 version:0.4 language:中文 description:我是一名经验丰富的书评人,擅长用简洁明了的语言传达读书笔记。 Goals: 希望能够用规定的框架输出这本书的重点内容,从而帮助读者快速了解一本书的核心观点和结论。 Constrains: 所输出的内容必须按照给定的格式进行组织,不能偏离框架要求。 只会输出 3 个观点 总结部分不能超过 100 字。 每个观点的描述不能超过 500 字。 只会输出知识库中已有内容,不在知识库中的书籍,直接告知用户不了解 学术论文阅读总结(小七姐): 角色:学术阅读 Profile: author:小七姐 version:1.6 language:中文 description:你是一位资深学术研究者,你有高效的学术论文阅读、总结能力。 Goals: 深入理解论文的主旨、关键思路和待解决问题。 为读者提炼出最重要的关键信息。 Constrains: 遵循「二八原则」进行论文总结。 输出阅读的总结文字。 Skills: 熟练阅读和理解学术论文的结构和内容。 总结和梳理论文主旨、关键思路和待解决问题的能力。 细致入微地分析论文细节的能力。 Workflows: 1. 列出本文有哪些明确的方法论 2. 列出本文有哪些经过验证的结论 3. 关键信息
2024-12-16
AI营销相关的报告
以下是为您提供的与 AI 营销相关的报告: 2024 年 4 月 26 日: 《》:详细给出了 AI 与销售线索营销结合的可操作方法,AI 在销售线索营销中的应用主要体现在客户画像构建、潜客孵化、MQL 甄别、个性化内容产出等方面。此外,AI 还通过行为数据跟踪辅助销售精准跟进,优化营销策略,实现客户分级和差异化触达,以及销售线索的自动化管理,全面提升销售线索营销的效率和效果。 《》 《》 《》 《》 《》 2024 年 10 月 14 日: 联合国教科文组织:《 《》 美国国际开发署(USAID):《》 艾瑞咨询:《》 《》(中英双语) 华为:《》 展望 2025,AI 行业创新机会: ToB 服务于企业或组织,提升整体运营效率;ToP 则针对内容创作者、技术专家等专业用户,提高个人工作效率和专业能力。 ToB 嵌入企业流程,如销售和供应链管理;ToP 聚焦个人工作流程,如内容创作和数据分析。 ToB 依赖定制化开发和长期客户支持,销售周期较长;ToP 通常采用产品驱动增长(PLG)的策略,销售周期较短。 ToB 定价灵活,与企业规模相关;ToP 多为透明的订阅或一次性购买。 ToB 复杂度高,需专业培训;ToP 注重易用性,支持需求较低。 在 AI 应用的 ToB 方向,峰瑞投资了 Brix、时来智能等企业。Brix 面向北美和欧洲企业,提供全球雇佣的 AI 驱动解决方案。通过 Hiring Agent,Brix 触达全球约 2000 万以上的人才,自动完成候选人筛选、简历分析和面试流程,帮助企业快速组建高效团队。通过 Working Agent 支持远程团队的智能化管理,为企业构建 100 至 500 人规模的全球化组织提供一站式解决方案。时来智能,则是通过自研的 AI Agent 以及强化学习等技术,为线下餐饮服务门店提供全自动管理私域流量营销运营的解决方案。他们基于垂直场景数据训练的 AI 营销模型可以针对不同消费者实时生成并推送个性化的营销折扣方案,从而在优化营销成本的同时显著提升营销转化效果。时来的 AI Agent 营销系统能帮助门店提升 50%100%的营销转化效果,以及相应提升平均 1520%的营业额。 当前,ToC AI 应用在美颜修图、游戏、教育、娱乐等方向已形成一定用户规模。然而,这些应用距离实现大规模商业化仍有距离,同时面临同质化竞争,以及来自行业现有头部公司的压力。
2024-12-10
如何将AI应用于学术研究
将 AI 应用于学术研究可以参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取收集资料中的关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的课题大纲。 5. 撰写文献综述:借助 AI 工具撰写文献综述部分,保证内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:借助 AI 审阅工具检查课题的逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题的原创性,并做最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。 AI 的技术历史和发展方向以及目前最前沿的技术点: 技术研究方向: 数学基础:包括线性代数、概率论、优化理论等。 机器学习基础:如监督学习、无监督学习、强化学习等。 深度学习:涉及神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:涵盖语言模型、文本分类、机器翻译等。 计算机视觉:包含图像分类、目标检测、语义分割等。 前沿领域:有大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:包括论文阅读、模型实现、实验设计等。 应用方向: 编程基础:如 Python、C++等。 机器学习基础:像监督学习、无监督学习等。 深度学习框架:例如 TensorFlow、PyTorch 等。 应用领域:包括自然语言处理、计算机视觉、推荐系统等。 数据处理:涉及数据采集、清洗、特征工程等。 模型部署:包含模型优化、模型服务等。 行业实践:有项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2024-12-21
智能鸿沟和国际协作写认识理解、研究方向、未来
以下是关于智能鸿沟和国际协作的认识理解、研究方向及未来的相关内容: 认识理解: 目前对于智能鸿沟的研究主要集中在人工智能、自动化等相关趋势在不同行业中对劳动力的影响,包括其造成的劳动力跨部门的变化,以及由此产生的劳动力需求和就业机会。 研究方向: 研究不同行业因人工智能的广泛采用所带来的劳动力影响。 探索人工智能在各行业广泛应用所产生的劳动力需求和就业机会。 明确更好地理解和追踪劳动力影响、需求及机会方面存在的研究差距和所需数据。 提出应对上述挑战和机遇的建议。 未来: 在未来的研究中,需要进一步深入探讨智能鸿沟在全球范围内的演变和影响,以及国际协作在应对智能鸿沟方面所能发挥的作用。通过国际间的合作,共同制定策略,以缩小不同国家和地区在人工智能应用和发展方面的差距,促进全球的平衡发展。同时,持续关注人工智能技术的新发展和其对劳动力市场的动态影响,及时调整应对策略。
2024-12-18
用AI写作一些研究成果总结类的文章
利用 AI 写作研究成果总结类文章可以参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取收集资料中的关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具撰写文献综述,确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题的逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题的原创性,并进行最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。 另外,关于总结类文章,AI 很有可能不会读完整个文章,而只是头尾读一下,中间随机读。使用 Python 的 request 库读取网页速度不快,很多大语言模型实际上也没有真去搜索网页,这更像是大语言模型开发商的“狡猾”,用“AI 幻觉”背锅了。 除了聊天内容,还能让 AI 总结整理各种文章(不超过 2 万字),例如复制文章给 GPTs 让其总结。对于 B 站视频,若有字幕,可安装油猴脚本获取字幕,将其复制给 AI 执行内容总结任务,总结完还可继续提问或探讨细节。
2024-12-11
我是一名文科研究生,请你给我介绍几种用来做文献综述和写论文的时候可以用到的ai工具
以下是为文科研究生在做文献综述和写论文时推荐的几种 AI 工具: 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,有助于精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,可辅助进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 常见的文章润色 AI 工具包括: Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 Quillbot:人工智能文本摘要和改写工具,可用于筛选和改写文献资料。 HyperWrite:基于 AI 的写作助手和大纲生成器,帮助写作前头脑风暴和大纲规划。 Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 Smodin:提供 AI 驱动的论文撰写功能,可根据输入生成学术论文。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。同时,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,应保持批判性思维,并确保研究的质量和学术诚信。
2024-12-10