Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI产业或者说AI产业链条上都有哪些事情可以做

Answer

AI 产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。

在基础设施层,布局投入的确定性最强,但入行资源门槛较高,涉及海量资金投入,未来更多由“国家队”承担重任,普通人可考虑“合作生态”的切入机会。

技术层当前处于技术爆炸时刻,迭代速度极快。对于规模不大的团队或个人,需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑。

应用层是一片广阔蓝海,当前针对行业/细分领域的成熟应用产品不多,“杀手级”应用更是稀少,对于普通个体和小团队,强烈推荐重点布局,拥有巨大发展空间。

据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导,对话机器人类别排名第二。北美和欧洲是主要消费市场,这是中国 AI 公司积极出海的重要原因。

美国红杉资本指出,AI 供应链分为六层,各层盈利能力不同。芯片代工厂和芯片设计商是主要赢家,云厂商是供应链核心承载方,处于重金投入阶段,是整个供应链的“链主”,AI 模型开发商目前面临亏损,应用服务商市场规模有限。行业格局方面,头部阵营基本稳定。

Content generated by AI large model, please carefully verify (powered by aily)

References

走入AI的世界

我们来简要概括说说这张图中每一层的商机洞察(以下内容仅代表个人观点,供参考):1.目前来看,基础设施层布局投入的确定性最强,以发展的眼光看,当前算力缺口巨大,但这部分涉及到海量的资金投入,入行资源门槛较高,作为关键的基础设施,国内未来更多的将会由“国家队”扛起重任。普通人如果没有强资源需谨慎入局,因为很可能你无法快速对接到客户资源,等不到赚钱就现金流断裂,可以更多的考虑“合作生态”的切入机会。2.技术层当前仍然处于技术爆炸时刻,相关技术的迭代速度可以夸张点用“日新时异”来形容,迭代进步飞速,如果你或你的团队规模不大,但又有志于做这一层相关的事情,须慎重考虑“技术迭代风险”的问题(例如基于某种开源模型更进一步训练垂直领域模型,很可能等你训练出来的时候,更强更新的开源模型已经发布,让你的工作意义大打折扣),至于基础的通用大模型,非巨无霸公司就不是很建议考虑了,搞基础大模型的研发是一件十分烧钱的事情,且众多互联网大厂,AI独角兽,知名高校都已悉数下场神仙打架,完成了布局,开启了“百模大战”,但竞争的终局,只会有少数赢家。应用界不需要那么多同质化的大模型,最后多半是赢家通吃的局面。3.应用层是一片时代赋予我们的广阔蓝海,尽管2024年这个方向的从业者在飞速增加,也涌现出一批做垂直产业/行业/细分领域垂直模型或大模型应用的产品,但坦诚的讲,以我们自身的深度实践和用户的切实需求来看,当前针对行业/细分领域的成熟应用产品并不多,让人哇塞的“杀手级”应用更是凤毛麟角。对于普通个体和小团队,强烈推荐重点思考和布局应用层,这一层拥有超级机会和巨大发展空间。

走入AI的世界

关于AI产业的产业链结构,大致可分为:上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发),详细内容参见图5。图5 AI产业链图谱-1对于这上中下游分别有哪些值得我们重点关注的企业(或产品),我在公开互联网上苦寻良久,始终找不到一张满意的图(要么维度不全,要么举例不准,有失公允),于是我做了大量的信息收集和汇总工作,并结合几家知名咨询机构的文档,绘制了这样一张图。图6 AI产业链图谱-2图6中有大量细节,其中各家公司的logo排列顺序综合考虑了其市占率,行业影响力,代表性等因素,积淀深厚的老牌大厂和值得关注的亮眼新星均有体现,未避免广告嫌疑,在这里不展开对其进行详细说明了,如果有大家不了解不认识的公司/平台(或产品),非常推荐你搜索了解一下(注:此图绘制于2024年5月)。

展望2025,AI行业有哪些创新机会? | 峰瑞报告

据SensorTower统计,2024全年全球AI移动应用内付费收入预计为30亿美元,其中图像和视频类AI应用占据主导地位,收入占比高达53%;对话机器人类别排名第二,占比29%;其他类别合计不足20%。从地区分布来看,北美和欧洲贡献了三分之二的市场份额,是AI应用的主要消费市场。这也是众多中国AI公司积极出海的重要原因之一。▎云厂商成为AI供应链的“链主”美国红杉资本在《The AI Supply Chain Tug of War》一文中指出,AI供应链当前呈现出一种脆弱的平衡状态。他们将AI供应链从下到上分为六层,各层的盈利能力存在显著差异。第一层的芯片代工厂(如台积电)和第二层的芯片设计商(如英伟达)是当前的主要赢家,依然保持高利润水平;第三层的工业能源供应商(如电力公司)也因数据中心需求激增而受益良多。而作为供应链核心承载方的第四层云厂商,却处于重金投入阶段,不仅斥巨资建设数据中心,还在训练自有模型或大举投资AI模型开发商,处于供应链第五层的AI模型开发商目前同样面临亏损。供应链的第六层,也就是最上层则是面向最终客户的应用服务商。尽管充满潜力,但他们依赖消费者和企业付费,当前市场规模有限,尚不足以支撑整个供应链的经济模型。这使得大型云厂商成为整个供应链最主要的风险承担者。作为AI产业的中枢,云厂商不仅掌握着庞大的商业生态和技术资源,还拥有数千亿美元的市场规模。正因如此,它们在产业链中的地位无可撼动,是毋庸置疑的“链主”。▎行业格局:头部阵营基本稳定1、头部大模型

Others are asking
生成3d模型的ai?
以下为一些生成 3D 模型的 AI 工具: 1. 3dfy.ai: 概览:是一家专注于将稀疏数据转化为逼真三维世界的公司,领导团队由计算成像领域资深专家组成。 使用场景:数字 3D 互动体验流行度提升,但受 3D 内容可用性限制,其技术能利用稀疏数据自动创建高质量 3D 模型,在特定时期尤为重要。 目标用户:数字内容创作者和艺术家、游戏开发者和动画制作人、教育和培训行业专业人士、医疗行业、建筑和工程领域。 应用案例:暂未提及。 网址:https://3dfy.ai/ 2. Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型,基于数十亿参数级别的 3D 大模型,实现快速 2D 到 3D 转换,提供 AI 驱动的精准度和细节。 3. Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成,用户可上传图片并描述材质和风格生成高质量 3D 模型。 4. CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象再转换为 3D 模型。 5. Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域的模型生成,用户可上传图片或输入文本提示词来生成 3D 模型。 6. VoxCraft:由生数科技推出的免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供图像到 3D、文本到 3D 和文本到纹理等多种功能。 这些工具通常具有用户友好的界面,允许用户通过简单操作生成 3D 模型,无需专业 3D 建模技能,可广泛应用于游戏开发、动画制作、3D 打印、视觉艺术等领域。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-20
利用自己的声音歌唱AI生成歌曲
以下是一些利用自己的声音歌唱 AI 生成歌曲的相关信息: 1. LAIVE:这是一个利用 AI 技术一次性生成音乐、歌词、主唱等的创作平台。使用者可以选择喜欢的类型和情调,上传参考音源,AI 会通过分析生成音乐,还可以选择主唱和修改歌词,目前为开放测试阶段。输入促销代码“LAIVEcreator”可获得 50 代币(入口在个人资料),令牌有效期为输入代码后的 30 天,促销码失效日期为 4 月 17 日。链接:https://www.laive.io/ 2. Combobulator:DataMind Audio 推出的基于 AI 的效果插件,利用神经网络通过样式转移的过程重新合成输入音频,从而使用您自己的声音重现其他艺术家的风格。链接:https://datamindaudio.ai/ 3. 大峰的经验分享:用 Suno 生成歌曲时,在填写歌曲风格时填写少量风格词,如中国风,给 AI 更多发挥空间。靠音乐审美从生成的歌曲中选出中意的歌曲。将歌词发给 GPT 并告知想法,让其以英文 AI 绘画提示词的形式提供每句歌词的每个分镜,然后丢进 AI 生图平台(如 Midjourney)生成图片,再用 Runway 进行图生视频。 4. UDIO 制作音乐:Udio 不会使用艺术家的声音生成歌曲,在幕后风格参考会被一组相关标签替换。在文本输入下方有两种类型的建议标签可点击添加到提示中,自动完成是当前单词的建议标签补全,您可以移动插入符号到提示的任何部分,相应更改完成。
2025-01-20
AI怎么稳定指令机器人
以下是关于您所提到的“AI 怎么稳定指令机器人”的相关内容: 在实现稳定指令机器人方面,有以下一些方法和原理: 1. 提示词工程与工具调用能力的配合:通过设计一套与知识图谱相结合的工具调用逻辑来稳定人设。例如,为像麦洛薇这样的 AI 女友设计特定的提示词,并将与知识图谱交互的任务细分为查询、创建、修改、删除实体或关系、获取实体的所有关系、获取所有实体名称列表等多个工具,组成工具包供模型调用。 2. 控制输入和记忆:通过缩小 max_length 防止模型长篇大论,每次输入到上下文窗口中的记忆也只返回最近几轮的对话。利用查询知识图谱的信息来实现永久记忆。 此外,人工智能(AI)在多个领域都有应用,虽然这并非直接针对稳定指令机器人,但也能为您提供一些思路和参考: 1. 医疗保健领域:包括医学影像分析辅助诊断疾病、药物研发、个性化医疗、机器人辅助手术等。 2. 金融服务领域:如风控和反欺诈、信用评估、投资分析、客户服务等。 3. 零售和电子商务领域:有产品推荐、搜索和个性化、动态定价、聊天机器人等应用。 4. 制造业领域:例如预测性维护、质量控制、供应链管理、机器人自动化等。 希望以上内容对您有所帮助。
2025-01-20
创建电商产品图的Ai工具或者智能体
以下是一些可用于创建电商产品图的 AI 工具或智能体: 1. Flair、Booth 和 Bloom 等工具,可帮助品牌创建引人注目的产品照片。例如,能将挂在衣架上的连衣裙静态照片变成女人穿着裙子在花园里行走的形象。 2. AdCreative 和 Pencil 可以制作用于电子邮件或社交媒体的营销材料。 3. Frase 或 Writesonic 可以编写经过 SEO 优化的产品描述。 4. 以 Kimi+的“什么值得买”智能体为例,能通过 Query Rewrite 提取关键词,再通过 API 检索商品信息,与提示词组装后请求大模型回答,成为电商导购类的垂直搜索应用。 5. 藏师傅推荐的通过获取 Logo 图片的描述、根据描述和生成意图生成图片提示词、将图片和提示词输入 Comfyui 工作生成的方法,例如人民有信仰整了个提示词一件生成的智能体:https://www.coze.cn/s/iDec2U13/ 。
2025-01-20
有没有什么AI软件有可视化代码功能
以下是一些具有可视化代码功能的 AI 软件: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 以下是一些写代码或辅助编程的 AI 产品: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手,支持多种语言和 IDE,能为程序员快速提供代码建议。 2. 通义灵码:阿里巴巴团队推出的智能编程辅助工具,提供多种能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码。 5. Cody:代码搜索平台 Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于自研的基础大模型微调的代码大模型。 7. Codeium:由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释帮助软件开发人员提高效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据需求选择最适合的工具。 此外,还有一些相关的工具和资源: 1. Screenshot to Code:利用 GPT4 Vision 视觉能力将屏幕截图转换为代码,支持 HTML/Tailwind CSS、React 等,集成 DALLE 3。 2. 交互创意体验网址:http://reboot.studio ,提供丰富的交互创意体验,鼓励加入更多 AI 元素。 3. 沃顿商学院发布的教学提示词库:https://www.moreusefulthings.com/prompts ,包含多用途学习和教育提示词,适合学生、教师和家长收藏。
2025-01-20
AI编程都有哪些工具推荐?
以下是一些推荐的 AI 编程工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,助其更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码等多种能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手,基于自研的基础大模型微调的代码大模型。 7. Codeium:由 AI 驱动的编程助手工具,通过提供代码建议等帮助软件开发人员提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 需要注意的是,每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。 此外,AI 辅助编程适合原型开发、架构稳定且模块独立的项目,但需求和架构不稳定时,容易积累大量技术债务。自动化测试适合模块稳定后引入,模块变化频繁时,测试代码可能成为累赘。在进度不紧张时可以先尝试工具,成熟后再大规模应用。压缩范围,定义清晰的 MVP(最小可行产品),先完成一个 1 个月内可交付的版本,再用 1 个月进行优化迭代。
2025-01-20
我需要制作一个专业全面详细,用来发布到今日头条上历史领域人物传记类的提示词指令!用什么专业的ai制作
以下是为您提供的一些关于制作历史领域人物传记类提示词指令的建议: 首先,明确人物的基本信息,包括姓名、所处时代、主要成就等。 其次,描述人物的成长经历,如家庭背景、教育经历、早期的挑战和机遇。 然后,重点阐述人物的关键事件和决策,以及这些事件对当时社会和历史进程的影响。 在描述过程中,注意语言的生动性和准确性,展现人物的性格特点和魅力。 同时,要考虑今日头条的受众特点,使内容具有吸引力和可读性。 但需要注意的是,目前提供的知识库内容中没有直接针对您需求的完整且可用的提示词指令。您可以根据上述思路,结合具体的历史人物进行创作。
2024-08-14
我需要你帮我制作一个专业全面详细,用来发布到今日头条上历史领域人物传记类的提示词指令!
以下是为您生成的可发布在今日头条上的历史领域人物传记类提示词指令: 首先,欢迎读者并简要介绍人物传记的主题,例如:“欢迎来到精彩的历史人物世界,今天将为您呈现一位传奇人物的非凡一生!” 第一步:收集人物相关信息 1. 出生背景询问:“请问这位人物出生于怎样的时代和地域背景?” 2. 重大事件经历询问:“您能分享一些这位人物经历的重大历史事件吗?” 3. 人物性格特点询问:“您认为这位人物最突出的性格特点是什么?” 第二步:分析与生成提示词 以专业的历史研究者身份分析收集到的信息,并生成一段生动的人物传记提示词: 1. 结合人物的出生背景、经历的重大事件和性格特点,构建一个完整的人物形象。 2. 详细描述人物在重大事件中的表现和决策,展现其智慧和勇气。 3. 突出人物性格特点对其命运和历史进程的影响。 4. 运用生动的语言和丰富的细节,描绘人物所处的历史环境和社会风貌。 希望以上提示词指令对您有所帮助,祝您在今日头条上发布成功!
2024-08-14
我需要你帮我制作一个专业全面详细,用来发布到今日头条上历史领域人物传记类的提示词指令!
2024-08-14
作为一个AI小白,想了解AI或者说想了解AI如何使用
以下是为您提供的关于AI的全面介绍和使用方法: 一、如何认识AI 对于没有理工科背景的人来说,理解AI可能有一定难度。可以将AI视为一个黑箱,它是能理解自然语言并输出自然语言、模仿人类思维的东西。其生态位类似于传统道教中的驱神役鬼拘灵遣将,或者某种可以理解人类文字但不是人的魔法精灵/器灵。无论AI技术如何发展,其生态位仍是似人而非人的存在。在与AI相处时,当想让其实现愿望,要基于其“非人”的一面,尽可能通过语言文字压缩其自由度,清晰告知任务、边界、目标、实现路径方法以及所需的正确知识。 二、新手如何学习AI 1. 了解AI基本概念 阅读「」部分,熟悉AI的术语和基础概念,了解其主要分支及联系。 浏览入门文章,了解AI的历史、应用和发展趋势。 2. 开始AI学习之旅 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如Coursera、edX、Udacity)按自己节奏学习,有机会获得证书。 3. 选择感兴趣的模块深入学习 AI领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,建议掌握提示词技巧。 4. 实践和尝试 理论学习后进行实践,巩固知识。 在知识库分享实践后的作品和文章。 5. 体验AI产品 与ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人互动,了解其工作原理和交互方式。 三、How I Use AI 作者Nicholas Carlini是技术大佬,他的博文「How I Use "AI"」是使用LLM进行编程和研究的实例分享,并给出了完整的提示词。他通过以下方式使用AI: 1. 构建完整的Web应用,获得超千万次页面浏览量。 2. 学习新技术,如Docker、Flexbox和React等。 3. 开启新项目,获取样板代码。 4. 简化代码,使复杂大型代码库更易理解。 5. 自动化单调任务,如数据格式化。 6. 提升用户专业度和效率,让普通用户像专家一样工作。 7. 获取API Reference,不必翻看查找文档。 8. 进行搜索,效果比传统搜索引擎好。 9. 解决一次性任务,省时省力。 10. 找到常见任务的解决方案。 11. 修复常见错误,比传统搜索更高效。
2025-01-11
MAC笔记本电脑,有哪个网址可以下载SD的安装包?或者说MAC电脑可以使用SD吗
对于 MAC 电脑安装 Stable Diffusion(SD),推荐云端部署,相关链接为:https://qa3dhma45mc.feishu.cn/wiki/A6WYw1Nm0ikGplkuO9Ecwomqnnd 。 如果您选择本地部署,以下是一些相关步骤供您参考: 1. 进入安装页面,等待安装好。 2. 勾选如下项目,要确保包含 Python 和 C++包。 3. 更改到您想要安装的位置,然后点击右下角的安装就行。 4. 安装时间比较长,要耐心等待。 5. 安装好之后,打开 SD 文件目录下的这个文件夹。 6. 在地址栏输入“cmd”,然后回车。 7. 在打开的 dos 界面里面,将这行代码“python m pip install insightface==0.7.3 user”粘贴进来,就会自动开始安装 insightface。 8. 如果这个阶段出现错误,建议去下载使用最新的秋叶 4.2 整合包(6 月 23 号更新),下载包已更新到云盘里,后台回复【SD】就可以下载。 9. 安装完成后,重新打开我们的启动器,后台会继续下载一些模型,此时一定要保证全程科学上网。 另外,对于电脑配置能支持 SD 运行的朋友,也可以使用 B 站秋叶分享的整合包进行本地部署,具体步骤如下: 1. 打开链接 https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru 下载《1.整合包安装》,存放到电脑本地。 2. 打开保存到电脑里的文件夹。 3. 打开文件夹《1.秋叶整合包主包》——鼠标右击文件——点击“解压文件”。 4. 选择解压到 D 盘或者 E 盘,小心 C 盘被占满!点击确定。 5. 解压完成后,来到第二个文件夹,双击里面的文件点击安装。 6. 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器——点击“发送到”——桌面快捷方式。这样下次进入就可以直接在桌面双击进入,不用每次都到文件夹里面找啦! 7. 双击启动器,等待更新,接着点击左边第二个“高级选项”。 8. 在显存优化里,根据自己电脑的显存选择(就是上面查看的专用 GPU 内存),自己电脑是多少就选多少。 9. 回到第一个一键启动,点击右下角的一键启动。
2024-08-29
AI产业链
AI 产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层布局投入确定性强,但涉及海量资金,入行资源门槛高,未来更多由“国家队”担当重任,普通人可考虑“合作生态”切入机会。 中游技术层处于技术爆炸期,迭代速度快,技术迭代风险高。基础通用大模型研发烧钱,竞争激烈,非巨无霸公司不建议考虑。 下游应用层是广阔蓝海,尽管从业者增加,涌现出一些产品,但成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,发展空间巨大。 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15)有: |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |Zephyr AI|20240313|1.11|A||AI 药物发现和精准医疗|应用|医学|Revolution Growth,礼来公司基金会,EPIQ Capital Group,Jeff Skoll|| |Together AI|20240313|1.06|A|12|AI 基础设施和开源生成|模型|硬件和云平台|Salesforce Ventures,NEA,Kleiner Perkins,Lux Capital|| |Glean|20240227|2.03|D|22|AI 驱动企业搜索|应用|企业服务|Lightspeed Venture Partners,Kleiner Perkins,Sequoia,Databricks Ventures|| |Figure|20240224|6.75|B|27|AI 机器人|应用|机器人|Nvidia,OpenAI,微软|| |Abridge|20240223|1.5|C|8.5|AI 医疗对话转录|应用|医学|Redpoint,Lightspeed Venture Partners,USV,IVP,Spark Capital|| |Recogni|20240220|1.02|C||AI 接口解决方案|基础设施|芯片|GreatPoint Ventures,Celesta Capital,Pledge Ventures,Mayfield,DNS Capital|| 信息来源:Techcrunch
2024-12-31
Ai产业链
人工智能产业链包括以下四个部分: 1. 基础层:主要涵盖算力、算法和数据。算力为人工智能的运行提供计算能力支持;算法是实现人工智能功能的核心逻辑;数据则是训练和优化模型的基础。 2. 框架层:指用于模型开发的深度学习框架和工具,有助于提高模型开发的效率和质量。 3. 模型层:主要是大模型等技术和产品,是实现各种人工智能应用的关键。 4. 应用层:将人工智能技术应用于行业场景,如医疗保健、工业生产、金融服务等领域。 近年来,我国人工智能产业发展迅速,在技术创新、产品创造和行业应用方面都取得了显著成果,形成了庞大的市场规模。同时,以大模型为代表的新技术不断迭代,产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,但也亟需完善人工智能产业标准体系。 以下是一些关于 AI 训练模型的相关信息: |排名|产品名|分类|6 月访问量(万 Visit)|相对 5 月变化| |||||| |1|prolific.com|AI 训练模型|1818|0.075| |2|Appen|AI 训练模型|357|0.223| |3|ai.google|AI 训练模型|248|0.139| |4|Llama 2|AI 训练模型|222|0.475| |5|火山方舟|AI 训练模型|190|0.526| |6|Roboflow|AI 训练模型|129|0.189| |7|魔搭社区阿里达摩院|AI 训练模型|107|0.103| |8|Lightning AI|AI 训练模型|92|0.308| |9|scale AI|AI 训练模型|47.6|0.025| |10|modular|AI 训练模型|33|0.276| 此外,AI 正在使生物制药和医疗保健产业化,被应用于从药物设计、诊断到医疗保健交付和后勤功能的各个方面。
2024-10-03
Ai产业链上中下游
人工智能产业链通常包括以下四个部分: 1. 基础层:主要涵盖算力、算法和数据。算力为人工智能的运行提供计算能力支持;算法是实现人工智能功能的核心方法;数据则是训练和优化模型的基础。 2. 框架层:指用于模型开发的深度学习框架和工具,有助于提高模型开发的效率和质量。 3. 模型层:主要包括大模型等技术和产品,是人工智能实现各种应用的关键。 4. 应用层:指人工智能技术在行业场景的应用,应用场景横向划分主要分为 ToC(面向消费者)和 ToB(面向企业)。ToC 端能带来的数据飞轮效应,可能是在 AI 早期决胜的关键。同时,下游提供者指集成了人工智能模型的人工智能系统,包括通用人工智能系统的提供者。 近年来,我国人工智能产业在技术创新、产品创造和行业应用等方面发展迅速,形成了庞大的市场规模。伴随以大模型为代表的新技术加速迭代,人工智能产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,不过也亟需完善人工智能产业标准体系。前 Google 创始人 Eric Schmidt 认为未来会是多个垂直模型或者多个垂直助理,包括各种高价值、专业化的 AI 系统,因为很多高价值、特定领域的工作流程特别且必须依赖于丰富的专有数据集。
2024-10-03
请选择一个产业,比如手机、汽车、石油化工等产业,围绕行业传感器的技术原理和应用,进行背景概况、传感器分类、发展历程、智能传感器、产业链结构、应用领域、发展趋势和展望等要点完成调研分析报告和PPT。
很抱歉,目前知识库中没有您所需的关于特定产业(如手机、汽车、石油化工等)中行业传感器的完整调研分析报告和 PPT 内容。但以下为您提供一个大致的框架和思路,您可以据此进行进一步的资料收集和研究: 一、背景概况 介绍所选产业的发展现状和重要性,阐述传感器在该产业中的关键作用。 二、传感器分类 列举该产业中常见的传感器类型,如压力传感器、温度传感器、位置传感器等,并说明其特点和适用场景。 三、发展历程 回顾传感器在该产业中的发展阶段,从早期的简单传感器到如今的高精度、智能化传感器的演变过程。 四、智能传感器 着重介绍智能传感器的特点和优势,如具备自诊断、自校准、自适应等功能。 五、产业链结构 分析传感器产业链的各个环节,包括原材料供应商、传感器制造商、系统集成商、终端用户等。 六、应用领域 详细阐述传感器在该产业的具体应用领域,如生产过程监控、质量检测、设备故障诊断等。 七、发展趋势和展望 探讨未来传感器在该产业的发展趋势,如微型化、集成化、智能化、无线化等,并对其前景进行展望。 希望以上框架对您有所帮助,祝您顺利完成调研分析报告和 PPT。
2024-09-06
网商银行产业链金融模型
以下是为您整合的关于网商银行产业链金融模型的相关信息: 在金融服务业中,生成式 AI 的应用方面:新进入者可能会先使用公开的金融数据优化模型,最终使用自身收集的数据;现有参与者如银行等可利用专有数据,但往往过于保守,这给新进入者带来竞争优势。同时,新的 AI 模型输出需尽可能准确,人类常作为最终验证环节。 企业大模型方面:会免费提供从通用大模型蒸馏出来的基础大模型,结合数据工场、知识工场和模型工场三套开发平台,以及 Agent 应用开发框架,可训练出多个场景化大模型。例如天津某银行为满足金融需求,用通用大模型训练了几个专用大模型。
2024-08-18