Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Ai产业链

Answer

人工智能产业链包括以下四个部分:

  1. 基础层:主要涵盖算力、算法和数据。算力为人工智能的运行提供计算能力支持;算法是实现人工智能功能的核心逻辑;数据则是训练和优化模型的基础。
  2. 框架层:指用于模型开发的深度学习框架和工具,有助于提高模型开发的效率和质量。
  3. 模型层:主要是大模型等技术和产品,是实现各种人工智能应用的关键。
  4. 应用层:将人工智能技术应用于行业场景,如医疗保健、工业生产、金融服务等领域。

近年来,我国人工智能产业发展迅速,在技术创新、产品创造和行业应用方面都取得了显著成果,形成了庞大的市场规模。同时,以大模型为代表的新技术不断迭代,产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,但也亟需完善人工智能产业标准体系。

以下是一些关于 AI 训练模型的相关信息: |排名|产品名|分类|6 月访问量(万 Visit)|相对 5 月变化| |-|-|-|-|-| |1|prolific.com|AI 训练模型|1818|0.075| |2|Appen|AI 训练模型|357|0.223| |3|ai.google|AI 训练模型|248|-0.139| |4|Llama 2|AI 训练模型|222|-0.475| |5|火山方舟|AI 训练模型|190|-0.526| |6|Roboflow|AI 训练模型|129|-0.189| |7|魔搭社区-阿里达摩院|AI 训练模型|107|0.103| |8|Lightning AI|AI 训练模型|92|-0.308| |9|scale AI|AI 训练模型|47.6|-0.025| |10|modular|AI 训练模型|33|-0.276|

此外,AI 正在使生物制药和医疗保健产业化,被应用于从药物设计、诊断到医疗保健交付和后勤功能的各个方面。

Content generated by AI large model, please carefully verify (powered by aily)

References

国家人工智能产业综合标准化体系建设指南.pdf

人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术,正加速和实体经济深度融合,深刻改变工业生产模式和经济发展形态,将对赋能新型工业化、加快建设制造强国、网络强国和数字中国发挥重要的支撑作用。人工智能产业链包括基础层、框架层、模型层、应用层等4个部分,其中,基础层主要包括算力、算法和数据,框架层主要是指用于模型开发的深度学习框架和工具,模型层主要是指大模型等技术和产品,应用层主要是指人工智能技术在行业场景的应用。近年来,我国人工智能产业在技术创新、产品创造和行业应用等方面实现快速发展,形成庞大市场规模。伴随以大模型为代表的新技术加速迭代,人工智能产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善人工智能产业标准体系。

新工业革命:生物技术×人工智能

[title]新工业革命:生物技术×人工智能[heading2]科技与生物科技的二战时刻我们今天正站在这个转折点上。直到现在,医疗保健和生物技术仍然大量依赖服务——由受过专业培训的科学家和[医生](https://a16z.com/2019/06/13/ai-doctor-deep-medicine-topol/)提供——这些服务是算法无法替代的,更不用说为公司增加足够的价值来采纳它们了。但现在,我们正处于一个革命的起点,[AI正在](https://a16z.com/2019/11/19/ai-industrializing-discovery-biology-healthcare/)工业化生物制药和医疗保健,它被应用于从[药物设计](https://a16z.com/2020/05/26/investing-insitro/)和[诊断](https://a16z.com/2017/03/01/going-deeper-into-freenome/)到[医疗保健交付](https://a16z.com/2021/07/12/investing-in-bayesian-health/)和[后勤功能](https://a16z.com/2021/02/09/administration-healthcare-back-office-innovation/)的各个方面。(关于在生物学中应用AI的讨论经常出现的问题或挑战,我在[此处](https://a16z.com/2018/02/28/black-box-problem-ai-healthcare/)解决了医疗保健中AI的“黑箱”问题;并在[此处](https://a16z.com/2021/06/15/ai-is-too-dumb-for-now-2/)解决了我们获取智能[与“愚蠢”]AI的需求问题。)[heading4]但现在,我们正处于一个革命的起点,AI正在使生物制药和医疗保健产业化,并且它被应用到从药物设计和诊

AI训练模型 Top10

|Will's GenAI产品数据AI训练模型_排行|Will's GenAI产品数据AI训练模型_产品名|Will's GenAI产品数据AI训练模型_分类aiwatch.ai|Will's GenAI产品数据AI训练模型_6月访问量(万Visit)|相对5月变化|<br>|-|-|-|-|-|<br>|1|prolific.com|AI训练模型|1818|0.075|<br>|2|Appen|AI训练模型|357|0.223|<br>|3|ai.google|AI训练模型|248|-0.139|<br>|4|Llama 2|AI训练模型|222|-0.475|<br>|5|火山方舟|AI训练模型|190|-0.526|<br>|6|Roboflow|AI训练模型|129|-0.189|<br>|7|魔搭社区-阿里达摩院|AI训练模型|107|0.103|<br>|8|Lightning AI|AI训练模型|92|-0.308|<br>|9|scale AI|AI训练模型|47.6|-0.025|<br>|10|modular|AI训练模型|33|-0.276|

Others are asking
两张照片还原人脸,用什么AI工具
以下是一些可用于两张照片还原人脸的 AI 工具和方法: 1. Stable Diffusion: 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够时放大图片。 利用 GFPGAN 算法将人脸变清晰,可参考文章。 将图片发送到图生图中,打开 stableSR 脚本放大两倍,切换到 sd2.1 模型进行修复,vae 选择 vqgan,提示词可不写。 2. Midjourney(MJ):加上简单的相机参数、写实风格,使用 MJ v 6.0 绘图,可调整图片比例。 3. InsightFaceSwap: 输入“/saveid”,idname 可随意填写,上传原图。 换脸操作输入“/swapid”,id 填写之前设置的名称,上传分割好的图。 选择效果较好的图片,注意插件每日免费使用次数。 此外,还会用到 PS 进行图片的角度调整、裁切、裁剪、拼接等操作。
2025-02-21
AI编程的落地场景是什么
以下是 AI 编程的一些落地场景: 1. 智能体开发:从最初只有对话框的 chatbot 到具有更多交互方式的应用,低代码或零代码的工作流在某些场景表现较好。 2. 证件照应用:以前实现成本高,现在可通过相关智能体和交互满足客户端需求。 3. 辅助编程: 适合原型开发、架构稳定且模块独立的项目。 对于像翻译、数据提取等简单任务,可通过 AI 工具如 ChatGPT 或 Claude 解决,无需软件开发。 支持上传图片、文档,执行代码,甚至生成视频或报表,大幅扩展应用场景。 4. 自动化测试:在模块稳定后引入,模块变化频繁时需谨慎。 5. 快速迭代与发布 MVP:尽早发布产品,不追求完美,以天或周为单位快速迭代。 需要注意的是,AI 编程虽强,但目前适用于小场景和产品的第一个版本,在复杂应用中可能导致需求理解错误从而使产品出错。在进度不紧张时可先尝试新工具,成熟后再大规模应用。同时,压缩范围,定义清晰的 MVP(最小可行产品),先完成一个 1 个月内可交付的版本,再用 1 个月进行优化迭代。
2025-02-21
不同ai模型的应用场景
以下是不同 AI 模型的应用场景: 基于开源模型: Civitai、海艺 AI、liblib 等为主流创作社区,提供平台让用户利用 AI 技术进行图像创作和分享,用户无需深入了解技术细节即可创作出较高质量的作品。 基于闭源模型: OpenAI 的 DALLE 系列: 发展历史:2021 年初发布 DALLE,2022 年推出 DALLE 2,2023 年发布 DALLE 3,不断提升图像质量、分辨率、准确性和创造性。 模型特点:基于变换器架构,采用稀疏注意力机制,DALLE 2 引入 CLIP 模型提高文本理解能力,DALLE 3 优化细节处理和创意表现。 落地场景:2C 方面可控性强于 Midjourney,但复杂场景和细节处理能力不如 Midjourney;2B 方面与 Midjourney 场景类似。 商业化现状:通过提供 API 服务,使企业和开发者能集成到应用和服务中,采取分层访问和定价策略。 伦理和合规性:加强对生成内容的审查,确保符合伦理和法律标准。 大模型: 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 编程和代码辅助:用于代码自动补全、bug 修复和代码解释。 翻译和跨语言通信:促进不同语言背景用户之间的沟通和信息共享。 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 教育和学习辅助:创建个性化学习材料、自动回答学生问题和提供语言学习支持。 图像和视频生成:如 DALLE 等模型可根据文本描述生成相应图像,未来可能扩展到视频内容生成。 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家沉浸式体验。 医疗和健康咨询:理解和回答医疗相关问题,提供初步健康建议和医疗信息查询服务。 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务门槛。 这些只是部分应用场景,随着技术进步和模型优化,AI 模型在未来可能会拓展到更多领域和场景。同时,也需注意其在隐私、安全和伦理方面的挑战。
2025-02-21
爆款AI视频
以下是关于爆款 AI 视频的相关内容: 2025AI 春晚: 行业身份:首届 AI 春晚发起人&总导演,包括央视总台论坛&直播、TEDxAI 演讲、得到分享等。 爆款视频案例:快手&国家反诈中心合作,微博 650w+热搜,快手 520w+热搜(6 月 28 日);央视&海尔冰箱首支 AI 概念短片(6 月 29 日);个人制作视频,无推流,快手平台 636w 播放(6 月 29 日)。 社区与企业关系:涉及 WaytoAGI、AIGCxChina 等聚会,以及德必集团、万兴集团、福布斯 AItop50 等的论坛分享,还有嘉定区政府颁奖、温州 AI 音乐大会、腾讯研究院论坛、江西财经大学分享、宣亚集团分享等。 WTF:1w 粉 10w 粉仅仅用时 13 天,像素级拆解《动物时装秀》: 作者模仿动物时装秀账号效果不错并分享教程。一个爆款视频至少要满足以下几点: 切片:短视频通过不断切片,增加信息密度,从长视频和其他短视频中脱颖而出。 通感:利用人的直觉脑,不让观众动脑子,如头疗、水疗直播间靠声音让人舒服,美食直播间靠展示美食吸引人。 反差:可参考抖音航线里行舟大佬的相关文档。 视频模型:Sora: OpenAI 突然发布首款文生视频模型 Sora,能够根据文字指令创造逼真且充满想象力的场景,生成 1 分钟的超长一镜到底视频,女主角、背景人物等都有惊人的一致性和稳定性,远超其他 AI 视频工具。
2025-02-21
AI音频与数字人
以下是关于 AI 音频与数字人的相关信息: 数字人口播配音: 操作指引:输入口播文案,选择期望生成的数字人形象及目标语言,选择输出类型,点击开始生成。 支持的数字人形象和语言多样,能让视频制作更高效。 图片换脸: 操作指引:上传原始图片和换脸图片,点击开始生成。 图片大小上限 5M,支持 JPG、PNG 格式。 视频换脸: 操作指引:上传原始视频和换脸图片,点击生成。 音频合成数字人: 操作指引:上传音频文件,选择数字人角色和输出类型,点击开始生成。 支持 MP3 和 WAV 格式的音频文件,文件大小上限 5M,工具支持使用 100+数字人模板,可解决无素材冷启问题。 AI 配音: 多语种(包含菲律宾语、印地语、马来语等小语种)智能配音,同时支持区分男声和女声。 操作指引:输入需配音文案,选择音色,点击立即生成。 注意输入的配音文案需和选择音色语种保持一致。 AI 字幕: 操作指引:点击上传视频,开始生成,字幕解析完成后下载 SRT 字幕。 支持 MP4 文件类型,大小上限为 50M。 在数字人语音合成方面,提到了声音克隆,有新的声音克隆且音质很不错。算法驱动的数字人相关开源代码仓库有: ASR 语音识别:openai 的 whisper(https://github.com/openai/whisper)、wenet(https://github.com/wenete2e/wenet)、speech_recognition(https://github.com/Uberi/speech_recognition)。 大模型:ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。 Agent 部分:可以使用 LangChain 的模块去做自定义(https://www.langchain.com/)。 TTS:微软的 edgetts(https://github.com/rany2/edgetts)、VITS(https://github.com/jaywalnut310/vits)、sovitssvc(https://github.com/svcdevelopteam/sovitssvc)。 构建简单数字人的方式包括通过手动建模(音频驱动)或者 AIGC 的方式生成人物的动态效果(例如 wav2lip 模型),但仍存在一些问题,如如何生成指定人物的声音、TTS 生成的音频如何精确驱动数字人口型以及做出相应的动作、数字人如何使用知识库做出某个领域的专业性回答等。
2025-02-21
现阶段最智能的AI工具是哪一款?
现阶段很难确切地指出哪一款 AI 工具是最智能的,因为这取决于不同的应用场景和需求。以下为您介绍一些表现出色的 AI 工具: Unity 推出的两款 AI 工具: Copliot 工具:可通过与 Muse Chat 聊天快速启动创建游戏项目,如生成塔防类游戏基础框架、创建人物角色动作,还能协助编码和熟悉工程环境。 Unity Sentis:能在 Unity 运行时为游戏或应用程序嵌入 AI 模型,增强玩法和功能,是首个将 AI 模型嵌入实时 3D 引擎的跨平台解决方案。 基于 2022 年 9 月至 2023 年 8 月访问量的 10 个最佳人工智能工具: ChatGPT:访问量达 146 亿次,在美国使用率最高,男性用户占比较大,多用于写作和内容创作、教育和常识等方面。 Character AI QuillBot Midjourney Hugging Face Google Bard NovelAI CapCut JanitorAI Civitai 不同类型的 AI 工具在不同领域各有优势,例如聊天机器人在流量份额上占比较大,而图像生成器、视频生成器、语音和音乐工具等也在各自领域表现出色。您可以根据具体需求选择适合的工具。
2025-02-21
ai产业链上市公司有哪些
以下是 2024 年美国融资金额超过 1 亿美元的部分 AI 产业链上市公司(截止 2024.10.15): |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |Augment|20240424|2.27|B|10|AI 编码辅助|应用|编程|Lightspeed Venture Partners, Index Ventures, Sutter Hill Ventures| |Cognition|20240424|1.75||20|端到端软件 Agents|应用|编程|Founders Fund, Ramp 联合创始人 Eric Glyman, Stripe 联合创始人 Patrick 和 John Collison, DoorDash 联合创始人 Tony Xu| |Xaira Therapeutics|20240423|10|A||AI 药物研发|应用|医学|Foresite Capital, ARCH Venture Partners| |Cyera|20240409|3|C|14|AI 数据安全平台|应用|数据|Coatue, Sequoia, Redpoint, Accel| |Celestial AI|20240327|1.75|C||用于 AI 存储和计算的光互连技术平台|基础设施|芯片、硬件和云平台|Thomas Tull 美国创新技术基金, M Ventures, 淡马锡, Tyche Partners| |FundGuard|20240325|1|C|4|AI 投资会计系统|应用|金融|Key1Capital, Hamilton Lane, Blumberg Capital, Team8| |Codeium|20240829|1.5|C|12|AI 编码平台|应用|编程|General Catalyst, Kleiner Perkins, Greenoaks| |Groq|20240805|6.4|D|30|AI 芯片|基础设施|芯片|贝莱德, Type One Ventures, Verdure Capital Management, Neuberger Berman| |DevRev|202408|1|A|11|AI 支持代理|应用|企业服务|Khosla Ventures, Mayfield, Param Hansa Values| |Abnormal Security|202408|2.5||50|电子邮件安全|应用|数据|Wellington Management, Menlo Ventures, Greylock, Insight Partners| |Harvey|20240723|1|C|15|法律科技|应用|法律|Google Ventures, OpenAI, Kleiner Perkins, Sequoia| |Skild AI|20240709|3|A|15|机器人技术|应用|机器人|Lightspeed Venture Partners, Coatue, Bezos Expeditions, Sequoia, Menlo Ventures, General Catalyst| |Hebbia|20240708|1.3||7|生成式 AI 搜索|应用|企业服务|Andreessen Horowitz, Peter Thiel, Index Ventures, Google Ventures| |Zephyr AI|20240313|1.11|A||AI 药物发现和精准医疗|应用|医学|Revolution Growth, 礼来公司基金会, EPIQ Capital Group, Jeff Skoll| |Together AI|20240313|1.06|A|12|AI 基础设施和开源生成|模型|硬件和云平台|Salesforce Ventures, NEA, Kleiner Perkins, Lux Capital| |Glean|20240227|2.03|D|22|AI 驱动企业搜索|应用|企业服务|Lightspeed Venture Partners, Kleiner Perkins, Sequoia, Databricks Ventures| |Figure|20240224|6.75|B|27|AI 机器人|应用|机器人|Nvidia, OpenAI, 微软| |Abridge|20240223|1.5|C|8.5|AI 医疗对话转录|应用|医学|Redpoint, Lightspeed Venture Partners, USV, IVP, Spark Capital| |Recogni|20240220|1.02|C||AI 接口解决方案|基础设施|芯片|GreatPoint Ventures, Celesta Capital, Pledge Ventures, Mayfield, DNS Capital| 信息来源:Techcrunch
2025-01-21
AI产业链
AI 产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层布局投入确定性强,但涉及海量资金,入行资源门槛高,未来更多由“国家队”担当重任,普通人可考虑“合作生态”切入机会。 中游技术层处于技术爆炸期,迭代速度快,技术迭代风险高。基础通用大模型研发烧钱,竞争激烈,非巨无霸公司不建议考虑。 下游应用层是广阔蓝海,尽管从业者增加,涌现出一些产品,但成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,发展空间巨大。 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15)有: |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |Zephyr AI|20240313|1.11|A||AI 药物发现和精准医疗|应用|医学|Revolution Growth,礼来公司基金会,EPIQ Capital Group,Jeff Skoll|| |Together AI|20240313|1.06|A|12|AI 基础设施和开源生成|模型|硬件和云平台|Salesforce Ventures,NEA,Kleiner Perkins,Lux Capital|| |Glean|20240227|2.03|D|22|AI 驱动企业搜索|应用|企业服务|Lightspeed Venture Partners,Kleiner Perkins,Sequoia,Databricks Ventures|| |Figure|20240224|6.75|B|27|AI 机器人|应用|机器人|Nvidia,OpenAI,微软|| |Abridge|20240223|1.5|C|8.5|AI 医疗对话转录|应用|医学|Redpoint,Lightspeed Venture Partners,USV,IVP,Spark Capital|| |Recogni|20240220|1.02|C||AI 接口解决方案|基础设施|芯片|GreatPoint Ventures,Celesta Capital,Pledge Ventures,Mayfield,DNS Capital|| 信息来源:Techcrunch
2024-12-31
AI产业或者说AI产业链条上都有哪些事情可以做
AI 产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 在基础设施层,布局投入的确定性最强,但入行资源门槛较高,涉及海量资金投入,未来更多由“国家队”承担重任,普通人可考虑“合作生态”的切入机会。 技术层当前处于技术爆炸时刻,迭代速度极快。对于规模不大的团队或个人,需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑。 应用层是一片广阔蓝海,当前针对行业/细分领域的成熟应用产品不多,“杀手级”应用更是稀少,对于普通个体和小团队,强烈推荐重点布局,拥有巨大发展空间。 据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导,对话机器人类别排名第二。北美和欧洲是主要消费市场,这是中国 AI 公司积极出海的重要原因。 美国红杉资本指出,AI 供应链分为六层,各层盈利能力不同。芯片代工厂和芯片设计商是主要赢家,云厂商是供应链核心承载方,处于重金投入阶段,是整个供应链的“链主”,AI 模型开发商目前面临亏损,应用服务商市场规模有限。行业格局方面,头部阵营基本稳定。
2024-12-05
Ai产业链上中下游
人工智能产业链通常包括以下四个部分: 1. 基础层:主要涵盖算力、算法和数据。算力为人工智能的运行提供计算能力支持;算法是实现人工智能功能的核心方法;数据则是训练和优化模型的基础。 2. 框架层:指用于模型开发的深度学习框架和工具,有助于提高模型开发的效率和质量。 3. 模型层:主要包括大模型等技术和产品,是人工智能实现各种应用的关键。 4. 应用层:指人工智能技术在行业场景的应用,应用场景横向划分主要分为 ToC(面向消费者)和 ToB(面向企业)。ToC 端能带来的数据飞轮效应,可能是在 AI 早期决胜的关键。同时,下游提供者指集成了人工智能模型的人工智能系统,包括通用人工智能系统的提供者。 近年来,我国人工智能产业在技术创新、产品创造和行业应用等方面发展迅速,形成了庞大的市场规模。伴随以大模型为代表的新技术加速迭代,人工智能产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,不过也亟需完善人工智能产业标准体系。前 Google 创始人 Eric Schmidt 认为未来会是多个垂直模型或者多个垂直助理,包括各种高价值、专业化的 AI 系统,因为很多高价值、特定领域的工作流程特别且必须依赖于丰富的专有数据集。
2024-10-03
请选择一个产业,比如手机、汽车、石油化工等产业,围绕行业传感器的技术原理和应用,进行背景概况、传感器分类、发展历程、智能传感器、产业链结构、应用领域、发展趋势和展望等要点完成调研分析报告和PPT。
很抱歉,目前知识库中没有您所需的关于特定产业(如手机、汽车、石油化工等)中行业传感器的完整调研分析报告和 PPT 内容。但以下为您提供一个大致的框架和思路,您可以据此进行进一步的资料收集和研究: 一、背景概况 介绍所选产业的发展现状和重要性,阐述传感器在该产业中的关键作用。 二、传感器分类 列举该产业中常见的传感器类型,如压力传感器、温度传感器、位置传感器等,并说明其特点和适用场景。 三、发展历程 回顾传感器在该产业中的发展阶段,从早期的简单传感器到如今的高精度、智能化传感器的演变过程。 四、智能传感器 着重介绍智能传感器的特点和优势,如具备自诊断、自校准、自适应等功能。 五、产业链结构 分析传感器产业链的各个环节,包括原材料供应商、传感器制造商、系统集成商、终端用户等。 六、应用领域 详细阐述传感器在该产业的具体应用领域,如生产过程监控、质量检测、设备故障诊断等。 七、发展趋势和展望 探讨未来传感器在该产业的发展趋势,如微型化、集成化、智能化、无线化等,并对其前景进行展望。 希望以上框架对您有所帮助,祝您顺利完成调研分析报告和 PPT。
2024-09-06
网商银行产业链金融模型
以下是为您整合的关于网商银行产业链金融模型的相关信息: 在金融服务业中,生成式 AI 的应用方面:新进入者可能会先使用公开的金融数据优化模型,最终使用自身收集的数据;现有参与者如银行等可利用专有数据,但往往过于保守,这给新进入者带来竞争优势。同时,新的 AI 模型输出需尽可能准确,人类常作为最终验证环节。 企业大模型方面:会免费提供从通用大模型蒸馏出来的基础大模型,结合数据工场、知识工场和模型工场三套开发平台,以及 Agent 应用开发框架,可训练出多个场景化大模型。例如天津某银行为满足金融需求,用通用大模型训练了几个专用大模型。
2024-08-18