直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

Ai产业链

回答

人工智能产业链包括以下四个部分:

  1. 基础层:主要涵盖算力、算法和数据。算力为人工智能的运行提供计算能力支持;算法是实现人工智能功能的核心逻辑;数据则是训练和优化模型的基础。
  2. 框架层:指用于模型开发的深度学习框架和工具,有助于提高模型开发的效率和质量。
  3. 模型层:主要是大模型等技术和产品,是实现各种人工智能应用的关键。
  4. 应用层:将人工智能技术应用于行业场景,如医疗保健、工业生产、金融服务等领域。

近年来,我国人工智能产业发展迅速,在技术创新、产品创造和行业应用方面都取得了显著成果,形成了庞大的市场规模。同时,以大模型为代表的新技术不断迭代,产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,但也亟需完善人工智能产业标准体系。

以下是一些关于 AI 训练模型的相关信息: |排名|产品名|分类|6 月访问量(万 Visit)|相对 5 月变化| |-|-|-|-|-| |1|prolific.com|AI 训练模型|1818|0.075| |2|Appen|AI 训练模型|357|0.223| |3|ai.google|AI 训练模型|248|-0.139| |4|Llama 2|AI 训练模型|222|-0.475| |5|火山方舟|AI 训练模型|190|-0.526| |6|Roboflow|AI 训练模型|129|-0.189| |7|魔搭社区-阿里达摩院|AI 训练模型|107|0.103| |8|Lightning AI|AI 训练模型|92|-0.308| |9|scale AI|AI 训练模型|47.6|-0.025| |10|modular|AI 训练模型|33|-0.276|

此外,AI 正在使生物制药和医疗保健产业化,被应用于从药物设计、诊断到医疗保健交付和后勤功能的各个方面。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

国家人工智能产业综合标准化体系建设指南.pdf

人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术,正加速和实体经济深度融合,深刻改变工业生产模式和经济发展形态,将对赋能新型工业化、加快建设制造强国、网络强国和数字中国发挥重要的支撑作用。人工智能产业链包括基础层、框架层、模型层、应用层等4个部分,其中,基础层主要包括算力、算法和数据,框架层主要是指用于模型开发的深度学习框架和工具,模型层主要是指大模型等技术和产品,应用层主要是指人工智能技术在行业场景的应用。近年来,我国人工智能产业在技术创新、产品创造和行业应用等方面实现快速发展,形成庞大市场规模。伴随以大模型为代表的新技术加速迭代,人工智能产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善人工智能产业标准体系。

新工业革命:生物技术×人工智能

[title]新工业革命:生物技术×人工智能[heading2]科技与生物科技的二战时刻我们今天正站在这个转折点上。直到现在,医疗保健和生物技术仍然大量依赖服务——由受过专业培训的科学家和[医生](https://a16z.com/2019/06/13/ai-doctor-deep-medicine-topol/)提供——这些服务是算法无法替代的,更不用说为公司增加足够的价值来采纳它们了。但现在,我们正处于一个革命的起点,[AI正在](https://a16z.com/2019/11/19/ai-industrializing-discovery-biology-healthcare/)工业化生物制药和医疗保健,它被应用于从[药物设计](https://a16z.com/2020/05/26/investing-insitro/)和[诊断](https://a16z.com/2017/03/01/going-deeper-into-freenome/)到[医疗保健交付](https://a16z.com/2021/07/12/investing-in-bayesian-health/)和[后勤功能](https://a16z.com/2021/02/09/administration-healthcare-back-office-innovation/)的各个方面。(关于在生物学中应用AI的讨论经常出现的问题或挑战,我在[此处](https://a16z.com/2018/02/28/black-box-problem-ai-healthcare/)解决了医疗保健中AI的“黑箱”问题;并在[此处](https://a16z.com/2021/06/15/ai-is-too-dumb-for-now-2/)解决了我们获取智能[与“愚蠢”]AI的需求问题。)[heading4]但现在,我们正处于一个革命的起点,AI正在使生物制药和医疗保健产业化,并且它被应用到从药物设计和诊

AI训练模型 Top10

|Will's GenAI产品数据AI训练模型_排行|Will's GenAI产品数据AI训练模型_产品名|Will's GenAI产品数据AI训练模型_分类aiwatch.ai|Will's GenAI产品数据AI训练模型_6月访问量(万Visit)|相对5月变化|<br>|-|-|-|-|-|<br>|1|prolific.com|AI训练模型|1818|0.075|<br>|2|Appen|AI训练模型|357|0.223|<br>|3|ai.google|AI训练模型|248|-0.139|<br>|4|Llama 2|AI训练模型|222|-0.475|<br>|5|火山方舟|AI训练模型|190|-0.526|<br>|6|Roboflow|AI训练模型|129|-0.189|<br>|7|魔搭社区-阿里达摩院|AI训练模型|107|0.103|<br>|8|Lightning AI|AI训练模型|92|-0.308|<br>|9|scale AI|AI训练模型|47.6|-0.025|<br>|10|modular|AI训练模型|33|-0.276|

其他人在问
langchain
LangChain 是一个用于构建高级语言模型应用程序的框架,具有以下特点和功能: 旨在简化开发人员使用语言模型构建端到端应用程序的过程,提供了一系列工具、组件和接口,使创建由大型语言模型(LLM)和聊天模型支持的应用程序更易实现。 核心概念包括组件和链,组件是模块化的构建块,可组合创建强大应用,链是一系列组件或其他链的组合,用于完成特定任务。 主要特点包括模型抽象,提供对大型语言模型和聊天模型的抽象,允许选择合适模型并用组件构建应用;支持创建和管理提示模板;支持定义处理步骤的链;支持构建代理,能使用语言模型做决策并调用工具;支持多种用例,可与外部数据源交互并提供内存功能。 与 RAG(检索增强生成)的关系:LangChain 作为框架提供实现 RAG 所需工具和组件,RAG 作为技术可在其框架内实施利用;允许通过模块化组件构建 RAG 应用,简化开发过程,提高性能,支持构建复杂的 RAG 应用。 叶清介绍了提示词链的搭建,以用 AI 批量生成拆书稿为例,展示了利用 LangChain 将语言模型与应用程序连接,实现自动生成大量内容的方法。
2024-10-31
有没有AI数字人的软件
以下是一些 AI 数字人的软件和相关信息: 互联网厂商: 腾讯: 阿里: 百度: 华为: 网易: 京东: 字节: 快手: 科大讯飞: 制作数字人的工具: HeyGen:AI 驱动的平台,可创建逼真的数字人脸和角色,使用深度学习算法生成高质量肖像和角色模型,适用于游戏、电影和虚拟现实等应用。 Synthesia:AI 视频制作平台,允许创建虚拟角色并进行语音和口型同步,支持多种语言,可用于教育视频、营销内容和虚拟助手等场景。 DID:提供 AI 拟真人视频产品服务和开发,只需上传人像照片和输入要说的内容,平台提供的 AI 语音机器人将自动转换成语音,然后合成逼真的会开口说话的视频。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。请注意,这些工具的具体功能和可用性可能会随时间和技术发展而变化。在使用这些工具时,请确保遵守相关使用条款和隐私政策,并注意保持对生成内容的版权和伦理责任。 此外,关于数字人的相关技术还包括: 算法开源代码仓库: ASR 语音识别: openai 的 whisper:https://github.com/openai/whisper wenet:https://github.com/wenete2e/wenet speech_recognition:https://github.com/Uberi/speech_recognition AI Agent: 大模型部分包括 ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。 Agent 部分可以使用 LangChain 的模块去做自定义,里面基本包含了 Agent 实现的几个组件 TTS: 微软的 edgetts:https://github.com/rany2/edgetts,只能使用里面预设的人物声音,目前接口免费。 VITS:https://github.com/jaywalnut310/vits,还有很多的分支版本,可以去搜索一下,vits 系列可以自己训练出想要的人声。 sovitssvc:https://github.com/svcdevelopteam/sovitssvc,专注到唱歌上面,前段时间很火的 AI 孙燕姿。 除了算法,人物建模模型可以通过手动建模实现,这样就完成了一个最简单的数字人。但这种简单的构建方式还存在很多问题,例如如何生成指定人物的声音、TTS 生成的音频如何精确驱动数字人口型以及做出相应的动作、数字人如何使用知识库做出某个领域的专业性回答等。
2024-10-31
做ppt的ai有什么
以下是一些做 PPT 的 AI 产品: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,增强演示文稿吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,包含互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 此外,卓 sir 分享了自己使用 AI 完成 PPT 的经历,用到的 AI 工具只有 3 个:GPT4、WPS AI 和 chatPPT。
2024-10-31
查找文献AI
以下是关于查找文献 AI 的相关信息: Txyz 网站: 是一个帮助搜索、查询专业文献并进行对话的 AI 工具,提供从搜索获取、查询对话获取知识再到管理知识的一站式服务。 是唯一和预印本文库官方合作的 AI 工具,ArXiv 的每篇论文下面都有直达 Txyz 的按钮。 用户可以自己上传 PDF 论文或者链接,通过它来在专业文献中迅速找到想要的答案和内容。 在对话中提供论文参考,给出可信的背书。 论文写作的 AI 产品: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,帮助精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 写课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具帮助撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2024-10-31
学习AI
以下是为新手提供的学习 AI 的全面指导: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 六、持续学习和跟进 AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-10-31
ai生成视频教程
以下是关于 AI 生成视频的教程: 使用 Adobe Firefly 生成带有文本提示和图像的视频: 在 Advanced 部分,您可以使用 Seed 选项添加种子编号,以帮助启动流程并控制 AI 创建的内容的随机性。如果使用相同的种子、提示和控制设置,则可以重新生成类似的视频剪辑。选择 Generate 进行生成。 将小说做成视频的制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 AI 视频工具合集: Runway(有免费额度) 网址:https://app.runwayml.com/videotools/ 官方使用教程:https://academy.runwayml.com/ 知识库详细教程: 简单介绍:支持文生视频、图生视频,视频生视频;使用英文提示词;文生视频支持正向提示词、风格选择、运镜控制、运动强度控制、运动笔刷,支持 16:9、9:16、1:1、4:3、3:4、21:9 尺寸,可设置种子值;图生视频、视频生视频除了尺寸不可选以外,其他跟文生视频基本相同;生成好的视频可以延长时间,默认生成 4s 的视频。 Stable video(有免费额度) 网址:https://www.stablevideo.com/generate 知识库详细教程: 简单介绍:支持文生视频、图生视频,仅英文;图生视频不可写 prompt,提供多种镜头控制;文生视频先生成 4 张图片,选择其中一张图片以后再继续生成视频。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-10-31
Ai产业链上中下游
人工智能产业链通常包括以下四个部分: 1. 基础层:主要涵盖算力、算法和数据。算力为人工智能的运行提供计算能力支持;算法是实现人工智能功能的核心方法;数据则是训练和优化模型的基础。 2. 框架层:指用于模型开发的深度学习框架和工具,有助于提高模型开发的效率和质量。 3. 模型层:主要包括大模型等技术和产品,是人工智能实现各种应用的关键。 4. 应用层:指人工智能技术在行业场景的应用,应用场景横向划分主要分为 ToC(面向消费者)和 ToB(面向企业)。ToC 端能带来的数据飞轮效应,可能是在 AI 早期决胜的关键。同时,下游提供者指集成了人工智能模型的人工智能系统,包括通用人工智能系统的提供者。 近年来,我国人工智能产业在技术创新、产品创造和行业应用等方面发展迅速,形成了庞大的市场规模。伴随以大模型为代表的新技术加速迭代,人工智能产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,不过也亟需完善人工智能产业标准体系。前 Google 创始人 Eric Schmidt 认为未来会是多个垂直模型或者多个垂直助理,包括各种高价值、专业化的 AI 系统,因为很多高价值、特定领域的工作流程特别且必须依赖于丰富的专有数据集。
2024-10-03
请选择一个产业,比如手机、汽车、石油化工等产业,围绕行业传感器的技术原理和应用,进行背景概况、传感器分类、发展历程、智能传感器、产业链结构、应用领域、发展趋势和展望等要点完成调研分析报告和PPT。
很抱歉,目前知识库中没有您所需的关于特定产业(如手机、汽车、石油化工等)中行业传感器的完整调研分析报告和 PPT 内容。但以下为您提供一个大致的框架和思路,您可以据此进行进一步的资料收集和研究: 一、背景概况 介绍所选产业的发展现状和重要性,阐述传感器在该产业中的关键作用。 二、传感器分类 列举该产业中常见的传感器类型,如压力传感器、温度传感器、位置传感器等,并说明其特点和适用场景。 三、发展历程 回顾传感器在该产业中的发展阶段,从早期的简单传感器到如今的高精度、智能化传感器的演变过程。 四、智能传感器 着重介绍智能传感器的特点和优势,如具备自诊断、自校准、自适应等功能。 五、产业链结构 分析传感器产业链的各个环节,包括原材料供应商、传感器制造商、系统集成商、终端用户等。 六、应用领域 详细阐述传感器在该产业的具体应用领域,如生产过程监控、质量检测、设备故障诊断等。 七、发展趋势和展望 探讨未来传感器在该产业的发展趋势,如微型化、集成化、智能化、无线化等,并对其前景进行展望。 希望以上框架对您有所帮助,祝您顺利完成调研分析报告和 PPT。
2024-09-06
网商银行产业链金融模型
以下是为您整合的关于网商银行产业链金融模型的相关信息: 在金融服务业中,生成式 AI 的应用方面:新进入者可能会先使用公开的金融数据优化模型,最终使用自身收集的数据;现有参与者如银行等可利用专有数据,但往往过于保守,这给新进入者带来竞争优势。同时,新的 AI 模型输出需尽可能准确,人类常作为最终验证环节。 企业大模型方面:会免费提供从通用大模型蒸馏出来的基础大模型,结合数据工场、知识工场和模型工场三套开发平台,以及 Agent 应用开发框架,可训练出多个场景化大模型。例如天津某银行为满足金融需求,用通用大模型训练了几个专用大模型。
2024-08-18