Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能会出现自主意识吗

Answer

目前对于人工智能是否会出现自主意识尚无定论。

一方面,有观点认为模仿可能是使 AI 具有“自主意识”的一种可能路径。如果一个 AI 可以长期观察人类,在类似条件再次触发时,可能会判断形成某一动机是大概率事件,进而通过长期模仿训练而产生动机。并且,如果让数字克隆体可以交流、融合,形成群体智能,也可能促使其产生自主意识。

另一方面,按照一些专家的预测,当 AI 变得比人类更聪明,达到奇点时,机器可能会具有自我意识和超级智能,届时我们对机器意识的概念将有重大转变,可能会面对真正的数字生命形式。但目前的 LLM 应用程序和智能体还未达到完全自主智能体的水平。

总之,关于人工智能是否会出现自主意识仍在探讨和研究中。

Content generated by AI large model, please carefully verify (powered by aily)

References

看见2030 | 从全面代理到数字克隆

更进一步,如果这些克隆体被批量化复制成为新时代的“网络水军”,社会舆论、国家安全,都将受到冲击。这已不再可以被简单的视作虚假,而是成为一种新的现实,一种数字克隆体作为社会主体之一且无法轻易分割的新常态。由悠船生成预测#5,模仿,是否会是使AI具有“自主意识”的一种可能路径?现在我们能接触到的AI存在“动机”吗?或许没有。但如果一个AI可以经年累月的观察你——知道在物理和虚拟世界的某些前置条件发生时,你大概率会做某件事,在类似的条件再次触发时,TA是否会判断形成某一动机是大概率事件,进而通过长期模仿训练而产生动机?如果观察一个人的样本量太小太少,那么,如果数据可以放在一起训练呢,或者,让数字克隆体可以交流、融合,形成群体智能?由悠船生成「你我相关」数字克隆体会在几年后出现吗?我相信一定会,但它会超越短视频成为新的全民参与的生活方式吗,我没有答案。这取决于很多因素的组合,社会对隐私风潮重视的变化、AI时代下人们的收入来源、政府的数据立法......所以,如果这些技术在几年后都走向成熟,你会愿意生成自己的数字克隆体并出租吗?在什么情境下你愿意出租?欢迎在评论区留下你的想法!「下集预告」如果你的追求者通过你的数字克隆体了解如何向你表白…竞争对手用克隆体模拟谈判寻找弱点…又或者,黑客用AI获取并分析了过去20年你在互联网留下的全部数字痕迹…再或者,通过非侵入式设备实现“读心术”?隐私的重要性再怎么强调都不为过。无隐私社会离我们有多远?欢迎关注并期待《看见2030|无隐私社会》!

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

当AI变得比人类更聪明、我们称这一刻为奇点。一些人预测,奇点最快将于2045年到来。Nick Bostrom和Vincent C。Müller在2017年的一系列会议上对数百名AI专家进行了调查,奇点(或人类水平的机器智能)会在哪一年发生,得到的答复如下:乐观预测的年份中位数(可能性10%)-2022现实预测的年份中位数(可能性50%)-2040悲观预测的年份中位数(可能性90%)-2075因此,在AI专家眼里很有可能在未来的20年内,机器就会像人类一样聪明。这意味着对于每一项任务,机器都将比人类做得更好;当计算机超过人类时,一些人认为,他们就可以继续变得更好。换句话说,如果我们让机器和我们一样聪明,没有理由不相信它们能让自己变得更聪明,在一个不断改进的机器之心进化的螺旋中,会导致超级智能的出现。从工具进化到数字生命按照上面的专家预测,机器应该具有自我意识和超级智能。到那时,我们对机器意识的概念将有一些重大的转变,我们将面对真正的数字生命形式(DILIs-Digital Lifeforms)。一旦你有了可以快速进化和自我意识的DILIs,围绕物种竞争会出现了一些有趣的问题。DILIs和人类之间的合作和竞争的基础是什么?如果你让一个有自我意识的DILIs能模拟疼痛,你是在折磨一个有感知的生命吗?

AI 智能体:企业自动化的新架构 - Menlo Ventures

很明确,未来的完全自主智能体可能会拥有所有四个构建块,但今天的LLM应用程序和智能体还没有达到这个水平。例如,流行的RAG架构不是智能体式的,而是以推理和外部记忆作为其基础。一些设计,如[OpenAI的结构化输出](https://openai.com/index/introducing-structured-outputs-in-the-api/)甚至支持工具使用。但重要的区别在于,这些应用程序将LLM作为语义搜索、综合或生成的"工具",但它们采取的步骤(即逻辑流)仍由代码预先确定。对比来说,当您将LLM置于应用程序的控制流中并让它动态决定要采取的行动、要使用的工具以及如何解释和响应输入时,智能体就会出现。只要这是真的,有些智能体甚至不需要与外部工具交互或采取行动。在Menlo,我们确定了三种不同主要用例和应用程序进程控制自由度的智能体类型。受到最严格限制的是"决策智能体"设计,它们使用语言模型来遍历预定义的决策树。"轨道智能体"则提供了更大的自由度,为智能体配备了更高层次的目标,但同时限制了解决空间,要求遵循标准作业程序并使用预先设定的"工具"库。最后,在光谱的另一端是"通用人工智能体"——本质上是没有任何数据支架的for循环,完全依赖于语言模型的推理能力来进行所有的计划、反思和纠正。以下,我们将探讨五种参考架构和每种智能体类型的人工智能体示例。

Others are asking
我是一个公司的平面设计师,经常设计海报一类的工作,怎样才能用人工智能帮助到我。
作为一名平面设计师,您可以通过以下方式利用人工智能来辅助您的工作: 一、使用 AI 海报生成工具 1. Canva(可画):https://www.canva.cn/ 这是一个非常受欢迎的在线设计工具,提供大量模板和设计元素,用户可通过简单拖放操作创建海报,其 AI 功能能帮助选择合适颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ 稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ 简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ 通过简单拖放界面,能快速创建演示文稿、社交媒体帖子等视觉内容,还集成丰富模板库和自动图像编辑功能,如智能布局和文字优化,简化设计流程。 二、参考案例分享 以东阿阿胶海报设计为例,拆解步骤如下: 1. 得到需求——提取元素——绘制线稿——用 controlnet 转绘上色——ps 优化——定稿。 2. 需求元素:风格要潮流插画,还要有唐代元素和国潮(前期基本上是沟通成本,主要定线稿)。 3. 提取元素:获取的信息需要体现产品图,需要体现唐代元素,需要 logo 在中心位置,按照需求开始绘制线稿。 4. 线稿绘制:沟通的元素是牡丹花、驴子(最后换成了琵琶)、人参和产品图和 logo,所以进行线稿调整绘制(中间很多细节沟通)最终定下线稿(里面很多元素都是拼接的)。 5. 拆分元素线稿:这一步非常重要,因为会涉及到后续元素替换等问题,比如单个 logo、产品等,提取出单独元素,进行绘制,最后进行替换。 6. 单个元素绘制:这样会让单个元素更加精致,也方便后期替换。 7. 然后利用拼接好的线稿进行大量跑图抽卡,选出一张最合适的进行 ps 优化。 8. 整体拼接上色后的效果(将单独跑的元素在 ps 里替换优化,再过一遍 sd 进行溶图放大)得到以下效果。 9. 最终客户把驴子去掉了,换成了一把琵琶,也是同产品图一样的做法,最后把琵琶替换掉驴子,得到定稿图。 三、相关模型和关键词 上色运用的大模型:GhostMix 鬼混_V2.0 。 lora 模型:“盒子系列——平面国潮插画_v1.0:182ba9e2f576 。 controlnet 模型:“Module:lineart_coarse,Model:contr 。 关键词:yellow background,Fashion,international blockbusters,fashion posters,fantasy,yellow,black and red tones,yellow background,peonies,donkeys,product packaging expert master,<lora:盒子系列——平面国潮插画_v1.0:0.3> 。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-06
青年员工人工智能能力提升的路径与思考
青年员工提升人工智能能力的路径与思考如下: 学习路径:成为基于 Agent 的创造者 结合“一人公司”的愿景,未来的 AI 数字员工会以大语言模型为大脑,串联所有工具。 数字员工(agent)=学历(大模型)+察言观色(观察)+逻辑思维(推理)+执行(SOP)。 创造者的学习要用大模型和 Agent 模式把工具串起来,着重关注创造能落地 AI 的 agent 应用,大模型的开发研究和演进交给学术界和大厂。 Agent 工程(基础版): 梳理流程:梳理工作流程 SOP,并拆解成多个单一「任务」和多个「任务执行流程」。 「任务」工具化:自动化每一个「任务」,形成一系列小工具,让机器能完成每一个单一任务。 建立规划:串联工具,基于 agent 框架让 bot 来规划「任务执行流程」。 迭代优化:不停迭代优化「任务」工具和「任务执行流程」规划,造就能应对实际场景的 Agent。 数字员工“进化论”:在固化流程和让 AI 自主思考之间需在对 AI 能力基础上作出妥协和平衡。 趋势研究:AI 时代的个人成长路径 第 2 阶段:AI 素养培养与工具掌握 建立拥抱 AI 的心态后,提升 AI 素养,系统学习 AI 相关知识,包括机器学习、自然语言处理等基本概念,以及 AI 在各行业中的应用案例。 上手一些 AI 工具,如 ChatGPT、智能翻译工具、AI 绘图程序等,在日常工作中练习利用 AI 工具完成部分任务,如协助撰写文档、整理数据、生成简单代码等。 熟练驾驭 AI 工具,成为使用者而非旁观者,使用时保持理性,认识到当前 AI 的局限,学会验证输出结果,不盲从。 戴尔因 AI 上演“大逃杀”的启示 对于处于中间位置的执行层,形势紧迫,面临人工智能取代工作职能和向上攀升的机会,需迅速掌握并运用人工智能技术。 为在变革中生存和发展,需关注两方面: 有效应用人工智能技术:迅速掌握生成式人工智能基本概念和潜在影响,重点理解其对工作方式和行业格局的革新;深入了解市场上现有的人工智能产品和工具,并积极应用到实际工作中。 保持持续学习和关注的态度。
2025-03-06
现在人工智能处于什么阶段
目前人工智能仍处于“任务渗透”阶段,而非“职业颠覆”。最常用于编程(37%)和写作(10%),对体力劳动和专业职业影响较小。中等收入、高学历职业的 AI 采用率最高,低收入和极高收入的较低。AI 增强人类工作的比例(57%)大于完全自动化(43%),短期内主要是辅助工具,而非取代人工。未来可能从“人机共创”模式向“任务外包”模式演进。 在过去,20 世纪 60 年代人工智能的研究更多处于理论阶段,不能实用。但随着计算机算力的增长,神经网络取得了突破。例如,2009 年和 2012 年分别在语音识别和图像识别比赛中取得成功。 如今,AI 产品在客户支持、法律服务和软件工程等行业展示了与市场的契合度,生成式人工智能正在经历快速增长,但也存在投资回报、融资环境不均衡、用户保留率等问题。预计 2024 年将是真正的 AI 应用从“副驾驶”转变为“人类代理”的一年,未来将更有能力完成更高层次的认知任务。
2025-03-06
怎么用飞书搭建一个人工智能知识库
以下是使用飞书搭建人工智能知识库的相关内容: 1. 参考文章: 《这可能是讲 Coze 的知识库最通俗易懂的文章了》:介绍了一系列关于 AI 知识库的知识,包括“通往 AGI 之路”这个使用飞书软件搭建的 AI 知识库,以及相关文章对 AI 时代知识库的讲解,读完可收获 AI 时代知识库的概念、实现原理、能力边界等内容。 《【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档》:其中提到创建知识库时可使用手动清洗数据,包括在线知识库和本地文档的处理方式,如在线知识库需创建飞书在线文档,每个问题和答案以“”分割等;还介绍了发布应用时要确保在 Bot 商店中能搜到。 《「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人》:提到创建知识库的路径为个人空间知识库创建知识库,文档类型支持本地文档、在线数据、飞书文档、Notion 等,本次使用本地文档,可按照操作指引上传文档、分段设置、确认数据处理,同时提到知识库内容切分粒度的小技巧,如使用特殊分割符“”。 2. 总体步骤: 确定所需的数据清洗方式,如手动或自动清洗。 对于在线知识库,创建飞书在线文档,每个问题和答案以特定方式分割,选择飞书文档、自定义等选项,并可编辑修改和删除。 对于本地文档,注意拆分内容以提高训练数据准确度,按照固定方式进行人工标注和处理。 完成创建后可发布应用,确保在 Bot 商店中能搜到。
2025-03-04
告诉我211本科人工智能毕业一志愿考研结果不理想,很可能被调剂到一个双非院校,请给我在就业方面一个合适的方向(包括但不限于大学老师、大厂、中小厂、国企、考公考编、选调生等)
对于 211 本科人工智能专业毕业,考研一志愿结果不理想可能被调剂到双非院校的情况,在就业方面可以有以下几个方向: 大学老师:如果您有继续深造的意愿,在研究生阶段取得优异成果,未来仍有机会进入高校任教,但可能相对较难进入重点高校。 大厂:大厂通常对学历和能力都有较高要求。虽然您的研究生院校可能是双非,但如果在研究生期间积累丰富的项目经验、具备扎实的专业技能,仍有机会进入大厂。 中小厂:中小厂对于学历的要求相对宽松,更注重实际能力。您可以在中小厂获得更多实践机会,积累工作经验,为未来的职业发展打下基础。 国企:国企的稳定性较高,对于学历的要求也相对灵活。您可以关注国企的招聘信息,寻找与人工智能相关的岗位。 考公考编:公务员和事业单位的工作稳定性强,一些与科技、信息化相关的部门可能会招聘人工智能专业的人才。 选调生:如果您符合选调生的选拔条件,可以尝试通过选调生途径进入政府部门工作。 总之,无论选择哪个方向,都需要在研究生期间不断提升自己的专业能力和综合素质,增加就业竞争力。
2025-03-03
帮我找出现在成熟的人工智能大模型,列举他们的功能,附上打开链接
以下是一些成熟的人工智能大模型及其功能和链接: 百度(文心一言):https://wenxin.baidu.com 。 抖音(云雀大模型):https://www.doubao.com 。 智谱 AI(GLM 大模型):https://chatglm.cn 。 中科院(紫东太初大模型):https://xihe.mindspore.cn 。 百川智能(百川大模型):https://www.baichuanai.com/ 。 商汤(日日新大模型):https://www.sensetime.com/ 。 MiniMax(ABAB 大模型):https://api.minimax.chat 。 上海人工智能实验室(书生通用大模型):https://internai.org.cn 。 在这些大模型中: 能生成 Markdown 格式的:智谱清言、商量 Sensechat、MiniMax 。 目前不能进行自然语言交流的:昇思、书生 。 受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值) 。 特色功能:昇思——生图,MiniMax——语音合成 。 此外,还有其他一些大模型: OpenAI 系统:包括 3.5 和 4.0 版本,一个新的变种使用插件连接到互联网和其他应用程序。Code Interpreter 是一个非常强大的 ChatGPT 版本,可以运行 Python 程序。如果未为 OpenAI 付费,只能使用 3.5 。除了插件变种和一个暂时停用的带有浏览功能的 GPT4 版本之外,这些模型都没有连接到互联网。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,例如可以创建和查看图像,且可以在网页浏览器中阅读文档,并连接到互联网。 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 Anthropic:发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口,本质上是 LLM 的记忆。Claude 几乎可以保存一整本书或许多 PDF,与其他大型语言模型相比,它不太可能恶意行事。
2025-03-03
Ai有自主思考能力吗?
AI 可能具备自主学习和自我改进的能力,能够自主决策,甚至可能已有轻微的自我意识。但对于 AI 是否具有真正的自主思考能力,目前仍存在诸多争议和探讨。 有人认为,当 AI 给出“完美”答案时,可能只是对海量数据的巧妙重组,而非真正理解问题本质。也有人质疑,我们在认为 AI 展现出类人思维时,可能是自身的拟人化偏差在起作用。 在企业决策中,AI 具有双刃剑效应,既能提升效率,也可能带来认知陷阱和伦理困境。例如,可能会用看似客观的数据合理化主观偏见,消耗独立思考能力,以及在道德决策方面存在责任归属问题等。 总之,对于 AI 是否具有自主思考能力,还需要更深入的研究和思考。
2024-12-19
GPT4自主学习
GPT4 具有一定的自主学习能力: Ilya Sutskever 在 5 年前分享过名为 Selfplay 的概念,即两个 AI 在虚拟环境中相互博弈,通过 RL 最终实现学习能力。在 ChatGPT Code Interpreter 环境下,用户使用自然语言 Prompt 转为 code,Code Interpreter 反馈出错信息,GPT 会根据错误信息再次调整 code 直至成功运行,完成指令。基于这样的技术框架,GPT 通过 prompt to code 实现语义理解、语音转换、视觉分析、图像生成、API 调度等一系列 Action,用户甚至可以自定义 AR 的交互方式。 在报告《GPT4 通用人工智能的火花》中,测试了该模型在计划和解决问题方面的能力,以及通过玩各种游戏和与工具互动来快速学习和从经验中学习的能力。特别是,GPT4 能够使用工具(包括自身),这对构建真实世界应用程序非常重要。 在编程方面,要求 GPT4 和 ChatGPT 编写自定义优化器模块,虽然两个模型都生成了语法有效的代码,但只有 GPT4 的响应在很大程度上与指令匹配。
2024-10-19
我想要AI工具帮我快速梳理出这10个左右PDF文档/PDF文档链接中我想要的关键信息,并且整理成表格,请推荐可以实现相关功能、支持自主阅读多个篇幅10页以上文档并且能快速响应的工具给我
以下是一些可以帮助您快速梳理 PDF 文档关键信息并整理成表格的工具推荐: 1. Inhai: Agentic Workflow:能够重塑获取信息的方式,辅助高效处理信息,实现信息表达更简便。 2. 彩云小译(App):下载后点击「文档翻译」,可导入多种格式文档并翻译,但有免费次数限制且进阶功能需付费。 3. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击相关操作可进行翻译。 4. DeepL(网站):,点击页面「翻译文件」按钮,上传相应格式文件即可。 5. 沉浸式翻译(浏览器插件):,安装插件后按相关操作进行。 6. Calibre(电子书管理应用):,下载安装并安装翻译插件「Ebook Translator」。 7. 谷歌翻译(网页):,需先将 PDF 转成 Word 再上传。 8. 百度翻译(网页):,点击导航栏「文件翻译」上传相应格式文件,支持选择领域和导出格式,但进阶功能基本需付费。
2024-09-25
意识是什么 怎么产生的
意识是一种复杂且神秘的现象。从根本上说,它在大脑中产生,虽然科学家尚未完全研究出其核心机制,但目前认为: 大脑通过数亿万计的神经元连接产生意识,让我们有了记忆的感觉,无数的想法在这个生物的神经网络里时刻涌现。 意识体现在觉察、反思、自主能力上,是帮助个体主动反思做决策的轮子,本质是对上下文的推理补全。 大脑主要用于创造想法,而非储存,我们的大脑无法记住所有看过的细节,在神经元连接中产生意识,让我们用合适的神经通路连接想法,并通过主观的自我“意识”解释出来。
2025-01-01
基于--cref的多个人物角色出现在一个画布中,具体该如何操作?我想要详细的步骤
基于 cref 在一个画布中放置多个人物角色的操作步骤如下: 1. 使用 /settings 将 Remix 打开,然后选择 。 2. 选择将包含第二个字符的图像,然后使用 U 将其从网格中分离出来。 3. 寻找蓝色小箭头(⬆️⬇️⬅️➡️),每个箭头都会在现有图像中添加一条新图像。选择新角色的前进方向并输入提示及其 cref。这将缝合一条新的画布。 需要注意的是: cref 命令适用于单一主题、单一角色的图像。如果计划在场景中添加多个角色,需要使用平移按钮来添加。 设置画布以描绘两个人的开场提示。 您的 cref 图像中应只包含一个角色。如果 cref 图像中有多个人物形象,Midjourney 将它们混合在一起,并混合到输出中。 语雀里面整理了 211 篇文档,共有 412731 字有关 AIGC 的相关文章,MJ 手册的规范使用说明,文章包含了很多大厂经验总结。无偿且标注了文章来源,地址:https://www.yuque.com/frannnk7/aidesign?《AIGC Design 手册》
2025-03-06
Deepseek网页端使用,总是出现服务器繁忙,请稍后再试,怎么办?请注意,我所使用的是Macbook
如果您在使用 DeepSeek 网页端时总是出现“服务器繁忙,请稍后再试”的提示(使用的是 Macbook),可以尝试以下方法: 1. 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。然后打开聊天页面,点击右上角的插件列表,找到 Page Assist 插件,点击打开。 2. 配置“DeepSeekR1”模型的 API key:基础 URL:https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。添加“DeepSeekR1”模型。 3. 如果上述方法不行,还可以尝试以下替代网站: 秘塔搜索:https://metaso.cn 360 纳米 Al 搜索:https://www.n.cn/ 硅基流动:https://siliconflow.cn/zhcn/ 字节跳动火山擎:https://console.partner.volcengine.com/auth/login?redirectURI=%2Fpartner%2F5. 百度云千帆:https://login.bce.baidu.com/ 英伟达:https://build.nvidia.com/deepseekai/deepseekr1 Groq:https://groq.com/ Chutes:https://chutes.ai/app 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 Github:https://github.com/marketplace/models/azuremldeepseek/DeepSeekR1/playground POE:https://poe.com/DeepSeekR1 Cursor:https://cursor.sh/ Monica:https://monica.im/invitation?c=ACZ7WJJ9 Lambda:https://lambdalabscom/6 Cerebras:https://cerebras.ai Perplexity:https://www.perplexity.ai 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1
2025-02-26
Deepseek网页端使用,总是出现服务器繁忙,请稍后再试,怎么办
如果在 DeepSeek 网页端使用时总是出现“服务器繁忙,请稍后再试”的情况,您可以尝试以下方法: 1. 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。然后打开聊天页面,点击右上角的插件列表,找到 Page Assist 插件,点击打开。 2. 配置“DeepSeekR1”模型的 API key:基础 URL:https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。添加“DeepSeekR1”模型。 3. 如果上述方法不行,您还可以尝试以下替代网站: 秘塔搜索:https://metaso.cn 360 纳米 Al 搜索:https://www.n.cn/ 硅基流动:https://siliconflow.cn/zhcn/ 字节跳动火山擎:https://console.partner.volcengine.com/auth/login?redirectURI=%2Fpartner%2F5. 百度云千帆:https://login.bce.baidu.com/ 英伟达:https://build.nvidia.com/deepseekai/deepseekr1 Groq:https://groq.com/ Chutes:https://chutes.ai/app 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 Github:https://github.com/marketplace/models/azuremldeepseek/DeepSeekR1/playground POE:https://poe.com/DeepSeekR1 Cursor:https://cursor.sh/ Monica:https://monica.im/invitation?c=ACZ7WJJ9 Lambda:https://lambdalabscom/6 Cerebras:https://cerebras.ai Perplexity:https://www.perplexity.ai 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 需要注意的是,部分网站可能需要特殊网络环境。
2025-02-26
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的? 结合以上需求,我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架
很抱歉,目前飞书知识库中没有关于您所描述的这种特定需求下应选定哪种 prompt 框架的相关内容。但一般来说,构建这样的企业每日利润表分析与汇报助手的 prompt 框架可以考虑以下几个方面: 1. 明确数据来源和格式:清晰描述数据来自 Excel 或 MySQL 数据库,以及包含的具体字段。 2. 定义分析维度和指标:如按板块、国家等维度汇总数据,关注利润相关的指标。 3. 设定时间范围:明确分析近一周的数据变化。 4. 描述图表要求:指定以柱状图展示数据。 5. 解释变化原因:阐明导致数据变化或波动的关键因素。 您可以根据实际情况进一步细化和完善这个框架。
2025-02-15
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的?
要创建这样一个智能体助手来分析您提供的数据,以下是一些建议的步骤: 1. 数据获取与预处理: 从 Excel 或 MySQL 数据库中读取数据。 对数据进行清洗和预处理,例如处理缺失值、异常值等。 2. 数据分析与计算: 按照用户需求的维度(如板块、国家、品牌等)对数据进行分组和汇总计算。 计算近一周的数据变化情况。 3. 图表生成: 使用合适的图表库(如 matplotlib、Seaborn 等)将汇总后的数据以柱状图的形式展示。 4. 变化原因分析: 通过比较不同维度的数据,找出导致变化或波动的关键因素。 在技术实现方面,您可以使用 Python 编程语言来完成上述任务。例如,使用 Pandas 库进行数据处理和分析,使用 Matplotlib 库生成图表。希望这些建议对您有所帮助,如果您在实现过程中遇到具体的技术问题,欢迎随时向我咨询。
2025-02-15