以下是与人工智能相关的销售行业的一些信息:
当然,有许多与销售工作相关的AI工具可以帮助提高效率和效果。以下是一些例子:1.Salesforce爱因斯坦:这是来自Salesforce的AI工具,被誉为优秀的AI销售工具。它可以通过分析大量数据集来识别潜在客户,从而生成预测性潜在客户评分。此外,它还具有自动化功能,可以自动执行日常或耗时的任务,使销售团队能够专注于更关键的方面,例如建立客户关系和完成交易。2.Clari:这是一款专门从事智能收入运营的软件,以其创建高度准确的收入预测的卓越能力而闻名。它可以统一各种来源的数据并以易于理解的方式呈现,从而简化财务预测的过程。3.Hightime:这是一个销售团队的AI助手,可以处理所有重复性任务和耗时的研究。以上只是一些例子,实际上还有许多其他的AI销售工具可以根据您的具体需求选择使用。希望这些信息对您有所帮助!内容由AI大模型生成,请仔细甄别
to AI regulationMarch 2023CP 815A pro-innovation approachto AI regulationPresented to Parliamentby the Secretary of State for Science,Innovation and Technologyby Command of His MajestyMarch 2023CP 815© Crown copyright 2023This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated.To view this licence,visit nationalarchives.gov.uk/doc/open-government-licence/version/3.Where we have identified any third-party copyright information you will need to obtain permission from thecopyright holders concerned.This publication is available at www.gov.uk/official-documents.Any enquiries regarding this publication should be sent to us at:evidence@officeforai.gov.ukISBN 978-1-5286-4009-1E02886733 03/23Printed on paper containing 40% recycled fibre content minimumPrinted in the UK by HH Associates Ltd.on behalf of the Controller of His Majesty’s Stationery OfficeCORRECTION SLIPTitle:A pro-innovation approach to AI regulationSession:2022−23CP 815ISBN:978-1-5286-4009-1Correction:Text currently reads in Annex C:2.What other transparency measures would be appropriate,if any?L3.If you work for a business that develops,uses,or sells AI,how do you currently manage AI riskincluding through the wider supply chain?How could government support effective AI-related riskmanagement?Foundation models and the regulatory frameworkF1.What specific challenges will foundation models such as large language models(LLMs)or open-source models pose for regulators trying to determine legal responsibility for AI outcomes?F2.Do you agree that measuring compute provides a potential tool that could be considered as part ofthe governance of foundation models?F3.Are there other approaches to governing foundation models that would be more effective?AI sandboxes and testbedsS1.To what extent would the sandbox models described in section 3.3.4 support innovation?
大模型拿走产业绝大部分利润取决于两个前提,一个是AGI能否实现。第二个是大模型公司能否实现垄断。我们先来讨论第一个前提:AGI是否能够实现。AGI如果不能实现,意味着大模型本身其实无法解决端到端的问题,必须要有公司去贴近客户、贴近场景,用大模型的能力去解决客户专有的问题,数据、场景、端到端的解决方案才是客户真正需要的方案,而如果没有AGI,大模型公司自己不可能实现每个应用场景的方案。从技术角度来说,AGI能否实现的确是个黑盒,但是今天我们能够知道的事实是,行业内最顶级的AI专家(Lecun,黄仁勋),对于LLM这种基于next token预测的方式能否实现AGI是有分歧的或者说不确定的。这种分歧不说明谁对谁错,但是说明我们离AGI还有相当长的时间,更强大的推理能力、符合物理规律的视频生成、对于物理世界的理解等等,还有很多问题需要解决。而在AGI还达不到的时刻,大模型公司很难方便、低成本的提供所有端到端的解决方案,客户需要的是具体的解决方案,就像是搜索虽然很强大,但是用户还是需要各种论坛/小红书去获取更专业的信息,需要电商网站去实现下单购买的目的,而这些就是很多应用层公司发挥作用的地方。以AI销售为例,他们就需要根据客户的类型,在不同的场景下应用大模型的能力。举个例子,比如针对客单价很高的客户,销售推进的速度可能就相对更慢,综合要考虑的因素会更多;卖车的和卖房的销售,卖不同品牌车的销售,是电话、面销还是网销,所有的不同都意味着背后的产品是不同的,是需要精心设计的,不仅仅是模型层面能解决的问题。