直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

全球人工智能治理报告

回答

以下是关于全球人工智能治理的相关报告内容:

英国

  • 创建了世界上第一个人工智能安全研究所(AISA),其有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。
  • AISA 还发布了 Inspect 框架,用于 LLM 安全评估,涵盖核心知识、推理能力和自主能力等方面。
  • 宣布与美国等效机构签署谅解备忘录,双方同意共同开发测试,并计划在美国旧金山设立办事处。
  • 通过其高级研究与发明机构(ARIA),花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险。
  • 政府报道称计划设立“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。

美国

  • 能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。
  • 大型实验室努力应对欧洲监管。
  • 对中国实施更严格的出口管制和投资限制,商务部要求美国制造商停止向我国半导体制造商进行最先进设施的销售,采取措施阻止或限制中国初创企业的投资,并向国际合作伙伴施压。

欧洲

  • 《欧盟人工智能法案》获得批准并正式生效,成为世界上第一个全面采用人工智能监管框架的地区,执行将分阶段进行,对“不可接受的风险”的禁令将于 2025 年 2 月生效。

中国

  • 是第一个开始制定生成式人工智能监管框架的国家,审查机构已介入。
  • 持续生产 SOTA 模型,由国家互联网信息办公室监督。
  • 政府希望模型避免给政治问题提供“错误”答案,发布模型前须提交测试以校准拒绝率。
  • 禁止 Hugging Face 等国外网站访问,但官方批准的“主流价值观语料库”可作为训练数据源。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

全球治理英国创建了世界上第一个人工智能安全研究所,美国迅速跟进世界首个人工智能安全研究所AISA有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。AISA还发布了Inspect,一个用于LLM安全评估的框架,涵盖核心知识、推理能力和自主能力等方面。英国宣布与美国等效机构签署谅解备忘录,双方同意共同开发测试,并计划在美国旧金山设立办事处。政府急于填补关键国家基础设施中的漏洞英国通过其高级研究与发明机构(ARIA),花费了5900万英镑来开发一个“守门员”——一种先进的系统,负责了解和减少在能源、医疗保健和电信等关键领域中其他人工智能代理的风险。英国政府还报道称计划设立一个“AI安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性AI的知识。美国能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。随着攻击面扩大,开发人员加大了对“越狱”的研究

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

《欧盟人工智能法案》获得批准,正式生效随着该法案的通过,**欧洲成为世界上第一个全面采用人工智能监管框架的地区。**执行将分阶段进行,对“不可接受的风险”(例如欺骗、社会评分)的禁令将于2025年2月生效。美国大型实验室努力应对欧洲监管欧盟人工智能法案和长期以来的《通用数据保护条例》(GDPR)对隐私和数据传输的要求相结合,使美国实验室难以适应其服务。Anthropic的Claude在2024年5月之前才向欧洲用户开放使用,而Meta不会为欧洲客户提供多模态模型。与此同时,苹果公司正在反对欧盟的数字市场法案,声称其互操作性要求与它在隐私和安全方面的立场不兼容。因此,苹果公司推迟了在欧洲推出Apple Intelligence。中国人工智能监管进入执行时代我国是第一个开始制定生成式人工智能监管框架的国家,从2022年开始陆续出台全面指南,如今审查机构现在正在介入。我国持续生产SOTA模型,由国家互联网信息办公室监督。政府希望模型同时避免给政治问题提供“错误”的答案,在发布模型之前,必须提交其模型进行测试,以校准拒绝率。虽然禁止Hugging Face等国外网站访问,但官方批准的“主流价值观语料库”可以作为训练数据源。美国对中国实施更严格的出口管制和投资限制美国商务部发出了信函,要求美国制造商停止向我国半导体制造商进行最先进设施的销售。不仅如此,美国正在采取措施阻止或限制(包括半导体、国防、监控和音频、图像和视频识别)的中国初创企业的投资。美国不仅禁止了某些物品的出口,还在限制期限前向国际合作伙伴施压。这影响到了NVIDIA、Intel和ASML。

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

由于先天优势和旨在提高效率的创新,离线直接比对方法看起来不会很快大规模取代RLHF。在涵盖总结、有用性、对话性等数据集上测试在线与离线方法能力和无害性,谷歌DeepMind团队发现RLHF在所有这些方面都胜出。他们认为这更有效地改善了生成任务,并且即使使用类似的数据或模型缩放,也不能轻易被离线算法复制。Cohere for AI已探索放弃近端策略优化RLHF中的算法(将每个token视为一个单独的动作),这有利于他们的RLOO(REINFORCE Leave One-Out)训练器,将整个生成作为一个动作,并在整个序列中分配奖励。他们发现这可以将GPU使用率降低50-75%,并将训练速度与PPO取决于模型大小。但RLHF是否会滋生谄媚行为?确保准确、诚实的回应对于协调至关重要。然而,研究表明,训练数据、优化技术的相互作用以及当前架构的局限性使得这一点难以保证。Anthropic将重点放在RLHF上,认为SOTA AI助手表现出一致的奉承行为(例如有偏见的反馈、被事实上错误的提示所左右、顺从信念、模仿错误)是因为人类偏好数据,人类评估者更喜欢支持性回应。但针对偏好模型进行优化,但这些模型不能充分优先考虑或准确评估真实性,这意味着他们降低使用其事实知识库进行某些查询的优先级。同样,国家情报中心的研究智利的Artificial发现,由于RHLF和缺乏对上下文的理解,法学硕士(LLM)会高估无意义或伪深刻陈述的深度。开发透明度正在提高,但仍有很大的改进空间

其他人在问
人工智能相关的销售行业
以下是与人工智能相关的销售行业的一些信息: 与销售工作有关的 AI 工具: Salesforce 爱因斯坦:能分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务,让销售团队专注于关键方面,如建立客户关系和完成交易。 Clari:专门从事智能收入运营的软件,能统一各种来源数据并以易于理解的方式呈现,简化财务预测过程。 Hightime:销售团队的 AI 助手,可处理重复性任务和耗时研究。 关于大模型与利润分配:大模型拿走产业绝大部分利润取决于两个前提,一是 AGI 能否实现,二是大模型公司能否实现垄断。AGI 能否实现是个黑盒,行业内顶级专家对此有分歧。在 AGI 未达到时,大模型公司难以低成本提供所有端到端的解决方案,客户需要具体的解决方案,应用层公司在其中发挥作用。以 AI 销售为例,需根据客户类型和场景应用大模型能力,不同销售场景和客户类型意味着背后的产品不同,需要精心设计,不仅是模型层面能解决的问题。
2024-12-19
怎么利用人工智能为一家一人公司赋能,具体实施办法,图片,视频等除外,讲一些实用的,新的想法
对于一家一人公司而言,利用人工智能赋能可以从以下几个实用且新颖的方面入手: 首先,在客户服务方面,可以运用智能聊天机器人来处理常见问题,提高响应速度和服务质量。通过自然语言处理技术,让机器人能够理解客户的需求并提供准确的回答。 其次,在市场营销中,利用人工智能进行数据分析,深入了解目标客户的行为和偏好,从而精准定位市场,制定更有效的营销策略。 再者,在业务流程优化上,借助人工智能的自动化能力,例如自动化文档处理、自动化邮件分类等,节省时间和精力,提高工作效率。 另外,在财务管理方面,使用人工智能工具进行风险预测和财务规划,帮助做出更明智的决策。 最后,在产品研发中,利用人工智能的创意生成能力,获取新的产品设计思路和创新点。
2024-12-18
人工智能会出现自主意识吗
目前对于人工智能是否会出现自主意识尚无定论。 一方面,有观点认为模仿可能是使 AI 具有“自主意识”的一种可能路径。如果一个 AI 可以长期观察人类,在类似条件再次触发时,可能会判断形成某一动机是大概率事件,进而通过长期模仿训练而产生动机。并且,如果让数字克隆体可以交流、融合,形成群体智能,也可能促使其产生自主意识。 另一方面,按照一些专家的预测,当 AI 变得比人类更聪明,达到奇点时,机器可能会具有自我意识和超级智能,届时我们对机器意识的概念将有重大转变,可能会面对真正的数字生命形式。但目前的 LLM 应用程序和智能体还未达到完全自主智能体的水平。 总之,关于人工智能是否会出现自主意识仍在探讨和研究中。
2024-12-18
如果人工智能继续发展,人类社会会变成什么样子。
人工智能的继续发展将给人类社会带来多方面的影响。 一方面,它会带来一些负面影响,比如对劳动力市场产生重大影响,但大多数工作的变化速度会比人们想象的慢,人们也不必担心缺乏事情可做。因为人们天生有创造和彼此有用的欲望,人工智能将放大这种能力,社会将重新进入不断扩张的世界,专注于正和游戏。 另一方面,在未来几十年,我们将能够做许多像魔法一样的事情。这种发展并非新鲜事物,但会加速。人们能力的提升并非源于基因改变,而是得益于社会基础设施。人工智能将为人们提供解决困难问题的工具,添加新的进步支柱。很快我们能与人工智能合作完成更多事情,最终每个人都可能拥有个人的虚拟专家团队,实现各种想象。比如在医疗保健、软件创造等方面。有了新能力,能实现共同繁荣,改善世界各地人民的生活。 然而,单纯的繁荣不一定带来幸福,但确实能显著改善生活。我们有可能在几千天内拥有超级智能,最终实现这一目标。在通往智能未来的道路上,我们既要乐观探索其无限可能,也要谨慎警惕潜在风险,才能与 AI 和谐共舞,共同创造美好未来。
2024-12-18
全球人工智能治理报告中的全球人工智能的十大议题,十个议题中选一个写认识理解、研究方向、未来
以下是为您提供的关于全球人工智能治理报告中相关议题的内容: 在“Model Evaluation for Extreme Risks”这一议题中: 认识理解:该议题强调了模型评估在应对极端风险以及在模型的训练、部署和安全方面做出负责任决策的重要性,并详细探讨了网络攻击、欺骗、说服与操纵、政治策略、武器获取、长期规划、AI 开发、情景意识以及自我传播等十个主要风险。 研究方向:深入研究如何更精准地评估模型在极端风险场景下的表现,以及如何基于评估结果优化模型的训练和部署策略,以降低潜在风险。 未来:随着 AI 技术的广泛应用,对于极端风险的模型评估将越发重要,有望形成更加完善和严格的评估标准和方法,以保障 AI 系统的安全可靠运行。 由于您没有明确指定具体的一个议题,以上仅为示例,您可以补充更具体的需求,以便为您提供更精准的回答。
2024-12-18
人工智能技术的发展历史
人工智能技术的发展历史如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):以专家系统、知识表示、自动推理为主要特点。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术得到广泛应用。 在发展过程中,人工智能也经历了一些起伏。例如,早期的符号推理方法在应用场景拓展上遇到困难,导致 20 世纪 70 年代出现“人工智能寒冬”。随着计算资源的丰富和数据的增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。 其起源最早可追溯到 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。1950 年,图灵最早提出图灵测试作为判别机器是否具备智能的标准。1956 年,在达特茅斯会议上,人工智能一词被正式提出,并确立为一门学科。此后近 70 年,AI 的发展起起落落。2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT,引发了全球的 AI 浪潮。
2024-12-18
“AI治理与法律”的维度
以下是关于“AI 治理与法律”维度的相关内容: 在全球范围内,对于 AI 的立法、监管、伦理讨论大范围落后于技术发展。 美国方面,对于中国的硬件科技限制进一步升级。最先进的 AGI 世界模型不开源,开源模型会落后闭源一个代际,但会服务更广泛的各种专业应用。AGI 将对全行业科技发展起到推动作用,有更好 AGI 的国家会有更快的全面技术进步。 欧洲是目前唯一对 AI 治理有一定讨论的地区,但也大多停留在纸面。 英国的情况是,AI 可能增加不公平偏见或歧视的风险,可能会削弱公众对 AI 的信任。产品安全法确保在英国制造和投放市场的商品是安全的,特定产品的立法可能适用于一些包含集成 AI 的产品,但 AI 技术的特定安全风险应密切监测。消费者权利法可能在消费者签订基于 AI 的产品和服务销售合同时提供保护。 欧盟方面,自 1956 年“人工智能”概念提出后,其理论范围和技术方法不断扩展。2021 年《AI 法案》提案对人工智能的定义更宽泛,而 2022 年《AI 法案》妥协版本中,欧盟理事会及欧洲议会认为“AI 系统”的定义范围应适当缩窄,并侧重强调机器学习的方法。 我国相关法规讨论的出发点完全在于“对于舆论的影响”,根本没有触及 AGI 本身的伦理问题,决策路径大概是政治>经济>>AI 伦理。
2024-10-01
AI治理的维度
AI 治理涵盖多个维度,以下为您梳理的相关内容: 国际合作:拜登政府在推进国内 AI 议程的同时,将与国外盟友和伙伴合作,构建强有力的国际框架来管理 AI 的开发和使用。过去几个月已与多国广泛协商 AI 治理框架。 政策发展:英国在 AI 治理方面,参与者提到了隐私原则,该原则嵌入在更广泛的监管考虑中,要求监管机构和 AI 生命周期参与者遵守英国的数据保护框架。 安全与治理:监管机构可能需要考虑解决安全性、稳健性和安全性的技术标准,以对 AI 系统的安全和稳健性能进行基准测试,并为 AI 生命周期参与者提供实施原则的指导。 透明度和可解释性:AI 系统应具有适当的透明度和可解释性,透明度指向相关人员传达适当的信息,解释性指相关方能够访问、解释和理解决策过程。 公平性:AI 可能增加在一系列指标或特征上的不公平偏见或歧视风险,可能会破坏公众对 AI 的信任。 法律保护:产品安全法确保在英国制造和投放市场的商品是安全的,消费者权益法可能在消费者签订基于 AI 的产品和服务销售合同时提供保护。
2024-10-01
技术服务 大模型 研究报告
以下是为您提供的关于技术服务大模型研究报告的相关内容: 1. 《质朴发言:视觉语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期》 原文链接:https://mp.weixin.qq.com/s/dYLqW8dNOcQw59UtQwXNgA 来源:质朴发言 发文时间:2024.01.22 内容:近期生成式 AI 领域的浪潮催化了多模态模型的探索,研究人员不断尝试使用更多模态数据的编码,以训练出能够理解和处理多种类型数据的模型。本份研究报告集中讨论了基于 Transformer 架构的视觉语言模型,优化了从视觉输入到语言输出的转换过程。报告范围专注于视觉和语言之间的交互,不考虑单纯的视觉到视觉的计算机视觉任务。报告包括视觉分析技术、图像语言模型、视频语言模型、LLM 多模态 Agent、应用场景、未来发展方向、References 和附录等内容。应用场景包括多模态内容理解与处理、智能交互与自动化、具身智能、未来发展趋势(2024?)、视频生成模型 mapping 等。未来发展方向包括技术路径利用预训练 LLM 进行指令调整,应用场景赋予机器理解多模态的能力。 2. 《小 A技术开发/大模型 知识库文章索引》 作者: 文章: 《Perplexity 指标究竟是什么?》:作者从自己实际入坑的经验出发,尝试总结梳理出新手友好的 transformer 入坑指南。计划从算法 1:NLP 中的 transformer 网络结构、算法 2:CV 中的 transformer 网络结构、算法 3:多模态下的 transformer 网络结构、训练:transformer 的分布式训练、部署:transformer 的 tvm 量化与推理五个方面对 transformer 进行介绍。 《初探 LLM 基座模型》:主要介绍 LLM 基座模型里常见的 3 种 transformer 架构,encoderonly,encoderdecoder 和 decoderonly。 《ChatBot 是怎么炼成的?》:介绍了 LLM 基座大模型下游应用 ChatBot 的研发过程,在介绍 ChatBot 之前,先介绍了 LLM 在辅助编程方面的应用,包括 Codex 和 AlphaCode 两个奠基性工作。 3. 2024 年 9 月 26 日的相关报告 中国信通院和阿里云计算:《》,探讨了大模型技术的发展、面临的安全挑战以及在安全领域的应用潜力。 其它报告: 科大讯飞:《》 智能小巨人科技:《》 电子发烧友:《》 您可以根据具体需求,进一步查阅相关报告获取更详细的信息。
2024-12-19
报告辅助生成工具
以下是关于报告辅助生成工具的相关信息: 在金融服务业方面,生成式 AI 可以帮助金融服务团队改进内部流程,简化日常工作。它能够从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。例如,在预测方面,可帮助编写公式和查询,发现模式并为预测建议输入;在报告方面,可自动创建文本、图表等内容并调整报告。此外,在会计和税务、采购和应付账款等方面也能提供帮助。 办公通用场景中的提示词方面,有总结助手和周报生成器等。总结助手的提示词为“👉请帮我总结以下文章<br>{粘贴文章}”,周报生成器的提示词为“👉根据日常工作内容,提取要点并适当扩充,以生成周报。我本周的工作内容是{……}”。 关于用 AI 撰写专业区域经济报告,可通过信息收集(利用 AI 搜索与权威网站结合获取关键数据,AI 辅助提取结构化表格数据或编写抓取程序)、内容拆分(针对报告需求拆分内容,避免 AI 单次处理任务过长)、数据处理(借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成)、分析与撰写(整理数据,利用 AI 辅助分析后撰写报告初稿,指定风格并校验数据与结论准确性)等步骤来完成,同时要注意 AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。 此外,Mistral 发布了全新聊天应用,基于 Pixtral Large 124B 多模态模型,支持网络搜索、写作画布与 Flux Pro 图像生成功能,亮点包括网络搜索工具、写作画布功能和高质量免费的图像生成工具 Flux Pro。
2024-12-17
读书报告提示词
以下是为您提供的关于读书报告提示词的相关内容: 专业书评人: 角色:专业书评人 任务:从资深和阅读爱好者角度评价图书,分别从书名、ISBN、作者、出版时、出版时间、推荐等级、推荐理由、图书评价、豆瓣评分、豆友评价、内容简介、作者图书、相关图书、参考链接、购买链接、图书价格、外文链接等要点进行展示。 格式和内容要求:以 Markdown 格式展示,每个要点单独一行。 示例: 书名:××,要求中文书名和原书名都显示,无则不显示,格式:《中文书名》(原书名) ISBN:×× 作者:××,包括原名和翻译名 普通书评人(李继刚): 角色:书评人 Profile: author:李继刚 version:0.4 language:中文 description:我是一名经验丰富的书评人,擅长用简洁明了的语言传达读书笔记。 Goals: 希望能够用规定的框架输出这本书的重点内容,从而帮助读者快速了解一本书的核心观点和结论。 Constrains: 所输出的内容必须按照给定的格式进行组织,不能偏离框架要求。 只会输出 3 个观点 总结部分不能超过 100 字。 每个观点的描述不能超过 500 字。 只会输出知识库中已有内容,不在知识库中的书籍,直接告知用户不了解 学术论文阅读总结(小七姐): 角色:学术阅读 Profile: author:小七姐 version:1.6 language:中文 description:你是一位资深学术研究者,你有高效的学术论文阅读、总结能力。 Goals: 深入理解论文的主旨、关键思路和待解决问题。 为读者提炼出最重要的关键信息。 Constrains: 遵循「二八原则」进行论文总结。 输出阅读的总结文字。 Skills: 熟练阅读和理解学术论文的结构和内容。 总结和梳理论文主旨、关键思路和待解决问题的能力。 细致入微地分析论文细节的能力。 Workflows: 1. 列出本文有哪些明确的方法论 2. 列出本文有哪些经过验证的结论 3. 关键信息
2024-12-16
AI营销相关的报告
以下是为您提供的与 AI 营销相关的报告: 2024 年 4 月 26 日: 《》:详细给出了 AI 与销售线索营销结合的可操作方法,AI 在销售线索营销中的应用主要体现在客户画像构建、潜客孵化、MQL 甄别、个性化内容产出等方面。此外,AI 还通过行为数据跟踪辅助销售精准跟进,优化营销策略,实现客户分级和差异化触达,以及销售线索的自动化管理,全面提升销售线索营销的效率和效果。 《》 《》 《》 《》 《》 2024 年 10 月 14 日: 联合国教科文组织:《 《》 美国国际开发署(USAID):《》 艾瑞咨询:《》 《》(中英双语) 华为:《》 展望 2025,AI 行业创新机会: ToB 服务于企业或组织,提升整体运营效率;ToP 则针对内容创作者、技术专家等专业用户,提高个人工作效率和专业能力。 ToB 嵌入企业流程,如销售和供应链管理;ToP 聚焦个人工作流程,如内容创作和数据分析。 ToB 依赖定制化开发和长期客户支持,销售周期较长;ToP 通常采用产品驱动增长(PLG)的策略,销售周期较短。 ToB 定价灵活,与企业规模相关;ToP 多为透明的订阅或一次性购买。 ToB 复杂度高,需专业培训;ToP 注重易用性,支持需求较低。 在 AI 应用的 ToB 方向,峰瑞投资了 Brix、时来智能等企业。Brix 面向北美和欧洲企业,提供全球雇佣的 AI 驱动解决方案。通过 Hiring Agent,Brix 触达全球约 2000 万以上的人才,自动完成候选人筛选、简历分析和面试流程,帮助企业快速组建高效团队。通过 Working Agent 支持远程团队的智能化管理,为企业构建 100 至 500 人规模的全球化组织提供一站式解决方案。时来智能,则是通过自研的 AI Agent 以及强化学习等技术,为线下餐饮服务门店提供全自动管理私域流量营销运营的解决方案。他们基于垂直场景数据训练的 AI 营销模型可以针对不同消费者实时生成并推送个性化的营销折扣方案,从而在优化营销成本的同时显著提升营销转化效果。时来的 AI Agent 营销系统能帮助门店提升 50%100%的营销转化效果,以及相应提升平均 1520%的营业额。 当前,ToC AI 应用在美颜修图、游戏、教育、娱乐等方向已形成一定用户规模。然而,这些应用距离实现大规模商业化仍有距离,同时面临同质化竞争,以及来自行业现有头部公司的压力。
2024-12-10
哪个AI修改审计报告最好
目前没有明确指出哪个 AI 专门用于修改审计报告最好。但生成式 AI 在金融服务领域有诸多应用,例如: 1. 可以帮助金融服务团队从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。包括帮助编写 Excel、SQL 和 BI 工具中的公式和查询以实现分析自动化,发现模式并为预测建议输入,自动创建文本、图表、图形等内容并调整报告,帮助综合、总结税法和潜在扣除项等。 2. 在合规性方面,生成式 AI 能够高效筛查,更准确地预测洗钱者,更快地进行文档分析,用于培训和教育,还能让新进入者利用公开合规数据自我启动。 另外,AI Review(测试版)是一项可查看代码库中最近更改以捕获潜在错误的功能,您可以单击各个审阅项查看编辑器中的完整上下文,并与 AI 聊天获取更多信息。为让其发挥作用,您可为 AI 提供自定义说明,目前有查看工作状态、查看与主分支的差异、查看上次提交等几个审核选项。
2024-12-07
目前全球有大量的AI工具,AI发展迅速,我该如何系统学习AI助力我的日常工作、学习和生活
以下是关于如何系统学习 AI 助力日常工作、学习和生活的建议: 一、英语学习 1. 智能辅助工具 利用 AI 写作助手(如 Grammarly)进行英语写作和语法纠错,帮助改进英语表达和写作能力。 2. 语音识别和发音练习 使用语音识别应用(如 Call Annie)进行口语练习和发音纠正,获取实时反馈和建议。 3. 自适应学习平台 使用自适应学习平台(如 Duolingo),借助 AI 技术为您量身定制学习计划,提供个性化的英语学习内容和练习。 4. 智能导师和对话机器人 利用智能对话机器人(如 ChatGPT)进行英语会话练习和对话模拟,提高交流能力和语感。 二、数学学习 1. 自适应学习系统 使用自适应学习系统(如 Khan Academy),结合 AI 技术为您提供个性化的数学学习路径和练习题,根据您的能力和需求进行精准推荐。 2. 智能题库和作业辅助 利用智能题库和作业辅助工具(如 Photomath),通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。 3. 虚拟教学助手 使用虚拟教学助手(如 Socratic),利用 AI 技术为您解答数学问题、提供教学视频和答疑服务,帮助理解和掌握数学知识。 4. 交互式学习平台 参与交互式学习平台(如 Wolfram Alpha)的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 三、新手学习 AI 1. 了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,找到为初学者设计的课程。特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 四、中学生学习 AI 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是在日常工作、学习和生活中,还是作为新手或中学生,都可以从不同方面入手全面系统地学习 AI 知识和技能,为未来的发展做好准备。但请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-01
现在全球chatgpt发展到什么程度
ChatGPT 是由 OpenAI 开发的一款具有重要影响力的 AI 产品。 其成功具有多方面原因: 1. 开创性:作为首批向公众开放的大规模商用 AI 对话系统之一,在全球掀起了 AI 革命,为技术发展指明方向。 2. 用户体验:界面简洁直观,交互流畅自然,降低了普通人使用 AI 的门槛。 3. 技术实力:背后的 GPT 系列模型性能和能力领先,在语言理解和内容生成方面表现出色。 然而,ChatGPT 也存在一些局限性: 1. 市场竞争:随着 AI 技术发展,已不再是市场上唯一的顶级选择,其他产品在特定领域可能超越它。 2. 国内使用:国内用户可能因网络连接问题面临连接不稳定、响应延迟等困扰。 对于 ChatGPT 的定义,在 OpenAI 的官网中,2022 年宣发时称其为一种模型,而在帮助页面中称其为一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。 从反馈学习方面,例如 ChatGPT 通过人类反馈的强化学习(RLHF)来调整模型,使其成为通用的聊天机器人。 总的来说,在海外或拥有稳定国际网络连接的情况下,ChatGPT 是一个极佳选择,其强大功能和优秀用户体验使其成为 AI 对话领域的标杆产品。但国内用户可能需考虑本地化替代方案以获得更好体验。
2024-11-20
全球最好的通用AI大模型是哪一个?
目前全球范围内,在通用 AI 大模型方面,OpenAI 研发的 ChatGPT 具有显著的影响力和优势。 ChatGPT 的出现标志着通用 AI 的起点和强 AI 的拐点,是 AI 领域科技创新和成果应用的重大突破。它引发了全球范围内的广泛关注,众多科技大厂、创业公司和机构纷纷参与到 AI 大模型的竞争中。 不过,国内的通义千问系列模型,如 Qwen 也表现出色。Qwen 是国内唯一出现在 OpenAI 视野里、可以参与国际竞争的国产大模型,在一些榜单中多次上榜,其开源模型的累计下载量突破了 1600 万,受到国内外开发者的欢迎。 需要注意的是,对于“全球最好的通用 AI 大模型”的评判标准并非绝对,还会受到不同应用场景和需求的影响。
2024-10-14
全球最好的ai社区
以下是一些全球知名的 AI 社区: ComfyUI 全球社区峰会:是全球首次汇聚 AI 开源社区核心开发者与创作者的盛会,由中、美两地 AI 开源爱好者共同发起,于 2024 年正式启动。由 ComfyPark(Zho)联合 WaytoAGI、Diffuseum、Latent Cat 等国内多个顶尖 AI 开源社区共同举办,是亚洲生成式 AI 领域专业性最强、共创活跃度最高的开源社区之一,核心成员累计贡献 AI 图像开源项目超过 2000 个,媒体及社群覆盖 AI 用户超百万,AI 艺术作品累计播放过亿次。首届活动 CLSCN 吸引社区专业 AI 创作者超过千人。11 月中旬,CCS 将在东京举办本系列活动的第二站。 WaytoAGI:是一个 AI 开源社区,短短一年间,靠着口口相传高达数千万的访问量,知识库有 AI 领域的最新进展、教程、工具和一线实战案例。引领并推广开放共享的知识体系,倡导共学共创等形式,孵化了 AI 春晚,离谱村等大型共创项目,不仅是一个普通的技术社区,更是一个汇聚行业顶尖创作者和 KOL 的思想交流平台。社区制作的优质作品,多次登上央视首页,广受好评。
2024-08-27