Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

用20个字概括AI问答和搜索

Answer

AI 问答和搜索包括联网检索、多种引擎及检索原理

  • 存在联网检索的 AI 及相关工具。
  • 推荐多种 AI 搜索引擎。
  • 介绍知识库检索的原理和步骤。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:有没有能联网检索的AI?

是的,存在能联网检索的AI。这些AI通过连接互联网,实时搜索、筛选并整合所需数据,以提供给用户更精准和个性化的信息。例如,ChatGPT Plus用户现在可以开启web browsing功能,实现联网功能。Perplexity,它结合了ChatGPT式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。Bing Copilot,作为一个AI助手,旨在简化您的在线查询和浏览活动。还有如You.com和Neeva AI等搜索引擎,它们提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。这些AI搜索工具的出现,标志着在信息检索领域的一个重要发展,它们通过结合AI技术和搜索引擎,大幅提升了数据集命中预期,并为实际应用带来了更多可能性。内容由AI大模型生成,请仔细甄别。

问:AI 搜索引擎

以下是一些推荐的AI搜索引擎:1.秘塔AI搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。2.Perplexity:一款聊天机器人式的搜索引擎,允许用户用自然语言提问,使用生成式AI技术从各种来源收集信息并给出答案。3.360AI搜索:360公司推出的AI搜索引擎,通过AI分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。4.天工AI搜索:昆仑万维推出的搜索引擎,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。5.Flowith:一款创新的AI交互式搜索和对话工具,基于节点式交互方式,支持多种AI模型和图像生成技术,提供插件系统和社区功能。6.Devv:面向程序员的AI搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。7.Phind:专为开发者设计的AI搜索引擎,利用大型语言模型提供相关的搜索结果和动态答案,特别擅长处理编程和技术问题。这些AI搜索引擎通过不同的技术和功能,为用户提供更加精准、高效和个性化的搜索体验。内容由AI大模型生成,请仔细甄别

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

知识库中的文档也需要被转换成向量形式。这使得文档内容能够在数值级别上与问题向量进行比较。在我们使用知识库工具时,上传文档就会帮助我们完成文档的向量化。这一步就是依靠Embedding Modle完成的。2、知识库检索:根据前一步输出的问题向量,检索器开始在一个庞大的向量空间中搜索与问题相关的内容(既向量距离最接近)。检索器根据问题的关键词和上下文,选出最相关的信息片段。在这一步,检索器从知识库里,检索到了一些和用户问题最相关的内容。检索器具体进行了什么操作呢?(了解即可)1.相似性计算:2.使用一种相似性度量方法(如余弦相似性)来计算问题向量和各个文档向量之间的相似度。这一步是为了找出与问题内容最为接近的文档。3.排序与选择:4.根据相似性得分,所有文档会被排序。系统通常会选择得分最高的几个文档,认为这些文档与问题最相关。5.信息抽取:6.从选定的高相关性文档中抽取具体的信息片段或答案。这可能涉及到进一步的文本处理技术,如命名实体识别、关键短语提取等。③、信息整合阶段:1、信息融合:这里将接收到上一步中检索到的全部信息。然后把这些信息连带用户问题和系统预设,被整合成一个全新的上下文环境,为生成回答提供基础。具体进行了什么操作呢?

Others are asking
比H200更先进的GPU是什么
目前比 H200 更先进的 GPU 是英伟达推出的 Blackwell B200 GPU。 Blackwell B200 GPU 具有以下优势: 1. 性能强大:拥有 2080 亿个晶体管,能提供高达 20 petaflops 的 FP4 性能,而 H100 仅为 4 petaflops,性能提升达 5 倍。 2. 效率提升:将两个 B200 与单个 Grace CPU 相结合的 GB200,能为 LLM 推理工作负载提供 30 倍的性能,同时大大提高效率,成本和能耗降低了 25 倍。 3. 训练能力:可以训练更大、更复杂的模型,一个 GB200 NVL72 机柜可以训练 27 万亿参数的模型,相当于能训练近 15 个 GPT4 这样的模型。 它采用台积电 4NP 工艺节点,其中一个关键改进是采用了第二代 Transformer 引擎,对每个神经元使用 4 位(20 petaflops FP4)而不是 8 位,直接将算力、带宽和模型参数规模提高了一倍。此外,还推出了由 Blackwell 组成的 DGX 超算,如 DGX GB200 系统,具有强大的计算和扩展能力。
2024-12-23
2025年AI的大走向是什么
2025 年 AI 的大走向可能包括以下几个方面: 1. 大型基座模型能力的优化与提升:通过创新训练与推理技术,强化复杂推理和自我迭代能力,推动在科学研究、编程等高价值领域的应用,并围绕模型效率和运行成本进行优化,为广泛普及和商业化奠定基础。 2. 世界模型与物理世界融合的推进:构建具备空间智能的世界模型,使系统能够理解和模拟三维环境,并融入物理世界,推动机器人、自主驾驶和虚拟现实等领域发展,提升对环境的感知与推理能力以及执行任务的实际操作能力,为人机交互带来更多可能。 3. AI 的多模态融合:整合文本、图像、音频、视频、3D 等多模态数据,生成式 AI 将显著提升内容生成的多样性与质量,为创意产业、教育、娱乐等领域创造全新应用场景。 4. 数字营销方面:AI 技术将成为数字营销的核心,品牌应注重利用 AI 提升用户体验,预计全球 AI 在数字营销领域的市场规模将达到 1260 亿美元,采用 AI 技术的公司在广告点击率上提高 35%,广告成本减少 20%。 5. 行业发展:2025 年或将成为 AI 技术逐渐成熟、应用落地取得阶段性成果的关键节点,同时成为 AI 产业链“资产负债表”逐步修复的年份,标志着行业从高投入、低产出向商业化路径优化迈出重要一步。 6. 竞争格局:大语言模型供应商将各具特色,竞争加剧;AI 搜索引擎将成为杀手级应用,快速普及,颠覆传统搜索方式;不同领域的 AI 搜索引擎将出现,针对专业需求提供更精准的信息服务。
2024-12-20
2024年热门AI模型
以下是 2024 年的热门 AI 模型: 在编码任务方面,DeepSeek 的 deepseekcoderv2 成为社区的最爱。 阿里巴巴发布的 Qwen2 系列在视觉能力方面给社区留下深刻印象。 清华大学自然语言处理实验室资助的 OpenBMB 项目催生了 MiniCPM 项目,是可在设备上运行的小型参数模型。 在图像视频领域,国外 Stability AI 发布的 Stable Video Diffusion 能从文本提示生成高质量、真实视频,且在定制化方面进步显著,还推出了 Stable Video 3D。OpenAI 的 Sora 能生成长达一分钟的视频,并保持三维一致性等。Google DeepMind 的 Veo 能将文本和图像提示与视频输入结合生成高分辨率视频。 在生物医学领域,Profluent 的 CRISPRCas 图谱微调后生成功能性基因编辑器,如开源的 OpenCRISPR1。心智基础模型 BrainLM 基于功能性磁共振成像建立,能检测血氧变化等。 在气象预测领域,微软创建的 Aurora 能预测大气化学,比数值模型更优且速度更快。 获得诺贝尔物理学奖和化学奖的 AI 推动了机器学习理论创新,并揭示了蛋白质折叠问题。 蛋白质结构预测方面,有 DeepMind 和 Isomorphic Labs 发布的 AlphaFold 3。 DeepMind 展示的新实验生物学能力 AlphaProteo 能设计出高亲和力的蛋白结合剂。 Meta 发布的 ESM3 是前沿多模态生成模型,在蛋白质序列、结构和功能上训练。 学习设计人类基因组编辑器的语言模型——CRISPRCas 图谱。
2024-12-16
2024年AI视频、图像领域市场情况
2024 年在 AI 视频、图像领域,市场呈现出以下情况: 国内方面: 中国开源项目在全球受到关注,成为积极开源贡献者。 DeepSeek 在编码任务中表现出色,推出的 deepseekcoderv2 受到欢迎。 阿里巴巴发布的 Qwen2 系列在视觉能力方面给社区留下深刻印象。 清华大学的自然语言处理实验室资助的 OpenBMB 项目催生了 MiniCPM 项目。 国外方面: Stability AI 发布的 Stable Video Diffusion 能从文本提示生成高质量、真实视频,且在定制化方面有显著进步,还推出了 Stable Video 3D。 OpenAI 的 Sora 能够生成长达一分钟的视频,并保持三维一致性、物体持久性和高分辨率。 Google DeepMind 的 Veo 能将文本和可选图像提示与嘈杂压缩视频输入相结合,创建独特的压缩视频表示。 从市场数据来看,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,其中图像和视频类 AI 应用占据主导地位,收入占比高达 53%。从地区分布来看,北美和欧洲贡献了三分之二的市场份额。 在行业格局方面,云厂商成为 AI 供应链的“链主”,掌握着庞大的商业生态和技术资源。头部阵营基本稳定,大型云厂商在产业链中的地位无可撼动。
2024-12-15
2024年AI应用趋势
以下是 2024 年 AI 应用的一些趋势: 1. 在机器人研究领域,苹果 Vision Pro 成为重要工具,其高分辨率、高级跟踪和处理能力被用于远程操作控制机器人的运动和动作。 2. 在医学中,利用大模型生成合成数据,如微调 Stable Diffusion 中的 UNet 和 CLIP 文本编码器,从大量真实胸部 X 射线及其相应报告中生成大型数据集。 3. 企业自动化方面,传统机器人流程自动化面临问题,新颖方法如 FlowMind 和 ECLAIR 使用基础模型来解决限制,提高工作流理解准确率和完成率。 4. 算力瓶颈影响行业竞争格局,逐渐进入多模态灵活转换的新时代,实现文本、图像、音频、视频等模态的互相理解和转换。 5. 人类劳动形式“软件化”,复杂劳动被抽象为可调用的软件服务,劳动流程标准化和模块化。 6. AI 行业仍处于严重亏损阶段,商业化进程有待提升。 7. 云厂商是产业链中的“链主”,掌握庞大商业生态和技术资源以及巨大市场规模。 8. 2024 年头部 AI 应用中,创意工具仍占最大比重,To P 应用市场潜力大,ToB 应用发展路径复杂,ToC 应用面临挑战。 9. 在 AI 应用领域,Copilot 和 AI Agent 是两种主要技术实现方式,分别适合不同类型的企业。 10. 北美和欧洲贡献了 AI 移动应用市场三分之二的份额,中国 AI 公司积极出海。
2024-12-12
怎么能生成2000字以上的AI文案?
要生成 2000 字以上的 AI 文案,可以参考以下方法: 1. 丰富细化:让 AI 一段一段进行细节描写。为确保文章前后一致,可先让 AI 帮助写故事概要和角色背景介绍,并按自己的审美略做修改。使用让 AI 以表格形式输出细节描述的技巧,这样有三个好处:一是打破 AI 原本的叙事习惯,避免陈词滥调;二是按编号做局部调整容易,指哪改哪,其他内容能稳定不变;三是确保内容都是具体细节,避免整段输出时缩减导致丢光细节只剩笼统介绍。 2. 串联成文:把生成的表格依次复制粘贴,让 AI 照着写文章,期间可能需要您给点建议。 3. 利用相关工具:例如海螺 AI,其视频模型能识别图片、理解指令,不依靠特效模板就能实现顶级特效,能细腻呈现人物表情,还上线了提示词优化功能,开放 2000 字的提示词空间,让创作更精准。编写 Prompt 时,通过清晰的结构和灵活的表达方式,掌握一些规则,就能更好地利用 AI 生成文案。
2024-12-10
可以帮忙做excel表格的ai工具
以下是一些可以帮忙做 Excel 表格的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术,新增了生成式 AI 功能,允许用户在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,用户通过聊天形式告知需求,Copilot 会自动完成如数据分析或格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。
2024-12-23
国内好用的ai
以下是为您推荐的一些国内好用的 AI 产品: 1. 图像类产品: 可灵:由快手团队开发,可生成高质量的图像和视频,图像质量高,但价格相对较高,重度用户年费可达几千元,轻度用户有每日免费点数和较便宜的包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,且目前免费,每天签到获取灵感值即可,但存在一些局限性,如某些类型的图像因国内监管要求无法生成,处理非中文语言或国际化内容可能不够出色。 2. 聊天对话类产品: Kimi:具有超长上下文能力,最初支持 20 万字,现提升到 200 万字,对处理长文本或大量信息任务有优势,但文字生成和语义理解、文字生成质量方面可能不如其他产品,且不支持用户自定义智能体。 智谱清言:背后技术源自清华大学研发团队的科研成果转化,模型质量出色,以 ChatGPT 为对标打造用户体验,是国内首批开放智能体应用的公司之一,在逻辑推理和处理复杂提示词方面表现出色。 3. 其他类产品: 美趣 AI:原生图片生成,所属公司为兴利和。 说得相机提词器:功能写作软件。 AI 智能写作:原生写作软件,所属公司为汉酷网络。 创客贴 AI:功能平面设计,所属公司为艺源酷科技。 360AI 搜索:功能智慧搜索,所属公司为 360。 图趣 AI:原生图片生成。 Molica AI:原生图片生成。 文案宝:原生个人助理。
2024-12-23
电商用的AI工具
以下是一些电商常用的 AI 工具: 1. 电商 AI 工具库基础版(作者:清酒): 收集了十几款电商领域能用得上的 AI 工具,结合场景特别直观。 按照电商的角色进行了区分,无论您是买家、卖家、渠道还是生产者,都能找到合适的 AI 工具。 不仅有产品形态,还有非常具体的使用描述。您可以通过链接 https://i1lfku7w5p.feishu.cn/sheets/PJZTsTnDQhZnAatp2dccKYjQnnh 查看。 2. 生成式 AI 工具: 像这样的工具帮助品牌创建引人注目的产品照片,这对于向在线购物者销售产品非常重要。 可以制作用于电子邮件或社交媒体的营销材料。 可以编写经过 SEO 优化的产品描述。 3. 营销领域的 AI 工具: Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频。提供多种定价计划,从免费到商业级不等,可用于制作营销视频、产品演示等。 HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频。适合制作营销视频和虚拟主持人等。 Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等。提供多种语气和风格选择,写作质量较高。 Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容。有免费和付费两种计划。 Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等。提供多种语气和行业定制选项。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。总的来说,这些 AI 工具能够帮助电商从业者高效创作各种营销内容,提高工作效率。用户可根据实际需求选择合适的工具。需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-23
我现在是一家公司的实习生,目前参与的项目是AI法律大模型未来法官助手,这个系统的功能是提取案件中的信息,自动填写到预设好的要件中,比如犯罪嫌疑人的姓名、身份证号、出生日期、事发经过等等,我该如何去学习提示词
以下是关于如何学习提示词运用的建议: 1. 理解提示词的作用:提示词为模型提供上下文和指示,其质量直接影响模型输出质量。 2. 学习提示词的构建技巧: 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”“总结”“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:研究和学习已有的优秀提示词案例,在领域社区、Github 等资源中获取大量案例。 4. 实践、迭代、优化:多与语言模型互动,根据输出结果提高提示词质量,尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等,辅助构建和优化提示词。 6. 跟上前沿研究:提示工程是前沿研究领域,持续关注最新研究成果和方法论。 精心设计的提示词能最大限度发挥语言模型的潜力,多实践、多学习、多总结,终可掌握窍门。同时,在与大模型交互时,方法论不是关键,不断尝试和交互是最佳方法,无需严格遵循规则,未达成目的就锲而不舍地再尝试或更换模型。另外,用 Markdown 格式清晰表达问题有助于提高与模型交流的效率和精确性,其具有结构清晰、格式化强调、适用性广等优点。
2024-12-23
有必要报学习AI的课程吗
学习 AI 是否有必要报课程取决于您的具体情况和需求。 如果您想深入学习 AI 中的美学概念和操作,可以考虑报野菩萨课程。对于入门学习,有多种途径可供选择。比如,可以先从国内模型工具入手,因为其不花钱。学习过程可以从提示词开始,国内的大语言模型工具好用,并且在与各类模型对话中提示词具有重要性,结构化提示词还有优势。您还可以参考温达、李弘毅老师的课程等。 另外,若想进阶学习,可能需要考虑高阶方向。在学习过程中,对于账户投资,初期可先从国内模型工具入手。同时,若想深入学习某些内容,可查看官方 cookbook,创作者将内容做成可视化形式也会发到群里。入门经典必读和面向开发者的文章也值得阅读,欢迎上传相关 PPT 用作参考。 总之,是否报课程要综合考虑您的学习目标、预算和现有基础等因素。
2024-12-23
目前最有优势的几款ai软件是什么
以下是目前一些具有优势的 AI 软件: 在移动设备上,图片和视频内容编辑方面,传统创意工具转型的生成式 AI 优先,如排名较高的美图秀秀(第 9 位)、SNOW(第 30 位)和 Adobe Express(第 35 位)。 ChatGPT 第三次以巨大优势成为网络和移动端排名第一的产品。 Perplexity 在网络上排名第三,是一款专注于提供简明、实时和准确查询答案并引用来源的人工智能搜索引擎,其在访问时长方面略胜于 ChatGPT,且首次进入移动端前 50 名榜单。 Anthropic 的 Claude 是 ChatGPT 的直接竞争对手,在网页排名中进入前五,排名第 4。
2024-12-23
本地化搭建问答机器人流程
本地化搭建问答机器人的流程如下: 1. 加载所需的库和模块:包括用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前需确保 ollama 服务已开启并下载好模型)。 2. 从订阅源获取内容:通过函数从指定的 RSS 订阅 url 提取内容,如需接收多个 url 稍作改动即可。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回用于后续处理或提取。 3. 为文档内容生成向量:使用文本向量模型 bgem3(从 hf 下载好模型后假设放置在某个路径,通过函数利用 FAISS 创建高效的向量存储)。 4. 推荐 RSSHub 项目:可将关注的信息汇聚在同一平台,一旦有更新能在各种终端收到提醒。其为各种网站生成 RSS 源,大部分社交媒体、传统媒体和金融媒体都能配合订阅。 5. 流程拆解: 创建 Python 虚拟环境,并安装相关库,如 ollama(0.1.8)、langchain(0.1.14)、faisscpu(1.8.0,有 gpu 则安装 gpu 版本)、gradio(4.25.0)、feedparser(6.0.11)、sentencetransformers(2.6.1)、lxml(5.2.1)。 6. 了解 ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件,模型库可通过 https://ollama.com/library 查找。 支持自定义模型,可修改温度参数等。 提供 REST API 用于运行和管理模型及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 先安装 ollama,访问 https://ollama.com/download/ 下载安装。安装完确保 ollama 后台服务已启动(在 mac 上启动应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认,未下载模型时正常显示空,可通过 ollama 命令下载模型。
2024-12-21
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
如何搭建问答库
搭建问答库可以通过以下方式实现: 1. 利用 RAG 机制: RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术,以提高机器对话和信息处理的能力。 它先从大型数据集中检索与当前问题相关的信息,然后利用这些信息生成更准确、相关的回答。 可以想象成在问复杂问题时,RAG 机制先去巨大图书馆找相关书籍,再基于这些书籍信息给出详细回答。 这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。 基于 RAG 机制,首先创建包含大量社区 AI 相关文章和资料的知识库,通过手工录入方式上传文章内容,如创建有关 AI 启蒙和信息来源的知识库,再陆续导入其他板块的文章和资料。 在设计 Bot 时,添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回的内容进行结合回答。 2. 使用 embeddings: 将文本转换成向量能节省空间,可理解为索引。 把大文本拆分成若干小文本块,通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块作为问答的知识库。 当用户提出问题时,问题先通过 embeddings API 转换成问题向量,然后与向量储存库中的所有文本块向量比对,查找距离最小的几个向量,提取对应的文本块,与原有问题组合成新的 prompt 发送给 GPT API。 例如,对于一篇万字长文拆分成多个文本块,当提问“此文作者是谁?”时,通过比较 embeddings 向量可找出关联度最高的文本块,发送给 GPT API 的问题类似于“此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。”,大语言模型大概率能回答上这个问题。
2024-12-11
企业在构建AI智能体问答助手可能会遇到哪些挑战及痛点?
企业在构建 AI 智能体问答助手时可能会遇到以下挑战及痛点: 1. 私有化部署方面:在金融、医疗和法律等对数据私密性要求极高的中小型行业,私有化部署场景需求大,增加了企业培训的难度。 2. 模型接入方面:访问 GPT 存在门槛,国企类、体制类合作伙伴受限,需寻找更易于接入的国产模型替代,如智谱等。 3. 工程化落地方面:企业知识库大多卡在工程问题上,真正能落地的不多,数据清理难度大,技术能力要求高于预期。对于规模不大且无数字化系统的企业,实际落地成本可能不比传统人力成本节省更多。 4. 对企业了解不足:在品牌卖点提炼中,AI 对企业的主要产品、解决的用户需求、产品独特之处、所获认可、核心渠道、核心购买人群、营销手段、新渠道期望结果等了解程度接近于 0,难以直接给出有效卖点,更适合作为引导型的灵感提问助手。 以下是一些 Agent 构建平台供您参考: 1. Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。 请注意,以上信息由 AI 大模型生成,请仔细甄别。
2024-12-05
企业在构建AI智能问答助手可能会遇到哪些挑战及痛点?
企业在构建 AI 智能问答助手可能会遇到以下挑战及痛点: 1. 私有化部署的挑战:在金融、医疗和法律等许多中小型行业,对数据私密性要求极高,需要私有化部署,这大大增加了企业培训的难度。 2. 模型接入的限制:访问 GPT 有门槛,国企类、体制类的合作伙伴往往被拦截在外,需要寻找更易于接入的国产模型作为替代方案。 3. 工程化落地困难:企业知识库大部分卡在工程问题上,真正能落地的不多,数据清理部分难度较大,技术能力要求比想象中更高。 4. 成本问题:对于规模不大且没有数字化系统的企业,私有化部署的实际落地成本可能不比传统人力成本节省更多。
2024-12-05
我现在需要实现知识库问答、文件下载、转人工客服这几个关键功能,有什么AI工具可以推荐的吗
以下是为您推荐的一些可能适用于实现知识库问答、文件下载、转人工客服等关键功能的 AI 工具: 1. ChatGPT 4.0:功能强大,但使用可能存在一定限制。 2. Kimichat:可作为选择之一。 3. 智谱清言:在某些方面具有优势。 需要注意的是,对于 AI 绘画方面,如果您有相关需求,一些国产大模型如智谱和文心可以实现文生图的功能。另外,如果是文本纠错,飞书文档自带纠错功能,用 prompt 纠错时文本量不能太大。关于让 AI 根据文章自己写 prompt 的问题,关键在于明确所需 prompt 的具体类型和要求。如果只是用于自己学习,长期学习不一定必须要 iPhone 手机或对显卡有特定要求,若 ChatGPT 交费有问题且没有途径,可以考虑上述推荐的其他工具。
2024-12-04
简要概括《奇点临近》这本书的内容
《奇点临近》是雷·库兹韦尔的新作,书中描述了宇宙与人类发展的六个阶段。预言未来几十年内技术将迅速提升,改变人类生活,比如通过脑机接口等技术,人类能提升认知能力、逆转衰老、实现数字永生。但这些技术也带来潜在风险,如 AI 失控和基因编辑滥用。库兹韦尔的预见为我们描绘了一个激动人心又充满挑战的未来。
2024-12-18
文心一言的开发公司是谁,功能特点,优势性和局限性请帮我简要概括
文心一言是由百度开发的全新一代知识增强大语言模型。 功能特点: 在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一。 在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三。 各项能力表现均衡且大部分能力水平较高。 能力栈广泛,可应用场景较多,重点推荐在查询搜索知识应用、任务拆解规划 Agent、文案写作以及代码编写及纠错等方面的应用,在逻辑推理方面表现不俗,可关注在科学研究、教育、工业方面的落地能力。 优势: 能够与人对话互动,回答问题,协助创作,高效便捷地帮助人们获取信息、知识和灵感。 局限性: 从某些测试和感觉来看,其能力水平可能在 GPT3 的阶段,输出内容的可靠性与 ChatGPT 相比还有差距。
2024-11-22
用50个字概括AI如何修图&绘画
AI 修图与绘画可通过设定关键词,如主题、环境、气氛等描绘画面,利用其可控与不可控特点,选择擅长和理解的内容创作。
2024-11-13
用50个字概括AI如何会议记录&摘要
AI 进行会议记录和摘要可涵盖会议主题、人员、议题等要素,借助相关工具和工作流,如飞书妙记、Kimichat 等,按流程生成和完善。
2024-11-13
用20个字概括AI会议记录&摘要
AI 会议记录与摘要涵盖多场景多领域内容
2024-11-13
用20个字概括AI文档撰写和ppt制作
AI 文档撰写和 PPT 制作涵盖多种工具与应用场景,如 Gamma、美图 AI PPT 等,可辅助教学等工作。
2024-11-13