Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

比H200更先进的GPU是什么

Answer

目前比 H200 更先进的 GPU 是英伟达推出的 Blackwell B200 GPU。

Blackwell B200 GPU 具有以下优势:

  1. 性能强大:拥有 2080 亿个晶体管,能提供高达 20 petaflops 的 FP4 性能,而 H100 仅为 4 petaflops,性能提升达 5 倍。
  2. 效率提升:将两个 B200 与单个 Grace CPU 相结合的 GB200,能为 LLM 推理工作负载提供 30 倍的性能,同时大大提高效率,成本和能耗降低了 25 倍。
  3. 训练能力:可以训练更大、更复杂的模型,一个 GB200 NVL72 机柜可以训练 27 万亿参数的模型,相当于能训练近 15 个 GPT-4 这样的模型。

它采用台积电 4NP 工艺节点,其中一个关键改进是采用了第二代 Transformer 引擎,对每个神经元使用 4 位(20 petaflops FP4)而不是 8 位,直接将算力、带宽和模型参数规模提高了一倍。此外,还推出了由 Blackwell 组成的 DGX 超算,如 DGX GB200 系统,具有强大的计算和扩展能力。

Content generated by AI large model, please carefully verify (powered by aily)

References

老黄祭出新核弹B200!30倍H100单机可训15个GPT-4模型,AI迎新摩尔时代

原创新智元新智元2024-03-19 08:13北京原文地址:https://mp.weixin.qq.com/s/a6D9OgiJuUjHtBQCVgo7mg[heading3]新智元报道[content]编辑:编辑部【新智元导读】就在刚刚,老黄又来打破摩尔定律了:英伟达新核弹B200,一块能顶5个H100,30倍推理加速,能训万亿参数大模型!同时推出的AI推理微服务NIM,号称让全世界用上AI。就在刚刚结束的GTC人工智能大会上,英伟达的新一代性能巨兽Backwell诞生了!Blackwell B200 GPU,是如今世界上最强大的AI芯片,旨在「普惠万亿参数的AI」。本来,H100已经使英伟达成为价值数万亿美元的公司,赶超了谷歌和亚马逊,但现在,凭着Blackwell B200和GB200,英伟达的领先优势还要继续领先。老黄表示——「H100很好,但我们需要更大的GPU」!新的B200 GPU,从2080亿个晶体管中能提供高达20 petaflops的FP4性能。(H100仅为4 petaflops)而将两个B200与单个Grace CPU相结合的GB200,则可以为LLM推理工作负载提供30倍的性能,同时大大提高效率。比起H100,GB200的成本和能耗降低了25倍!Blackwell芯片和Hopper H100芯片的尺寸比较这种额外的处理能力,就能让AI公司训练更大、更复杂的模型,甚至可以部署一个27万亿参数的模型。更大的参数,更多的数据,未来的AI模型,无疑会解锁更多新功能,涌现出更多新的能力。现在,老黄拿在手里的,或许是100亿美元。

老黄祭出新核弹B200!30倍H100单机可训15个GPT-4模型,AI迎新摩尔时代

凭借H100成为全球市值第三大公司的英伟达,今天再次推出了性能野兽——Blackwell B200 GPU和GB200「超级芯片」。它以著名数学家David Blackwell(1919-2010)命名。他一生中对博弈论、概率论做出了重要的贡献。老黄表示,「30年来,我们一直在追求加速计算,目标是实现深度学习和AI等变革性突破。生成式AI已然成为我们这个时代的标志性技术,而Blackwell将是推动这场新工业革命的引擎」。「我们认为这是个完美的博弈概率」。全新B200 GPU拥有2080亿个晶体管,采用台积电4NP工艺节点,提供高达20 petaflops FP4的算力。与H100相比,B200的晶体管数量是其(800亿)2倍多。而单个H100最多提供4 petaflops算力,直接实现了5倍性能提升。而GB200是将2个Blackwell GPU和1个Grace CPU结合在一起,能够为LLM推理工作负载提供30倍性能,同时还可以大大提高效率。值得一提的是,与H100相比,它的成本和能耗「最多可降低25倍」。过去,训练一个1.8万亿参数的模型,需要8000个Hopper GPU和15MW的电力。如今,2000个Blackwell GPU就能完成这项工作,耗电量仅为4MW。在GPT-3(1750亿参数)大模型基准测试中,GB200的性能是H100的7倍,训练速度是H100的4倍。GB200由2个GPU、1个CPU、一个主板组成全新芯片其中一个关键改进是,采用了第二代Transformer引擎。对每个神经元使用4位(20 petaflops FP4)而不是8位,直接将算力、带宽和模型参数规模提高了一倍。

老黄祭出新核弹B200!30倍H100单机可训15个GPT-4模型,AI迎新摩尔时代

当然,有了Blackwell超级芯片,当然还会有Blackwell组成的DGX超算。这样,公司就会大量购入这些GPU,并将它们封装在更大的设计中。GB200 NVL72是将36个Grace CPU和72个Blackwell GPU集成到一个液冷机柜中,可实现总计720 petaflops的AI训练性能,或是1,440 petaflops(1.4 exaflops)的推理性能。它内部共有5000条独立电缆,长度近两英里。它的背面效果如下图所示。机柜中的每个机架包含两个GB200芯片,或两个NVLink交换机。一共有18个GB200芯片托盘,9个NVLink交换机托盘有。老黄现场表示,「一个GB200 NVL72机柜可以训练27万亿参数的模型」。此前传言称,GPT-4的参数规模达1.8万亿,相当于能训练近15个这样的模型。与H100相比,对于大模型推理工作负载,GB200超级芯片提供高达30倍的性能提升。那么,由8个系统组合在一起的就是DGX GB200。总共有288个Grace CPU、576个Blackwell GPU、240 TB内存和11.5 exaflop FP4计算。这一系统可以扩展到数万个GB200超级芯片,通过Quantum-X800 InfiniBand(最多144个连接)或Spectrum-X800ethernet(最多64个连接)与800Gbps网络连接在一起。配备DGX GB200系统的全新DGX SuperPod采用统一的计算架构。除了第五代NVIDIA NVLink,该架构还包括NVIDIA Bluefield-3 DPU,并将支持Quantum-X800 InfiniBand网络。

Others are asking
RuntimeError: All input tensors need to be on the same GPU, but found some tensors to not be on a GPU
以下是对您所遇到的报错“RuntimeError: All input tensors need to be on the same GPU, but found some tensors to not be on a GPU”的一些可能的解决方案: 1. 检查您的代码和模型设置,确保所有输入张量都被正确地分配到同一个 GPU 上。 2. 对于与显存相关的问题,如爆显存的情况,在训练时可以尝试调小批量大小,在推理时可以使用强制切片。 3. 调大虚拟内存,可能有助于解决一些与内存相关的报错。 同时,在处理与 AI 相关的报错时,还可能会遇到其他类似的问题,例如: 1. 页面文件太小,无法完成操作。解决方法是增大系统虚拟内存大小。 2. 出现“torch.cuda.OutOfMemoryError: CUDA out of memory”报错,通常是爆显存了。 3. 遇到“DataLoader workerexited unexpectedly”报错,可把虚拟内存再调大一点。 4. “CUDA error: CUBLAS_STATUS_NOT_INITIALIZED when calling 'cublasCreate'”报错,一般也是爆显存。 5. “'HParams' object has no attribute 'xxx'”报错,可能是无法找到音色,一般是配置文件和模型没对应,打开配置文件拉到最下面查看是否有训练的音色。 6. “The expand size of the tensor at nonsingleton dimension 0”报错,可把 dataset/44k 下的内容全部删除,重新走一遍预处理流程。 7. “Given groups=1, weight of size to have 256 channels, but got 768 channels instead”报错,可能是 vec256 的模型用了 vec768 的配置文件,反之亦然,请参考旧模型兼容,确认配置文件和模型维度对应。 8. “配置文件中的编码器与模型维度不匹配”报错,可能是在修改配置文件中的“speech_encoder”时修改错了,检查配置文件中的“ssl_dim”一项,如果这项是 256,那您需要确认配置文件和模型维度的对应关系。
2025-01-17
常见GPU卡介绍与比较
以下是常见 GPU 卡的介绍与比较: 在选择 GPU 作为 AI 基础设施时,需要考虑多个因素: 训练与推理方面:训练大型 Transformer 模型通常需要在机器集群上完成,最好是每台服务器有多个 GPU、大量 VRAM 以及服务器之间的高带宽连接。许多模型在 NVIDIA H100 上最具成本效益,但获取较难且通常需要长期合作承诺。如今,NVIDIA A100 常用于大多数模型训练。对于大型语言模型(LLM)的推理,可能需要 H100 或 A100,而较小的模型如 Stable Diffusion 则对 VRAM 需求较少,初创公司也会使用 A10、A40、A4000、A5000 和 A6000 甚至 RTX 卡。 内存要求方面:大型 LLM 的参数数量众多,无法由单张卡容纳,需要分布到多个卡中。 硬件支持方面:虽然绝大多数工作负载在 NVIDIA 上运行,但也有公司开始尝试其他供应商,如谷歌 TPU 和英特尔的 Gaudi2,但这些供应商面临的挑战是模型性能高度依赖软件优化。 延迟要求方面:对延迟不太敏感的工作负载可使用功能较弱的 GPU 以降低计算成本,而面向用户的应用程序通常需要高端 GPU 卡来提供实时用户体验。 峰值方面:生成式 AI 公司的需求经常急剧上升,在低端 GPU 上处理峰值通常更容易,若流量来自参与度或留存率较低的用户,以牺牲性能为代价使用较低成本资源也有意义。 此外,算力可以理解为计算能力,在电脑中可直接转化为 GPU,显卡就是 GPU,除了 GPU 外,显存也是重要参数。GPU 是一种专门做图像和图形相关运算工作的微处理器,其诞生是为了给 CPU 减负,生产商主要有 NVIDIA 和 ATI。
2025-01-06
GPU的计算特性
GPU(图形处理器)具有以下计算特性: 1. 专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上做图像和图形相关运算工作的微处理器。 2. 诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作,尤其是在 3D 图形处理时。 3. 所采用的核心技术有硬件 T&L(几何转换和光照处理)、立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素 256 位渲染引擎等,硬件 T&L 技术可以说是 GPU 的标志。 4. 生产商主要有 NVIDIA 和 ATI。 5. 在矩阵乘法方面表现出色,早期使用游戏用的 GPU 能使运算速度提高 30 倍。 6. 随着 AI 领域的发展而不断发展,例如在训练神经网络方面发挥重要作用。
2025-01-06
常见GPU卡介绍与比较
以下是常见 GPU 卡的介绍与比较: 在 AI 基础设施的考虑因素中,比较 GPU 时需要关注以下几个方面: 训练与推理: 训练 Transformer 模型除了模型权重外,还需要存储 8 字节的数据用于训练。内存 12GB 的典型高端消费级 GPU 几乎无法用于训练 40 亿参数的模型。 训练大型模型通常在机器集群上完成,最好是每台服务器有多个 GPU、大量 VRAM 以及服务器之间的高带宽连接。 许多模型在 NVIDIA H100 上最具成本效益,但截至目前很难找到在 NVIDIA H100 上运行的模型,且通常需要一年以上的长期合作承诺。如今,更多选择在 NVIDIA A100 上运行大多数模型训练,但对于大型集群,仍需要长期承诺。 内存要求: 大型 LLM 的参数数量太多,任何卡都无法容纳,需要分布到多个卡中。 即使进行 LLM 推理,可能也需要 H100 或 A100。但较小的模型(如 Stable Diffusion)需要的 VRAM 要少得多,初创公司也会使用 A10、A40、A4000、A5000 和 A6000,甚至 RTX 卡。 硬件支持: 虽然绝大多数工作负载都在 NVIDIA 上运行,但也有一些公司开始尝试其他供应商,如谷歌 TPU、英特尔的 Gaudi2。 这些供应商面临的挑战是,模型的性能往往高度依赖于芯片的软件优化是否可用,可能需要执行 PoC 才能了解性能。 延迟要求: 对延迟不太敏感的工作负载(如批处理数据处理或不需要交互式 UI 响应的应用程序)可以使用功能较弱的 GPU,能将计算成本降低多达 3 4 倍。 面向用户的应用程序通常需要高端 GPU 卡来提供引人入胜的实时用户体验,优化模型是必要的,以使成本降低到可管理的范围。 峰值: 生成式 AI 公司的需求经常急剧上升,新产品一经发布,请求量每天增加 10 倍,或者每周持续增长 50%的情况并不罕见。 在低端 GPU 上处理这些峰值通常更容易,因为更多的计算节点可能随时可用。如果这种流量来自于参与度较低或留存率较低的用户,那么以牺牲性能为代价使用较低成本的资源也是有意义的。 此外,算力可以直接转化成 GPU,电脑里的显卡就是 GPU。一张显卡除了 GPU 外,显存也是很重要的参数。GPU 的生产商主要有 NVIDIA 和 ATI。GPU 作为一种专门在个人电脑、工作站、游戏机和一些移动设备上做图像和图形相关运算工作的微处理器,其诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作。
2025-01-06
GPU的计算特性
GPU(图形处理器)具有以下计算特性: 1. 专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上做图像和图形相关运算工作的微处理器。 2. 诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作,尤其是在 3D 图形处理时。 3. 所采用的核心技术有硬件 T&L(几何转换和光照处理)、立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素 256 位渲染引擎等,硬件 T&L 技术可以说是 GPU 的标志。 4. 生产商主要有 NVIDIA 和 ATI。 5. 在矩阵乘法方面表现出色,早期使用 GPU 训练神经网络,能使运算速度提高 30 倍。
2025-01-06
国内有哪些gpu算力平台,支持快速搭建AI大模型预训练环境 和 微调环境
国内的 GPU 算力平台中,支持快速搭建 AI 大模型预训练环境和微调环境的有: 1. 阿里云:提供云计算资源,用户可根据需求租用算力服务。 2. 腾讯云:具备相应的算力支持,为用户提供灵活的选择。 3. 亚马逊 AWS:基础设施提供商建立的“算力集市”,可满足用户的算力需求。 在搭建环境时,通常需要考虑以下步骤: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,例如可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,英伟达还发布了统一的超算平台 DGX B200,用于 AI 模型训练、微调和推理。它包括 8 个 Blackwell GPU 和 2 个第五代 Intel Xeon 处理器,包含 FP4 精度功能,提供高达 144 petaflops 的 AI 性能、1.4TB 的 GPU 内存和 64TB/s 的内存带宽。但模型训练能耗也是一个关键问题,例如由 8 张 A100 GPU 组成的 DGX 服务器,最大功率达到 6.5 千瓦,运行一小时就会消耗 6.5 度电,若有 1000 台这样的服务器同时运行,每天的电费将达到惊人的 20 万元。
2024-12-14
英伟达H200芯片
英伟达 H200 芯片具有以下特点: 推理速度是前代 H100 的两倍。 使用 HBM3e 内存,显存带宽提升至 4.8TB。 NVIDIA 创始人兼首席执行官黄仁勋在 SIGGRAPH 会议上宣布了相关信息,包括下一代 GH200 Grace Hopper 超级芯片平台。Grace Hopper 超级芯片 NVIDIA GH200 已于 5 月份全面投入生产,将具备连接多个 GPU 的能力。Nvidia 还在与 HuggingFace 合作,帮助开发人员在任何云上创建、测试和微调生成式 AI 模型。现在,可以使用 Nvidia 的 Omniverse 以 USD 格式生成 AI 内容,以创建虚拟世界,它包括与 Adobe、Wonder Dynamics 和 Luma AI 等多种 AI 相关的集成。 相关链接:https://x.com/xiaohuggg/status/1724239489302974768?s=20
2024-11-06
英伟达H200
英伟达 H200 是英伟达推出的一款 AI 芯片。其推理速度是前代 H100 的两倍,使用 HBM3e 内存,显存带宽提升至 4.8TB 。NVIDIA 创始人兼首席执行官黄仁勋在 SIGGRAPH 会议上宣布了相关信息,GH200 已于 5 月份全面投入生产,将具备连接多个 GPU 的能力。Nvidia 还正在与 HuggingFace 合作,帮助开发人员在任何云上创建、测试和微调生成式 AI 模型。 相关链接:https://x.com/xiaohuggg/status/1724239489302974768?s=20
2024-10-29
全世界最先进的模型是什么
目前全世界较为先进的模型包括: Meta 发布的 Meta Movie Gen 文生视频模型,Meta 称其为“迄今为止最先进的媒体基础模型(Media Foundation Models)”,但模型未公开上线。相关链接:https://ai.meta.com/research/moviegen/ 媒体报道:量子位:Meta 版 Sora 无预警来袭!抛弃扩散模型,音视频生成/画面编辑全包,92 页论文无保留公开 https://mp.weixin.qq.com/s/rs7JQigqHO9yT_0wbF6cTg 歸藏的 AI 工具:Meta 发布视频生成和编辑模型,来看看项目负责人的论文导读 https://mp.weixin.qq.com/s/BLXNgCW0vAHNZtHgd4623g OpenAI 的 GPT4 是其最新和最强大的模型,GPT3.5Turbo 是为 ChatGPT 提供支持的模型,此模型专为对话模式进行了优化。相关链接:https://platform.openai.com/docs/quickstart Llama 3.1 是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与 GPT4 相抗衡。这标志首次开放模型缩小与专有前沿的差距。 此外,由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型在 LMSYS 排行榜上取得了优异的成绩,尤其在数学和编程方面表现尤为出色。中国的最强模型与美国生产的第二强前沿模型竞争,同时在某些子任务上挑战了 SOTA。中国模型更能优先考虑计算效率,以弥补 GPU 访问的限制,并学会比美国同行更有效地利用资源。中国模型各有优势。例如,DeepSeek 在推理过程中通过多头隐式注意力减少内存需求,并且改进了 MoE 架构。同时,零一万物更加关注数据集的建设而不是建筑创新。由于在像 Common Crawl 这样的流行存储库中相对缺乏数据,因此它更加关注建立强大的中文数据集来弥补不足。
2024-12-30
目前最先进的AI自动生成视频的软件
目前较为先进的 AI 自动生成视频的软件有以下几种: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,能在图片基础上直接生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,收费,年初在互联网爆火。由一家总部位于旧金山的 AI 创业公司制作,其 Gen2 代表了当前 AI 视频领域最前沿的模型,能通过文字、图片等方式生成 4 秒左右的视频,致力于专业视频剪辑领域的 AI 体验,同时也在扩展图片 AI 领域的能力。目前支持在网页、iOS 访问,网页端有 125 积分的免费试用额度(可生成约 105 秒视频),iOS 有 200 多,两端额度不同步。官方网站:https://runwayml.com/ 。Gen1 的主要能力有视频生视频、视频风格化、故事版、遮罩等,仅支持视频生视频是 Gen1 和 Gen2 的最大差异。Gen1 使用流程可参考:Gen1 能力介绍:https://research.runwayml.com/gen1 ;Gen1 参数设置:https://help.runwayml.com/hc/enus/articles/15161225169171 ;也可通过视频学习:https://youtu.be/I4OeYcYf0Sc 。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 此外,还有以下一些相关软件: |网站名|网址|费用|优势/劣势|教程| |||||| |luma||30 次免费|| |Kling|kling.kuaishou.com||支持运动笔刷,1.5 模型可以直出 1080P30 帧视频|| |hailuoai|https://hailuoai.video/|新账号 3 天免费,过后每天 100 分|非常听话,语义理解能力非常强|| |Opusclip|https://www.opus.pro/||利用长视频剪成短视频|| |Raskai |https://zh.rask.ai/||短视频素材直接翻译至多语种|| |invideoAI |https://invideo.io/make/aivideogenerator/||输入想法>自动生成脚本和分镜描述>生成视频>人工二编>合成长视频|| |descript |https://www.descript.com/?ref=feizhuke.com|||| |veed.io|https://www.veed.io/|一次免费体验|自动翻译自动字幕|| |clipchamp |https://app.clipchamp.com/|免费,高级功能付费|| |typeframes |https://www.revid.ai/?ref=aibot.cn|有免费额度|| 更多的文生视频的网站可以查看这里: 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-08
目前最先进的算法模型是什么
目前较为先进的算法模型包括: 1. GPT4:是 OpenAI 最新且最强大的模型。 2. GPT3.5Turbo:为 ChatGPT 提供支持,专为对话模式优化。 大模型具有以下特点: 1. 预训练数据量大:往往来自互联网,包括论文、代码、公开网页等,先进的大模型通常用 TB 级别的数据进行预训练。 2. 参数众多:如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。 在模型架构方面: 1. encoderonly 模型:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 2. encoderdecoder 模型:结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 Google 的 T5。 3. decoderonly 模型:更擅长自然语言生成任务,如故事写作和博客生成,众多熟知的 AI 助手基本采用此架构。 在模型部署方面: 由于大模型参数众多,如 GPT2 有 1.5B 参数,LLAMA 有 65B 参数,因此在实际部署时会进行模型压缩。在训练中,CPU 与内存之间的传输速度往往是系统瓶颈,减小内存使用是首要优化点,可使用内存占用更小的数据类型,如 16 位浮点数,英伟达在其最新一代硬件中引入了对 bfloat16 的支持。
2024-10-29
现在中国可以使用的相对较先进的AI音乐制作网站,推荐3个
以下为您推荐 3 个中国可以使用的相对较先进的 AI 音乐制作网站: 1. UDIO.com:目前最先进的 AI 音乐生成平台之一,音质优异,人声和器乐质量极高,功能全面。支持上传音轨、REMIX、INPAINT 等高级功能,允许细致地控制音乐生成过程,但有一定技术门槛。 2. SUNO.ai:用户数量众多、广受欢迎的 AI 音乐生成平台。操作方便,支持多语言,能够一次生成完整曲长的音乐,但音质相对较差。 3. Microphonestudio.app:无需昂贵的录音设备即可进行多轨录音。
2024-10-28
现在最先进的提示词技术是什么?
目前较为先进的提示词技术包括以下几种: 1. 思维链(Chain of Thought, CoT):能够引导 AI 进行更深入的分析、探索多种可能性,并处理复杂的推理任务。 2. 思维树(Tree of Thoughts, ToT):可以应对复杂的商业问题,充分利用 AI 的潜力。 3. 思维图(Graph of Thoughts, GoT):帮助 AI 处理复杂推理。 4. 自生成上下文学习提示(SelfGenerated In1context Learning Prompt):核心在于自动生成示例,辅助模型更准确地理解和处理信息,输出更丰富和精准的内容。 5. 分解提示(Decomposed Prompting):把复杂任务或问题分解成更小、更易于管理和理解的部分,分别处理以提高模型执行指令的准确性。 6. 助产式提示词(Maieutic Prompting):灵感来源于苏格拉底的助产术教育模式,强调通过提问而非直接给出指令的方式来引导思考和学习。 7. 元提示(Meta Prompting):通过元模型向各个领域的专家模型发起咨询,获取深入的见解和知识。 8. 演绎验证(Deductive Verification):避免在使用 CoT 推理过程中出现逻辑漏洞和缺少逻辑推理链条的问题,确保推理过程合理且连贯,提高推理结果的可靠性。 9. CCoT:通过正反力矩的机制,指导模型识别正确与错误,方法简洁直观。 10. PoT:是思维链技术的衍生,特别适用于数值推理任务,引导模型生成一系列代码,通过代码解释器工具进行最后运算,提升模型在数学问题求解上的表现。
2024-09-30
chatgpt4.0.1有什么新功能,比chatgpt4先进在哪些方面
ChatGPT 4.0.1 相较于 ChatGPT 4 具有以下新功能和先进之处: 1. 大大减少了幻觉,在内部对抗性设计的事实性评估中得分更高,比最新的 GPT3.5 高 19 个百分点。 2. 在遵循用户意图的能力方面有很大改进,在 70.2%的提示中,产生的响应比 GPT3.5 更受欢迎。 3. 在各种语言中的表现更优,包括低资源语言。 4. 知识更新方面,ChatGPT 4.0.1 知识更新到 2023 年 12 月,而 ChatGPT 4o 的知识更新到 2023 年 10 月。 需要注意的是,尽管 ChatGPT 4.0.1 有这些优势,但它仍存在与早期 GPT 模型类似的局限性,如对事实产生“幻觉”和出现推理错误等,在使用其输出时应谨慎。
2024-09-14