直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何搭建问答库

回答

搭建问答库可以通过以下方式实现:

  1. 利用 RAG 机制:
    • RAG 机制全称为“检索增强生成”(Retrieval-Augmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术,以提高机器对话和信息处理的能力。
    • 它先从大型数据集中检索与当前问题相关的信息,然后利用这些信息生成更准确、相关的回答。
    • 可以想象成在问复杂问题时,RAG 机制先去巨大图书馆找相关书籍,再基于这些书籍信息给出详细回答。
    • 这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。
    • 基于 RAG 机制,首先创建包含大量社区 AI 相关文章和资料的知识库,通过手工录入方式上传文章内容,如创建有关 AI 启蒙和信息来源的知识库,再陆续导入其他板块的文章和资料。
    • 在设计 Bot 时,添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回的内容进行结合回答。
  2. 使用 embeddings:
    • 将文本转换成向量能节省空间,可理解为索引。
    • 把大文本拆分成若干小文本块,通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块作为问答的知识库。
    • 当用户提出问题时,问题先通过 embeddings API 转换成问题向量,然后与向量储存库中的所有文本块向量比对,查找距离最小的几个向量,提取对应的文本块,与原有问题组合成新的 prompt 发送给 GPT API。
    • 例如,对于一篇万字长文拆分成多个文本块,当提问“此文作者是谁?”时,通过比较 embeddings 向量可找出关联度最高的文本块,发送给 GPT API 的问题类似于“此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。”,大语言模型大概率能回答上这个问题。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

安仔:玩转 Coze,我帮开源 AI 社区搞了一个社群运营机器人

知识库问答是机器人最基础的功能,它可以根据用户的问题,从知识库中找到最佳答案。这其实就是利用了大模型的RAG机制。那什么是RAG机制?RAG机制,全称为“检索增强生成”(Retrieval-Augmented Generation),是一种用于自然语言处理的技术。它结合了两种主要的人工智能技术:检索(Retrieval)和生成(Generation),以提高机器对话和信息处理的能力。简单来说,RAG机制先从一个大型的数据集中找到与当前问题相关的信息,这一步叫做“检索”。然后,它使用这些检索到的信息来帮助生成更准确、更相关的回答,这一步叫做“生成”。可以把它想象成这样一个场景:当你问一个很复杂的问题时,RAG机制先去一个巨大的图书馆里找到所有相关的书籍,然后基于这些书籍中的信息来给你一个详细的回答。这种方法让机器在处理信息时更加精确,因为它结合了大量的背景信息和先进的语言模型的能力,使得生成的内容不仅依赖于模型本身的知识,还融入了具体、相关的外部信息。这对于提升对话AI的理解力和回答质量非常有帮助。基于RAG机制,我们可以实现知识库问答功能。首先,我们需要创建一个知识库,里面包含了大量社区的AI相关的文章和资料。比如我这里创建了一个有关AI启蒙和信息来源的知识库,然后通过手工录入的方式上传这个栏目的所有文章内容:就这样,陆陆续续地将社区其他板块的文章和资料导入到知识库中。在设计Bot中,我们添加这个知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,尽可能好地利用知识库返回的内容进行结合回答:

安仔:玩转 Coze,我帮开源 AI 社区搞了一个社群运营机器人

知识库问答是机器人最基础的功能,它可以根据用户的问题,从知识库中找到最佳答案。这其实就是利用了大模型的RAG机制。那什么是RAG机制?RAG机制,全称为“检索增强生成”(Retrieval-Augmented Generation),是一种用于自然语言处理的技术。它结合了两种主要的人工智能技术:检索(Retrieval)和生成(Generation),以提高机器对话和信息处理的能力。简单来说,RAG机制先从一个大型的数据集中找到与当前问题相关的信息,这一步叫做“检索”。然后,它使用这些检索到的信息来帮助生成更准确、更相关的回答,这一步叫做“生成”。可以把它想象成这样一个场景:当你问一个很复杂的问题时,RAG机制先去一个巨大的图书馆里找到所有相关的书籍,然后基于这些书籍中的信息来给你一个详细的回答。这种方法让机器在处理信息时更加精确,因为它结合了大量的背景信息和先进的语言模型的能力,使得生成的内容不仅依赖于模型本身的知识,还融入了具体、相关的外部信息。这对于提升对话AI的理解力和回答质量非常有帮助。基于RAG机制,我们可以实现知识库问答功能。首先,我们需要创建一个知识库,里面包含了大量社区的AI相关的文章和资料。比如我这里创建了一个有关AI启蒙和信息来源的知识库,然后通过手工录入的方式上传这个栏目的所有文章内容:就这样,陆陆续续地将社区其他板块的文章和资料导入到知识库中。在设计Bot中,我们添加这个知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,尽可能好地利用知识库返回的内容进行结合回答:

从零开始,用GPT打造个人知识库

上面将文本转换成向量(一串数字)能大大节省空间,它不是压缩,可简单理解为索引(Index)。接下来就有意思了。比如我有一个大文本,可以先把它拆分成若干个小文本块(也叫chunk),通过embeddings API将小文本块转换成embeddings向量,这个向量是跟文本块的语义相关。在一个地方(向量储存库)中保存这些embeddings向量和文本块,作为问答的知识库。当用户提出一个问题时,该问题先通过embeddings API转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的prompt(问题/提示词),发送给GPT API。这样一来就不用一次会话中输入所有领域知识,而是输入了关联度最高的部分知识。一图胜千言,转一张原理图。再举一个极其简单的例子,比如有一篇万字长文,拆分成Chrunks包含:文本块1:本文作者:越山。xxxx。文本块2:公众号越山集的介绍:传播效率方法,分享AI应用,陪伴彼此在成长路上,共同前行。文本块3:《反脆弱》作者塔勒布xxxx。文本块4:“科技爱好者周刊”主编阮一峰会记录每周值得分享的科技内容,周五发布。...文本块n如果提问是”此文作者是谁?“。可以直观的看出上面的文本块1跟这个问题的关联度最高,文本块3次之。通过比较embeddings向量也可以得到这结论。那最后发送给GPT API的问题会类似于”此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。“这样一来,大语言大概率能回答上这个问题。

其他人在问
本地化搭建问答机器人流程
本地化搭建问答机器人的流程如下: 1. 加载所需的库和模块:包括用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前需确保 ollama 服务已开启并下载好模型)。 2. 从订阅源获取内容:通过函数从指定的 RSS 订阅 url 提取内容,如需接收多个 url 稍作改动即可。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回用于后续处理或提取。 3. 为文档内容生成向量:使用文本向量模型 bgem3(从 hf 下载好模型后假设放置在某个路径,通过函数利用 FAISS 创建高效的向量存储)。 4. 推荐 RSSHub 项目:可将关注的信息汇聚在同一平台,一旦有更新能在各种终端收到提醒。其为各种网站生成 RSS 源,大部分社交媒体、传统媒体和金融媒体都能配合订阅。 5. 流程拆解: 创建 Python 虚拟环境,并安装相关库,如 ollama(0.1.8)、langchain(0.1.14)、faisscpu(1.8.0,有 gpu 则安装 gpu 版本)、gradio(4.25.0)、feedparser(6.0.11)、sentencetransformers(2.6.1)、lxml(5.2.1)。 6. 了解 ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件,模型库可通过 https://ollama.com/library 查找。 支持自定义模型,可修改温度参数等。 提供 REST API 用于运行和管理模型及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 先安装 ollama,访问 https://ollama.com/download/ 下载安装。安装完确保 ollama 后台服务已启动(在 mac 上启动应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认,未下载模型时正常显示空,可通过 ollama 命令下载模型。
2024-12-21
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
企业在构建AI智能体问答助手可能会遇到哪些挑战及痛点?
企业在构建 AI 智能体问答助手时可能会遇到以下挑战及痛点: 1. 私有化部署方面:在金融、医疗和法律等对数据私密性要求极高的中小型行业,私有化部署场景需求大,增加了企业培训的难度。 2. 模型接入方面:访问 GPT 存在门槛,国企类、体制类合作伙伴受限,需寻找更易于接入的国产模型替代,如智谱等。 3. 工程化落地方面:企业知识库大多卡在工程问题上,真正能落地的不多,数据清理难度大,技术能力要求高于预期。对于规模不大且无数字化系统的企业,实际落地成本可能不比传统人力成本节省更多。 4. 对企业了解不足:在品牌卖点提炼中,AI 对企业的主要产品、解决的用户需求、产品独特之处、所获认可、核心渠道、核心购买人群、营销手段、新渠道期望结果等了解程度接近于 0,难以直接给出有效卖点,更适合作为引导型的灵感提问助手。 以下是一些 Agent 构建平台供您参考: 1. Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。 请注意,以上信息由 AI 大模型生成,请仔细甄别。
2024-12-05
企业在构建AI智能问答助手可能会遇到哪些挑战及痛点?
企业在构建 AI 智能问答助手可能会遇到以下挑战及痛点: 1. 私有化部署的挑战:在金融、医疗和法律等许多中小型行业,对数据私密性要求极高,需要私有化部署,这大大增加了企业培训的难度。 2. 模型接入的限制:访问 GPT 有门槛,国企类、体制类的合作伙伴往往被拦截在外,需要寻找更易于接入的国产模型作为替代方案。 3. 工程化落地困难:企业知识库大部分卡在工程问题上,真正能落地的不多,数据清理部分难度较大,技术能力要求比想象中更高。 4. 成本问题:对于规模不大且没有数字化系统的企业,私有化部署的实际落地成本可能不比传统人力成本节省更多。
2024-12-05
我现在需要实现知识库问答、文件下载、转人工客服这几个关键功能,有什么AI工具可以推荐的吗
以下是为您推荐的一些可能适用于实现知识库问答、文件下载、转人工客服等关键功能的 AI 工具: 1. ChatGPT 4.0:功能强大,但使用可能存在一定限制。 2. Kimichat:可作为选择之一。 3. 智谱清言:在某些方面具有优势。 需要注意的是,对于 AI 绘画方面,如果您有相关需求,一些国产大模型如智谱和文心可以实现文生图的功能。另外,如果是文本纠错,飞书文档自带纠错功能,用 prompt 纠错时文本量不能太大。关于让 AI 根据文章自己写 prompt 的问题,关键在于明确所需 prompt 的具体类型和要求。如果只是用于自己学习,长期学习不一定必须要 iPhone 手机或对显卡有特定要求,若 ChatGPT 交费有问题且没有途径,可以考虑上述推荐的其他工具。
2024-12-04
怎么对飞书知识库进行对话问答
以下是关于飞书知识库进行对话问答的相关内容: 1. 关于飞书智能伙伴创建平台: 飞书智能伙伴创建平台(Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用,推动业务创新和效率提升。 云雀是字节跳动研发的语言模型,能通过自然语言交互高效完成互动对话、信息获取、协助创作等任务。 2. 如何使用问答机器人: 方法 1:在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(最新二维码在知识库首页),加入后直接@机器人。 方法 2:在 WaytoAGI.com 的网站首页,直接输入问题即可得到回答。 3. 问答机器人的作用: 知识库内容庞大,新用户难以快速找到所需内容。 传统搜索基于关键词及相关性,存在局限性。 采用更先进的 RAG 技术,在群中提供便捷的信息检索方式。 4. 在 AI 商用级问答场景中让回答更准确: 问答机器人的配置包括 AI 模型、提示词和知识库。 大语言模型如同拥有无穷智慧的人,提示词可让其成为所需“员工”,知识库则是工作手册。 例如设定使用阿里千问模型,提示词角色为“美嘉”,知识库为《爱情公寓》全季剧情。 5. 实现知识库问答: 知识库问答利用大模型的 RAG 机制,即“检索增强生成”技术,结合检索和生成提高机器对话和信息处理能力。 先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答,可想象成先在巨大图书馆找相关书籍再给出详细回答。 基于 RAG 机制,创建包含大量文章和资料的知识库,通过手工录入上传内容,并在设计 Bot 中添加知识库,设置合适的搜索策略、最大召回数量和最小匹配度,以结合知识库内容进行回答。
2024-12-03
智能体搭建案例
以下为您提供两个智能体搭建案例: 案例一: 智能体名称:市场分析报告 智能体简介:品牌营销公司在用的生成智能体,输入行业/类目关键词自动检索关联信息并生成报告。数据化呈现更具真实性,附带信息来源网址便于源信息校正。可帮助品牌主/营销人员减少信息收集时间,聚焦决策判断。 应用场景: 目标人群:企业管理层(做发展策略评估)、投资者(评估投资机会)、创业者(评估项目可行性)、营销人员(做营销计划依据)。 当前痛点:信息收集需要长时间;报告的真实性是否可验证;现有大模型做的市场报告太过概念化,不能做有效参考。 应用价值:减少信息收集时间、真实可验证、聚焦决策判断。 智能体主要功能:根据用户的要求或指定的行业、产品,搜索网络信息,生成一份完整的市场调研报告,用数据支撑,并附引用链接。 案例二: 智能体开发平台:字节扣子和腾讯元器。 概念定义:智能体(Agent)简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。AI 大模型是技术,面向用户提供服务的是产品,很多公司开始关注 AI 应用层的产品机会。 C 端案例:社交方向,用户注册后先捏一个自己的 Agent,然后让自己的 Agent 和其他人的 Agent 聊天,两个 Agent 聊到一起后再真人介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。 B 端案例:帮助 B 端商家搭建 Agent。 智能体开发平台介绍:字节于 2 月 1 日正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI,但个人比较常用的还是扣子。
2024-12-20
怎么用扣子搭建一个仿写文章的智能体
以下是关于用扣子搭建仿写文章智能体的相关信息: 生物医药小助手:这是生物医药垂直领域的第一个智能体,其创建者将个人发布的大量生物医药文章转化为可交互数据库,以解决读者咨询占用过多时间的问题。通过扣子平台,解决了高成本搭建问题,并实现了一问一答的形式,用户可在扣子的 bot 商店或公众号中发起问答。 手搓插件:可参考相关文章和链接,了解在扣子中手搓插件的方法,包括 API 参数测试等步骤。 竖起耳朵听智能体:其编排包括插件、工作流和知识库。插件如同工具箱,可添加现有或自制的 API 以增强智能体能力;工作流像可视化拼图游戏,由多个节点组成,可组合各种功能创建复杂稳定的业务流程。 如果您想进一步了解具体的搭建步骤和细节,还需要您提供更明确的需求。
2024-12-19
零基础模板化搭建 AI 聊天机器人
以下是零基础模板化搭建 AI 微信聊天机器人的相关内容: 开始搭建 1. 配置腾讯云轻量应用服务器 重点在于修改 dockercompose.yml 文件中的具体配置,以串联微信号和已创建好的 AI 机器人。配置参考来源为:https://docs.linkai.tech/cow/quickstart/config 。 配置参数中,名称的全大写描述需对应编排模板,如 open_ai_api_key 对应 OPEN_AI_API_KEY ,model 对应 MODEL 等。 私聊或群聊交流时,最好加上前缀触发机器人回复,如配置的 ,即 SINGLE_CHAT_PREFIX ,私聊或群里发消息包含 bot 或 @bot 才会触发机器人回复。在群组里,对应配置参数是 GROUP_CHAT_PREFIX ,机器人只会回复群里包含 @bot 的消息。 GROUP_NAME_WHITE_LIST 用于配置哪些群组的消息需要自动回复,例如 ,即只有这些群组的消息才会自动回复。 2. 配置部署 COW 组件 假设对接的微信号名称叫安仔机器人,更新最终版的配置参数(GROUP_NAME_WHITE_LIST 参数根据交互的群组进行具体修改),查看无误后点击保存,编排模板创建成功。 切换到容器编排界面,基于创建的模板进行 COW 服务部署,点击添加后等待部署完成。 疑问解答 1. 容器编排模板是一种配置文件,定义了如何在 Docker 中部署和管理多个容器。通过编排模板,可一键部署复杂的应用环境,无需手动配置每个容器细节。本文中通过容器编排模板配置了 COW 组件,使其能与微信和极简未来平台交互。 2. Docker 提供隔离运行环境,确保应用程序在任何环境稳定运行。通过 Docker 部署 COW 组件,可简化安装和配置过程,确保每次部署环境一致,且易管理和维护。 3. 配置多个前缀(如“bot”、“@bot”)可确保只有特定情况下机器人才会回复,避免在群聊或私聊中频繁干扰,提高响应准确性和用户体验。 4. 扫码登录失败时,可尝试以下步骤: 重启 Docker 容器:在宝塔面板中找到对应的容器,点击“重启”。 检查网络连接:确保服务器和微信客户端能正常访问互联网。 重新扫描二维码:等待容器重新启动后,重新扫描日志中生成的二维码。 5. 实际上使用不会很贵。极简未来平台按使用量收费,对于一般用户费用相对低廉,充值少量费用通常可用很长时间。同时,平台还提供每天签到免费领取积分的福利,进一步降低使用成本。 6. 极简未来平台创建 AI 机器人的费用,具体因使用量而异。
2024-12-18
搭建一个专业的律师智能体
搭建一个专业的律师智能体需要考虑以下几个方面: 1. 多智能体的通信问题:不同智能体之间的通信至关重要,包括如何传递信息以及传递哪些信息。之前的很多多智能体开源框架存在效率低下和 token 消耗大的问题,而像 OpenAI 官方开源的多智能体框架「Swarm」在「Handoffs」方面处理得较为优雅。 2. 智能体的角色和职责:以客服多智能体为例,只需要准备如普通接线客服和宽带客服这样必要的 Agent,并明确其职责和交接逻辑。 3. 提示词的编写:对于律师智能体,写好提示词很重要。例如,在写作时需要对文章中出现的案例进行脱敏处理,替换具体的人物姓名、时间和地点。同时,注意深化写作时的分段和字数要求。 4. 遵循特定的规则和要求:像令中规定的初始化问候语、牢记并遵守全部要求等。 5. 决策智能体的应用:决策智能体在企业自动化中发挥作用,如在复杂、多步骤的推理流程中导航并做出业务决策。以 Anterior 为例,将付款方规则转换为有向无环图,利用智能体遍历决策树并评估相关文件。其他领域如 Norm AI 和 Parcha 也在利用决策智能体。
2024-12-17