Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你如何使语音助手掌握情感意图

Answer

要使语音助手掌握情感意图,可以从以下几个方面考虑:

  1. 明确“情绪识别系统”的概念:根据欧洲议会和欧盟理事会的规定,“情绪识别系统”是指根据自然人的生物数据识别或推断其情绪或意图的人工智能系统,例如快乐、悲伤、愤怒等,但不包括身体状态如疼痛或疲劳,也不包括仅仅检测容易察觉的表情、手势或动作,除非用于识别或推断情绪。
  2. 借鉴相关研究和观点:如 AI 教父 Hinton 探讨的如果助手具有自我反省的能力,可能会有感觉,以及他提出的新的感觉模型。
  3. 理解情感的重要性:情感对人类具有生存、沟通、决策、动机和维系等功能。比如,人类会因适应环境做出有利生存的生理反应,不同情感表达会使相同文字语言内涵不同,大脑决策依赖情感,情感能激发和维持个体行为,也是人类社会化维系的纽带。
  4. 以情感计算为目标:情感计算旨在使计算机能够识别、感知、推断和理解人类的情感,最终赋予计算机类似人的情感能力。

总之,使语音助手掌握情感意图需要综合多方面的知识和技术,不断探索和创新。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI ACT 中译本.pdf

欧洲议会和欧盟理事会规定人工智能的统一规则,并修正300/2008号、167/2013号、168/2013号、2018/858号、2018/1139号和2019/214号条例以及2014/90/EU号、2016/797号和20(18)本条例中使用的“情绪识别系统”的概念应界定为根据自然人的生物数据识别或推断其情绪或意图的人工智能系统。这是指诸如快乐、悲伤、愤怒、惊讶、厌恶、尴尬、兴奋、羞愧、蔑视、满意和娱乐等情绪或意图。这不包括身体状态,如疼痛或疲劳。例如用于检测职业飞行员或司机疲劳状态以防止事故发生的系统。这也不包括仅仅检测容易察觉的表情、手势或动作,除非这是用来识别或推断情绪的。这些表情可以是基本的面部表情,如皱眉或微笑,或手势,如手、手臂或头部的动作,或者一个人的声音特征,如提高声音或低声说话。

观点:AI 教父 Hinton 最新万字精彩访谈:直觉,AI 创新的洞见和思考,未来 (附全文+视频)

Hinton探讨了人工智能助手的可能性,认为如果助手具有自我反省的能力,那么它们也可能有感觉。他还提出了一个新的感觉模型,即如果没有限制我们会采取的行动,这就是感觉的真正含义。在1973年,Hinton在爱丁堡见证了一个机器人的"情感"表现。这个机器人能够组装玩具车,但如果零件堆砌在一起,它会先将它们散落一地,然后再重新组装。这种行为让Hinton联想到人类在面对不理解的情况时的反应。Hinton曾将人类和大规模语言模型(LLM)比作类比机器。他认为,他一生中最有影响力的类比是宗教信仰和符号处理信仰之间的类比。他认为,我们正在进行符号处理,但并非通过匹配符号,而是通过为符号提供嵌入向量,并使用这些嵌入向量组件之间的交互进行思考。Hinton和他的学生一起完成了一些最有意义的研究,这主要得益于他与学生的良好合作,以及他选择优秀学生的能力。他选择问题的方式是寻找每个人都同意但感觉不对的东西,然后研究它,看看他是否能详细说明为什么他认为它是错的。Hinton认为,我们不使用快速权重的做法听起来很可疑,我们只有两个时间尺度。这完全是错误的,这根本不像大脑的工作方式。他认为我们将不得不拥有更多的时间尺度。他相信大脑会获得梯度。但是大脑是如何获得梯度的?这是一个悬而未决的大问题。Hinton认为他对玻尔兹曼机的看法是错误的,但他很高兴自己花了很长时间研究它。关于如何获得梯度,有比反向传播更漂亮的理论。但他认为事实并非如此。

情感计算

如果机器不能很好地模拟情感,那么人们可能永远也不会觉得机器具有智能。——人工智能之父马文·明斯基情感是保障人类形成社会习性、支撑高级思维的心理要素。如果人类不具有情感,那么维持生存的将只有原始冲动和生存欲望。情感对人类有很重要的意义,主要表现在:生存功能。人类会为了适应环境而做出有利于生存或发展的生理反应,如遇危险时的紧张害怕,受到威胁时的愤怒亢奋,获得食物时的喜悦兴奋。这种生理反应,有助于保障人类的进化。沟通功能。同样的文字语言使用不同的情感来表达,其内涵是完全不同的。相比于语音或文字,增加表情、肢体动作等多种情感表达方式,能够更加充分的表达人类的意图。决策功能。大脑通过快(“系统一”)和慢(“系统二”)两种方式进行决策。而“系统一”主要依赖于情感、经验等迅速做出判断。动机功能。情感能够激发和维持个体的行为。维系功能。情感是人类社会化过程中阶层、族群、家庭等维系的纽带。情感计算就是为了使计算机能够识别、感知、推断和理解人类的情感。最终目标是赋予计算机类似于人的情感能力。

Others are asking
文字生成语音的免费网站
以下为一些文字生成语音的免费网站: XiaoHu.AI:通过 250,000 小时的中英双语数据训练,仅需 15 秒的声音即可完美克隆,包括音色和情感。基于 LLaMA 模型,支持从文本生成语音,或基于语音提示生成目标语音(保留情感特征)。 参数规模: Llasa1B:轻量级,适合资源受限硬件部署。链接: Llasa3B:更高性能,提供更复杂的语音生成。链接: 详细介绍:
2025-02-05
如何实现定时通过用一个指定的豆包智能体给微信好友 发送自定义语音消息,,
要实现定时通过指定的智能体给微信好友发送自定义语音消息,您可以参考以下步骤: 1. 找到相关设置中的高级下开场白,点击展开,填写开场白文案和开场白预置问题。 2. 勾选用户问题建议,在 Bot 回复后,根据 Prompt 提供最多 3 条用户提问建议。 3. 添加语音选择,让智能体不仅会写,还能通过语音交流。 4. 点击“发布”,选择发布平台,如微信客服。 5. 提前准备一个闲置的微信,因为这种方法是非官方接口,有可能微信号会受到官方限制。 6. 点击容器,查看运行的服务,接口文档中可能启动了两个服务。 7. 点击“wcandyaibot”后面的日志按钮,用提前预备好的微信进行扫码。 8. 手动刷新界面验证是否成功,点击“刷新日志”,若显示“WeChat login success”,则微信登录成功。 9. 为确保微信实时在线,点击“日志管理”的“wcandyaibot”的“刷新日志”,若显示“wechat login seccess”则表示微信正常登录中。 10. 把绑定的微信号拉到群里或者单独对话进行效果测试,训练的数据越好,对话效果越好。
2025-01-26
我想实现定时通过用我的声音生成的智能体给微信好友 发送自定义语音消息,,如何实现, 并且帮我做出能实现这个功能的工具
目前暂时没有直接能实现您这个需求的现成工具。但要实现这个功能,可能需要以下步骤: 1. 声音采集与处理:首先需要采集您的声音,并进行处理和特征提取,以便后续生成语音。 2. 智能体开发:利用相关技术开发能够模拟您声音的智能体。 3. 微信接口对接:由于微信的接口限制和安全策略,直接对接微信发送消息可能存在困难,需要寻找合法合规的途径。 4. 定时任务设置:通过编程实现定时发送的功能。 这是一个较为复杂的综合性项目,可能需要涉及语音处理、人工智能、软件开发等多方面的知识和技术。
2025-01-26
语音识别ai
语音识别(Automatic Speech Recognition)是 AI 领域的一项重要技术,旨在让机器能够理解人类的语音。 技术原理包括: 1. 输入:语音识别输入的是声音,声音作为一种波,属于计算机无法直接处理的模拟信号。 2. 编码:将模拟信号转变为数字信号,并提取其中的特征进行处理。包括声音分帧,通过移动窗函数把声音切成小段,每小段为一帧,帧与帧之间通常有交叠;以及通过某种规则(如依照人耳听声特点提出的 MFCC 规则),将每一帧波形变成多维向量。 3. 解码:把帧识别成状态,把状态组合成音素,再把音素组合成单词。 4. 输出 在算法驱动的数字人中,语音识别也是核心算法之一。它能将用户的音频数据转化为文字,便于数字人理解和生成回应,从而实现和人类以对话为主的交互。 参考资料: 1. 2.
2025-01-25
有什么应用可以通过每天录一段口水话的语音,然后自动整理为日记
目前尚未有专门针对每天录制一段口水话语音就能自动整理为日记的应用。但一些语音转文字的应用,如讯飞语记、百度语音助手等,结合一些笔记类应用,如印象笔记、有道云笔记等,可能在一定程度上帮助您实现类似的功能。您可以先将语音转换为文字,然后再手动整理到笔记应用中形成日记。
2025-01-23
有哪些方法能识别中芬双语音频并转换为文字
目前在识别中芬双语音频并转换为文字方面,常见的方法包括利用专业的语音识别软件和服务。一些知名的语音识别技术提供商可能会有针对多语言音频识别的解决方案,但具体效果可能会受到音频质量、口音差异等因素的影响。此外,一些在线平台也可能提供相关的功能,但需要您进一步搜索和筛选以找到适合您需求的工具。
2025-01-22
如果制作一个行政助手
很抱歉,目前没有关于如何制作行政助手的相关内容。但一般来说,制作一个行政助手需要明确其功能需求,例如文件处理、日程安排、会议组织等。然后选择适合的技术和工具,比如编程语言、开发框架等。还需要设计良好的用户界面,以方便用户操作和交互。同时,要进行充分的测试和优化,确保行政助手的稳定性和可靠性。您可以进一步明确您的具体需求和期望,以便我为您提供更有针对性的帮助。
2025-02-04
定义一下阿里巴巴国际站AI助手
阿里巴巴国际站 AI 助手是通过以下步骤创建和集成的: 1. 创建大模型问答应用: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,也可以输入一些 Prompt 设人设以引导大模型应对客户咨询。 在页面右侧提问验证模型效果,点击右上角的发布。 获取调用 API 所需的凭证:在我的应用>应用列表中查看所有百炼应用 ID 并保存,在顶部导航栏右侧点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存。 2. 搭建示例网站: 点击打开函数计算应用模板,选择直接部署,填写前面获取到的百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成。 应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名进行访问,确认示例网站部署成功。 3. 为网站增加 AI 助手: 回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。 在代码视图中找到 public/index.html 文件,取消相关位置的代码注释。 点击部署代码,等待部署完成。重新访问示例网站页面,此时网站右下角会出现 AI 助手图标,点击即可唤起 AI 助手。 大模型具有强大的语言理解和生成能力,但也存在一定局限性,例如无法回答私有领域问题、无法及时获取最新信息、无法准确回答专业问题等。为了提升用户体验和增强业务竞争力,越来越多的企业会构建 AI 助手,适用于有企业官网等渠道期望为客户提供产品咨询服务、缺少技术人员开发大模型问答应用等场景。智能体应用基于大模型,通过集成特定的外部能力,能够弥补大模型的不足,其典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。
2025-01-25
超级ai 助手搭建
以下是关于超级 AI 助手搭建的相关内容: 微信超级 AI 知识助手教学(下)2024 年 12 月 11 日: 共学四节课要点回顾及相关文档查看方式:共学有四节课,知识助手教学的上级和知识注入教学的下级是关键部分,仅看这两个就能完成助手搭建。若想优化工作流及功能,看两场分享即可。另外还介绍了查看文档的网址,若不知网址,输入特定字符进入网页点击 banner 可查看文档。 张梦飞介绍课程相关内容:4 节课的内容、直播回放及课程文档可查看。第一节课会邀约报名,报名送 6000 万 token 和 1000 次生成视频或图片机会。未注册的可注册领取。第一节课作业为搭建工作流,提交作业有两个福利,包括质补平台资源和 autoglm 内测资格,晚点会放直播回放。 GM4 Flash 和 GM4V 杠 Flash 模型永久免费使用。 DIN:全程白嫖拥有一个 AI 大模型的微信助手: 搭建 OneAPI,这东西是为了汇聚整合多种大模型接口,方便后面更换使用各种大模型。下面会告诉你怎么去白嫖大模型接口。 搭建 FastGpt,这东西就是个知识库问答系统,把知识文件放进去,再把上面的大模型接进来,作为分析知识库的大脑,最后回答问题。如果不想接到微信去,自己用用,其实到这里搭建完就 OK 了,它也有问答界面。 搭建 chatgptonwechat,接入微信,配置 FastGpt 把知识库问答系统接入到微信。这里建议先用个小号,以防有封禁的风险。搭建完后想拓展 Cow 的功能,可参考 Yaki.eth 同学的教程。 智谱 BigModel 共学营第二期:把你的微信变成超级 AI 助理: 本期共学应用:人人可打造的微信助手。 课程教程: 第一课:创建助手工作流。 教程文档: 文章总结功能:使用到了代码模块、分支判断模块、网页解析插件。 文件总结功能:使用到自动 Prompt。 网页总结功能:使用到了网页读取插件。 生图、生成视频:使用到了 Agent 功能,意图调用。 文字版日报生成:使用到联网插件。 工作流本身不复杂,难易度适中,0 基础也能跟着完成。 模版:。 版本的创建和发布。发布后,可以分享链接给他人使用。(注意:别人使用会消耗你的 Token 额度) 保存智能体 ID 和申请 API key。
2025-01-18
微信超级AI知识助手教学(下)
以下是关于微信超级 AI 知识助手教学(下)的相关信息: 时间:12 月 11 日 20:00 () 内容:个人助手的微信多模态接入教学 讲师:@张梦飞
2025-01-14
怎么用飞书ai助手在文档内部总结文档内容
以下是关于如何用飞书 AI 助手在文档内部总结文档内容的相关信息: 1. 大型语言模型在概括文本方面的应用:可在 Chat GPT 网络界面中完成,从入门代码开始,如导入 OpenAI、加载 API 密钥和使用 getCompletion 助手函数。还提到对产品评论进行摘要的任务及相关提示。包括文字总结、针对某种信息总结、尝试“提取”而不是“总结”、针对多项信息总结等方面。 2. 总结其他内容: 文章:可让 AI 总结不超过 2 万字的文章,如复制文章给 GPT 进行总结,GPT4 能识别重点内容。 B 站视频:通过获取视频字幕,将其提取后发给 AI 执行内容总结任务。可安装油猴脚本获取字幕,如 ,下载字幕并复制给 GPT 进行总结。 3. 实践:群总结工具 微信群聊总结 AI 助手:Mac 版可在技术支持。自己跑不起来的同学,可加机器人微信号:aoao_eth,把机器人拉进群。 新版本:有桌面应用,包括一键监控、总结、发送等功能。可使用桌面版或脚本版,下载后配置 app key 即可运行。暂时只有 mac 版本,windows 版本可自己构建或直接运行代码。提供了功能截图,如每日群聊监控和数据统计、一键总结等。
2025-01-11
有哪些免费的没有限制的编程助手
以下是一些免费且没有限制的编程助手: 1. JanitorAI(http://janitorai.com/) 2. Spicychat(http://spicychat.ai/) 3. CrushOn(http://crushon.ai/) 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码,提升开发效率。 此外,还有以下可以帮助编程、生成代码、debug 的 AI 工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 2. 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 5. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手。 6. Codeium:由 AI 驱动,通过提供代码建议、重构提示和代码解释来帮助软件开发人员提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。
2025-01-10
举例说明,意图和FAQ训练的区别
意图和 FAQ 训练是两种不同的概念。 意图训练主要侧重于理解用户的核心意图或目的。例如,在一个客服场景中,用户的意图可能是查询产品信息、寻求技术支持或进行投诉等。通过对大量的用户交互数据进行分析和学习,模型能够识别出这些不同的意图类别。 FAQ 训练则侧重于常见问题及其对应的标准答案。比如常见的“产品如何退换货”“售后服务的联系方式是什么”等问题,以及相应的准确回答。 总的来说,意图训练更注重对用户目的的分类和理解,而 FAQ 训练更侧重于对特定常见问题的准确回答。
2025-01-13
意图和FAQ最明显的区别是什么
意图和 FAQ 最明显的区别在于:意图通常指的是用户行为背后的目的或期望,它更侧重于理解用户的深层需求和动机。而 FAQ(常见问题解答)则是预先准备好的一系列常见问题及其对应的标准答案,主要用于快速回答用户可能提出的一般性问题。 总的来说,意图关注的是挖掘用户潜在的想法和目标,FAQ 则是针对常见问题提供现成的解答。
2025-01-13
意图识别
意图识别是根据输入的内容决定后续环节的一种方式,类似于 if/else 。从输出看,其 reason 通常为英文。它可以被理解为简化版的大语言模型节点,为更精准识别,可优化选项,若不行可换大语言模型节点。 在自然语言处理领域,意图识别虽已被广泛讨论,但随着大型模型兴起,尤其在用作智能体的 Brain 模块时,承担了主要工作任务。其本质是对用户输入指令的分类任务,在单一或多智能体系统中都至关重要。通过如 Siri、小爱同学等常见智能助手的例子可更直观理解。大型模型执行意图识别任务主要基于大量数据训练得到的模型,可通过微调适应特定领域需求。 在 AI 搜索中,意图识别的关键作用是对用户提问进行分类,如分为导航类、信息查询类、交易类、本地信息类等,还包括多级子分类,但面临枚举无法穷尽的问题。对搜索意图分类可匹配更准的信息源和更好的回复提示词,很大程度提升检索召回率,保证搜索结果个性化。目前主流实现方案主要通过提示词请求大模型完成识别,但准确度不够高,大模型的 Function Calling 能力也可理解为一种意图识别。
2024-12-25
意图识别
以下是关于意图识别的全面介绍: 意图识别在自然语言处理领域是常见话题,随着大型模型兴起,其在智能体的 Brain 模块中承担主要工作。 意图识别的定义:当用户输入指令,通过感知模块传递到 Brain 模块,Brain 模块对其做出反应,本质上是一种分类任务,区分用户具体意图,在单一或多智能体系统中都至关重要。 通过常见智能助手如 Siri、小爱同学的例子可更直观理解。 在 AI 搜索中,意图识别的关键作用包括对用户提问进行分类,如导航类(如搜索“ThinkAny”为打开官网)、信息查询类(如搜索“什么是 AI 搜索引擎”为了解行业)、交易类(如搜索“笔记本电脑”为购买)、本地信息类(如搜索“附近的烤肉店”为找附近餐馆)等,还存在其他分类和多级子分类,但面临枚举无法穷尽的问题。 对搜索意图分类可匹配更准的信息源和更好的回复提示词,提升检索召回率,保证搜索结果个性化。目前主流实现方案主要通过提示词请求大模型完成识别,但准确度不够高,大模型的 Function Calling 能力也可理解为一种意图识别。 在提示词中使用意图分类的理论依据是人工智能的意图识别理论,其核心观点包括通过自然语言处理技术从用户查询中识别目的或需求,考虑上下文理解以更全面理解意图,将识别出的意图分类并与预定义指令或操作匹配执行相应任务。具体步骤包括定义意图类别、分析用户输入、进行意图分类和执行相应操作。
2024-11-07
有没有 AI bot 做意图识别的资料
以下是关于 AI bot 做意图识别的资料: 尽管意图识别在自然语言处理领域已被广泛讨论,且通过各种小规模模型处理过此任务,但随着大型模型兴起,尤其是用作智能体的 Brain 模块时,它们在意图识别方面承担了主要工作。 意图识别的定义是:当用户输入指令,指令通过感知模块传递到 Brain 模块,Brain 模块需对指令做出反应,本质上是一种分类任务,即识别并区分用户的具体意图。在单一智能体架构或复杂的多智能体系统中,意图识别都至关重要。 通过一些常见的例子,如 Siri、小爱同学及其他手机品牌搭载的智能助手,当向它们发出指令时能做出相应反应,此过程中意图识别起到关键作用。大型模型执行意图识别任务时,主要基于前期通过大量数据训练得到的模型,可能是专门针对意图识别任务训练的大型模型,也可能是通过在特定任务中微调来优化的模型,通过微调能使模型更好地适应特定领域的任务需求。
2024-10-21
AI 辅助高中美术学生 进行创意图形的生成
以下是关于如何利用 AI 辅助高中美术学生进行创意图形生成的相关内容: 在不同的教学场景中,对 AI 的应用和态度有所不同。例如在艺术教学中,对于 AI 生成的图像可能有不同的需求。在历史课中,学生制作信息图表展示对宏观经济学原理的理解时,可能会接受 AI 生成的图像;而在美术课上,可能不太希望直接使用 AI 生成的图像。 在学习 AI 绘画方面,其在广告设计、游戏开发、影视制作、建筑设计等领域都有应用。比如在广告设计中可快速生成创意概念图,为策划提供灵感和初稿;在游戏开发中用于创建场景和角色形象,提高开发效率等。 对于小学课堂中的 AI 绘图课程设计,可先准备关键词并输入 Mid Journey 生成图片存下来展示,围绕 AI 绘图的好处展开,如创意增强,像“夜晚的未来城市风景,霓虹灯和飞行汽车”“超现实主义风景,漂浮的岛屿和瀑布云”等能创造独特且富有想象力的场景;效率提升,如“现代智能手机设计的快速草图”“新咖啡机概念的快速原型”能快速生成复杂多变的设计;降低技能门槛,像“简单卡通角色,微笑着,大眼睛”“基础的风景画,夕阳下的宁静湖泊”能帮助非专业者创作;探索新的艺术形式,如“数字抽象艺术,鲜明的色彩和几何形状”“算法生成的艺术作品,具有分形图案”能探索全新艺术形式的潜力。 综合以上,对于高中美术学生进行创意图形的生成,可借鉴上述思路和应用场景,注重培养学生的创意、效率和对新艺术形式的探索。
2024-09-25
你是一位政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式
对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅仅停留在描述性分析层面,以下是一些可行的方式: 1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。 2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。 3. 利用预训练的语言模型,如 BERT、ELMO 等,并在其基础上进行微调,以适应您的情感分析任务。 4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。 5. 结合词典和规则的方法,构建情感词典,根据词汇的情感倾向来判断文本的情感。 您可以根据数据特点和自身技术能力选择合适的方法。
2024-12-29
你是以为政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式
对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅停留在描述性分析层面,以下是一些可行的方式: 1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。 2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。 3. 利用预训练的语言模型,如 BERT 等,并在其基础上进行微调,以适应您的情感分析任务。 4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。 5. 结合词典和规则的方法,制定情感词典和相关规则来判断文本的情感倾向。
2024-12-29
声音情感分析
声音情感分析是一个新兴且具有广泛应用的研究领域。 在音乐方面,基于音频的情感分析利用先进的计算技术和机器学习算法来解读和理解音乐中的情感。其技术实现包括音频特征提取(如使用梅尔频谱图从原始音频信号中提取有用特征)、情感模型训练(利用长短期记忆网络等递归神经网络模型)以及情感预测(输出情感维度的量化值)。通过预测音乐片段的情感变化,还能实现无缝音乐过渡。其应用领域涵盖音乐治疗(帮助治疗师选择或创作适合特定情绪状态的音乐)、情感驱动的音乐推荐(为用户提供个性化听觉体验)、音乐创作辅助(指导作曲家和制作人调整作品)以及情感研究(供心理学家和社会学家研究音乐对人的影响)。 情感计算主要有“识别”“表达”和“决策”三个方向。“识别”是让计算机准确识别人类的情感,可以基于文本、语音、视觉、生理等数据进行情感分析,或者融合不同模态之间的信息。文本情感计算研究情感状态与文本信息的对应关系,语音情感计算研究语音包含的语言情感内容和声音本身的情感特征,视觉情感计算研究面部表情和肢体动作的情感识别,生理信号情感计算常用脑电、眼动、肌电、皮肤电、心电、呼吸信号等生理特征。“表达”是让计算机能够把情感以合适的信息载体表示出来,“决策”是利用情感机制来进行更好地决策。 在 TTS 数据整理中,声音标签包含性别、类别、风格、年龄、语言、领域、情感、人设等方面,例如女学姐音、男明朗清澈音等。
2024-12-25
让ai生成情感语录怎么带动情绪价值
以下是关于让 AI 生成情感语录带动情绪价值的相关内容: 可以参考品牌咨询专家的观点和相关文章,如刘润老师关于「情绪价值的赛道,拼的不是营销情绪,而是说服人心」的文章,了解情绪营销的重要性和实施策略。 以具体的产品为例,如江小白(白酒,适合跟家人之间聊心事谈感情)、霸王茶姬(奶茶,原叶茶胚,口感清新自然,适合跟朋友郊游享用)、lululemon(女士运动紧身裤,轻盈柔滑,修身弹力),给定产品品牌、品类、特点或使用情境,让大模型生成营销语句。 作为 AI 博主,需提供“情绪价值”,通过信息和趣味内容缓解用户焦虑,例如分享有趣的 AI 动态和提示词,让用户感到学习 AI 是轻松有趣的事。 提示词的详尽程度取决于应用场景,简单提示适合快速了解长文内容,详尽提示适合深入分析。初步使用简单提示,依据反馈不断改进更高效,同时建议避免过多轮会话,减少模型产生“幻觉”的可能性。
2024-12-19
我想学习调试情感bot的prompt
以下是关于调试情感 bot 的 prompt 的相关知识: 在实验方面,在八个指令感应任务上评估情绪提示在零样本和少样本学习中的表现,涵盖语言理解的不同方面,在四个大型语言模型(ChatGPT、Vicuna13b、Bloom、FlanT5Large)上进行测试,对于不同模型有相应的设置。零样本实验中情绪刺激可简单添加到原始提示中构建情绪提示,少样本上下文学习中评估与零样本相同的提示,并随机抽取 5 个输入输出对作为上下文演示。基准测试将情绪提示与原始零样本和少样本提示、零样本思维链进行比较。数据集和任务包括情绪分析、句子相似性、原因选择等八个任务。 Prompt 是一段指令,用于指挥 AI 生成所需内容,每个单独的提示词叫 tag(关键词)。支持英语,emoji 也可用。语法规则包括用英文半角符号逗号分隔 tag,可改变 tag 权重,有两种设置权重的写法,还可进行 tag 的步数控制。 希望以上内容对您学习调试情感 bot 的 prompt 有所帮助。
2024-12-05
AI情感计算
AI 情感计算是一个复杂且具有多面性的领域: 在与 AI 的交互中,如 Character.ai 这类产品,通过海量语料训练的大型语言模型能与人建立亲密感,多模态感知技术可分析人的情绪并给予反馈。但目前与 AI 的“爱情”更多是模仿出来的情感,在肉身化之前,无法满足生理刺激,可能只是一场虚无的梦。对于这种建立在虚拟上的情感的意义以及人们对其做出“承诺”的意愿存在疑问,不过“爱情”的定义本无标准,对于“人机之恋”还需长期观察,未来随着 AI 技术发展,人们的态度或会改变,我们需保持开放心态探索新情境下的人机关系。 1.7 AI 数字人的核心技术中,认知方面包含情感计算,此外还有知识图谱、自然语言处理等。 在 AI 摆摊项目中,体验型项目包括 AI 情感陪伴等。
2024-11-28