Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你是以为政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式

Answer

对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅停留在描述性分析层面,以下是一些可行的方式:

  1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。
  2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。
  3. 利用预训练的语言模型,如 BERT 等,并在其基础上进行微调,以适应您的情感分析任务。
  4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。
  5. 结合词典和规则的方法,制定情感词典和相关规则来判断文本的情感倾向。
Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
输入文本就可以输出视频的免费AI工具
以下是一些输入文本就可以输出视频的免费 AI 工具: 1. Stuart:实践中采用了 GPTSoVITS 和 BertVITS2 两个开源模型,项目免费且好用。可直接找到需要的音色,输入文字,点击“合成语音”生成后就能下载。 GPTSoVITS 在线一键语音生成合集:https://www.modelscope.cn/studios/xzjosh/GPTSoVITS/summary BertVITS2 在线一键语音生成合集:https://www.modelscope.cn/studios/xzjosh/BertVITS2/summary 2. Pika:是一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 3. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频。它是由 Stability AI 开源的 video model。 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-04-09
输入文本,生成视频
以下是关于输入文本生成视频的相关内容: 使用 Adobe Firefly 生成视频: 1. 在上,选择“生成视频”。 2. 在 Generate video 页面上,在 Prompt 字段中输入文本提示,您还可以使用 Upload 选项在 Image 部分上传图像用于第一帧,并为视频剪辑提供方向参考。 3. 在 General settings 部分,确定 Aspect ratio 和 Frames per second。 4. 在 Advanced 部分,可使用 Seed 选项添加种子编号来控制 AI 创建内容的随机性。 使用 Pika Labs 生成视频: 1. 加入 Pika Labs 的 Discord 频道:在浏览器中打开链接,点击加入邀请 https://discord.gg/dmtmQVKEgt 。 2. 在 generate 区生成:左边栏出现一只狐狸的头像就意味着操作成功了,如果没成功点开头像把机器人邀请至服务器。接着在 Discord 频道的左侧,找到“generate”子区,随便选择一个进入。 3. 生成视频: 输入指令生成:输入/create,在弹出的 prompt 文本框内输入描述,比如/create prompt:future war,4K ar 16:9,按 Enter 发送出去就能生成视频。 本地图片生成:输入/create,在弹出的 prompt 文本框内输入描述,点击“增加”上传本地图片,就能让指定图片生成对应指令动态效果。 4. 喜欢的效果直接右上角点击下载保存到本地。如果对生成的视频不满意,如图像清晰度不够高或场景切换不够流畅等,可以点击再次生成按钮,系统会进一步优化生成的效果。 Pika Labs 被网友评价为目前全球最好用的文本生成视频 AI,其生成服务和 midjourney 一样,都托管在 discord 中,目前内测免费。
2025-04-09
长文本模型有哪些
以下是一些常见的长文本模型: 1. 聊天模型:如 GPT、Claude 3 等。 2. Base 模型:例如 Yi34 开源模型。 3. 百川 192K 的闭源模型,对于 6 万字的长文本,其推理能力和回答效果优秀。 4. 通义千问的 Qwen2.51M 大模型,推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,且开源推理框架在处理百万级别长文本输入时可实现近 7 倍的提速。 5. 文心一言 4.0、智谱清言、KimiChat 等国产大模型在长文本归纳总结能力方面也有所涉及。
2025-04-09
目前的大模型ai工具中 你觉得文本处理 写作这方面那个工具最强 最像人
目前在大模型 AI 工具中,对于文本处理和写作方面,以下是一些相关信息: 生成式人工智能的工作原理:在整体的人工智能领域,监督学习用于标记事物,一直占据很大比例。现在生成式 AI 快速崛起,强化学习与无监督学习也是重要工具。生成式 AI 由监督学习技术搭建,大语言模型使用监督学习不断预测下一个词语来生成文本,这需要大量数据。 大语言模型的应用:运用大语言模型写故事、修改文本很有用,但它可能编造故事产生错误信息,需要鉴别信息准确。网络搜索与大语言模型的区别在于网络搜索可追寻信息来源,大语言模型能提供建议与策略。 写作方面:使用大模型工具如 LLM 来写作,集思广益、头脑风暴非常有用。网页版聊天时提供更多信息,翻译也可使用 LLM,但其效果受网络文本量影响。 推荐的大模型工具:chatGPT 4.0、kimichat、智谱清言 4 等。一些国产模型如智谱和文心可以文生图。 相关工具:除了 Snapbox 外,还有 OpenCAT 等类似工具可供选择。有多种文本处理与总结工具,如 kimi 网页总结助手、ChatHub 等,以及翻译插件与 AI 对话插件、沉浸式翻译插件等。Memo Al 可以对音频视频进行转文字、字幕翻译、语音合成等,并由多种 AI 模型提炼内容精华总结、生成思维导图。 综合来看,不同的大模型工具在文本处理和写作方面各有特点,难以简单地确定哪一个最强、最像人,具体取决于您的需求和使用场景。
2025-04-01
文本转语音
以下是关于文本转语音的相关信息: 在线 TTS 工具推荐: Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 Speechify:https://speechify.com/ ,是一款人工智能驱动的文本转语音工具,可作为多种平台的应用使用,用于收听网页、文档、PDF 和有声读物。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 语音合成技术原理: 传统的语音合成技术一般会经过以下三个步骤: 1. 文本与韵律分析:先将文本分词,标明每个字的发音以及重音、停顿等韵律信息,然后提取文本的特征,生成特征向量。 2. 声学处理:通过声学模型将文本特征向量映射到声学特征向量。 3. 声音合成:使用声码器将声学特征向量通过反变换生成声音波形,然后一次拼接得到整个文本的合成语音。在反变换过程中,可以调整参数,从而改变合成语音的音色、语调、语速等。 OpenAI 新一代音频模型: OpenAI 于 2025 年 3 月 20 日推出了全新的音频模型,包括改进的语音转文本和文本转语音功能。 语音转文本模型在单词错误率和语言识别准确性方面相较于原有的 Whisper 模型有显著提升,能更好地捕捉语音细节,减少误识别,在多语言评估基准上表现优异。 文本转语音模型具备更高的可定制性,支持个性化语音风格,目前支持人工预设的语音样式,并通过监控确保语音与合成预设一致。 测试地址:https://www.openai.fm/ 直播回放:https://www.youtube.com/watch?v=lXb0L16ISAc 说明文档:https://openai.com/index/introducingournextgenerationaudiomodels/ 内容由 AI 大模型生成,请仔细甄别。
2025-04-01
长文本处理
以下是关于长文本处理的相关信息: 通义千问发布了一个模型并开源了两个模型,其中一个在长文本处理方面有显著提升。 开源的 Qwen2.51M 大模型推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息,仅有 7B 模型出现少量错误。对于更复杂的长上下文理解任务,通义官方选择了等测试集。 Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,特别是在处理超过 64K 长度的任务时表现出色。Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini,可作为现有长上下文模型的优秀开源替代。 此外,还有关于利用 Langchain+Ollama+RSSHub 实现本地部署资讯问答机器人的内容,包括导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。其中使用了 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,文本向量模型 bgem3 具有支持多语言、长文本输入、集成多种检索能力等特点。
2025-03-31
目前AI Excel数据分析有哪些产品
目前在 AI Excel 数据分析方面,以下是一些相关的产品: 1. 宝玉日报中提到,让 AI 帮写 Excel 宏函数适用于几乎所有主流 AI。数据分析推荐 Claude 网页版或 ChatGPT,可上传 CSV 进行可视化分析。链接:https://x.com/dotey/status/1895319207413170354 2. Excel Labs:这是一个 Excel 插件,新增了生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 3. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,通过聊天形式,用户告知需求后,Copilot 自动完成任务,如数据分析或格式创建。 4. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 5. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 6. 表格 Top10 中的相关产品有:Highcharts、Fillout.com、Coefficient、Numerous.ai、SheetGod、GPTExcel、酷表 ChatExcel、GPT Workspace、OpenAI in Spreadsheet、Ajelix AI Excel Tools 。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。
2025-04-10
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
如果我要分析代码功能
如果您要分析代码功能,可以参考以下步骤: 1. 准备工作: 分析要拷贝页面的技术栈,可通过打开 https://www.wappalyzer.com/ 输入要分析的网站地址获取。 截图要克隆的网页。 分析页面功能,如顶部导航栏、页面主体区域(包括分类在左边、文章列表在右边、标题位置、文章卡片展示位置、文章列表和分类区域)、底部导航栏。 2. 开始克隆出效果,并逐渐完善: 根据分析拆分后续要实现的内容,如先实现文章列表部分和底部导航栏。 对于文章列表部分,可使用提示词根据图片实现,注意不要直接点击全部接受,先看效果,不符合需求可拒绝或让 AI 解释新增代码的作用。 对于左侧菜单栏,可通过提示词实现,如要求内容是文章的分类,在页面滚动时菜单会吸顶。若出现异常,可选中所有异常添加到对话,让 AI 解决。 可让 AI 添加注释解释每段代码对应的功能,以便精准提出修改建议。 明确提示词,说清楚要实现的功能的位置、大小、效果。 3. 对于 AI Review(测试版): 这是一项可查看代码库中最近更改以捕获潜在错误的功能。 您可以单击各个审阅项以查看编辑器中的完整上下文,并与 AI 聊天获取详细信息。 为让其更有利,您可为 AI 提供自定义说明以专注于特定方面,如性能相关问题。 目前有几个选项可供选择进行审核,如查看工作状态、查看与主分支的差异、查看上次提交。
2025-04-09
目前有哪些AI可以支持对用户上传的视频进行理解分析?
目前以下 AI 可以支持对用户上传的视频进行理解分析: 1. Gemini 2.0 Flash Thinking:是解析视频的不错选择,可在 AIStudio(访问 aistudio.google.com,需海外 IP)上传视频进行解析。 2. MiniMax 视频模型:能准确识别用户上传的图片,生成的视频在形象保持、光影色调、指令响应、表情呈现等方面表现出色,还支持 2000 字提示词以更精准调控。 3. 百炼大模型平台:应用广场里的影视传媒视频理解能力可对视频进行语音转写、视觉语言分析等处理并总结成文,有清晰使用步骤,还能根据偏好调试提示词。
2025-04-09
对程序员在 AI 能力上不同维度的分析
以下是对程序员在 AI 能力上不同维度的分析: AI 对程序员工作的影响: AI 可代替的部分:代码生成、补全、分析问题和数据提取、辅助架构设计文档等。 AI 无法代替的部分:需求分析、复杂项目拆分、线上问题排查、调试及安全性保障。 企业考察候选人 AI 能力的要点: 基础 AI 应用能力:包括提示词工程,会用合适的方式提问以引导 AI 输出高质量答案;内容评估能力,能够判断 AI 生成的内容是否靠谱并加以优化;熟练使用 AI 工具,能快速上手各类 AI 工具,如 DeepSeek、Cursor、Midjourney 等。 高级 AI 应用能力:任务拆解能力,知道哪些工作适合用 AI,哪些环节需要人工把控;业务场景应用能力,能在实际工作中灵活运用 AI 提高效率。 加分项:快速学习能力,能跟上 AI 技术的快速迭代,主动学习新工具、新方法。 不同领域考察 AI 能力的方式:因领域而异。 程序员与 AI 编程助手: 约 2/3 的 730 名程序员已在使用 AI 编程助手(如 ChatGPT、GitHub Copilot、Cursor 等),原因包括对新技术的敏感性、尝试后获得效率红利、习惯养成。 使用比例远超预期,AI 编程助手迅速渗透开发者日常,好奇心驱动和效率反馈形成正向循环,AI 的使用逐渐成为程序员的“标配能力”。 AI 对编程行业的影响: 不止于“效率提升”,还带来岗位结构、心理预期、安全风险等深层变化。 技能退化与岗位压缩令人焦虑,使用 AI 成为职场新基本素养,心理压力、合规风险需同步应对。 积极影响与未来趋势:人机协作成为主流,AI 释放开发者创造力;门槛降低促使创新频率提升;持续学习与能力更新成为行业新常态。
2025-04-09
分析程序员在AI能力上的不同维度,比如AI框架,AIPrompt等
以下是对程序员在 AI 能力上不同维度的分析,包括 AI 框架和 AI Prompt 等方面: AI 框架: PromptPal:专为 AI 领域中的初创公司和个人开发者设计的提示管理工具,是一个集中化平台,便于在 AI 项目中管理提示,实现协作和工作流程优化。具有本地部署和云原生、简易设置、数据库支持、SDK 支持、提示跟踪与分析、协作工具等特点。开发指向: ChainForge:开源的可视化编程环境,专门用于测试大型语言模型(LLMs)的提示。允许用户进行快速而有效的提示想法测试和变化,具有多模型测试、响应质量比较、评估指标设置、多对话管理等特点。开发指向: AI Prompt: Promptknit:为 AI Prompts 测试提供服务的平台,可能提供工具和资源来帮助用户设计、测试和优化 AI 模型的提示。网站: 对于律师等法律人写好 Prompt 的建议: 明确 Prompt 是给人工智能(AI)系统提供的信息或问题,用来引导其产生特定回答或执行特定任务。 建议框架及格式:CRISPE 包括 Capacity and Role(能力与角色)、Insight(洞察)、Statement(陈述)、Personality(个性)、Experiment(举例)。例如,在处理合同纠纷案件时,为 AI 赋予角色和能力,提供背景信息和上下文,明确期望其完成的任务,设定回答风格等。
2025-04-09
你是一位政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式
对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅仅停留在描述性分析层面,以下是一些可行的方式: 1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。 2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。 3. 利用预训练的语言模型,如 BERT、ELMO 等,并在其基础上进行微调,以适应您的情感分析任务。 4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。 5. 结合词典和规则的方法,构建情感词典,根据词汇的情感倾向来判断文本的情感。 您可以根据数据特点和自身技术能力选择合适的方法。
2024-12-29
微博视频总结成文本的ai软件
以下是一些能够将微博视频总结成文本的 AI 软件及相关信息: 夙愿:除了聊天内容,还能让 AI 总结整理各种文章(不超过 2 万字)。对于 B 站视频,若有字幕,可通过安装油猴脚本提取字幕,然后发给 AI 总结。 AJ 提到的视频 AIGC 工具:Opusclip 可将长视频剪成短视频;Raskai 能将短视频素材直接翻译至多语种;invideoAI 输入想法后可自动生成脚本和分镜描述,进而生成视频,还能人工二编合成长视频;descript 可将屏幕/播客录制以 PPT 方式做视频;veed.io 能自动翻译自动字幕;clipchamp 是微软的 AI 版剪映;typeframes 类似 invideoAI,内容呈现文本主体比重更多;google vids 目前情况未知。 文字生成视频的 AI 产品:Pika 擅长动画制作并支持视频编辑;SVD 是 Stable Diffusion 的插件,可在图片基础上生成视频;Runway 是老牌 AI 视频生成工具,但收费,提供实时涂抹修改视频功能;Kaiber 是视频转视频 AI,能将原视频转换成各种风格的视频;Sora 由 OpenAI 开发,可生成长达 1 分钟以上的视频。更多文生视频的网站可查看。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-15
微博视频的ai总结
以下是关于微博视频的 AI 总结相关内容: 对于文章的总结,只要文章不超过 2 万字,可复制全文发给 GPTs 进行总结,GPT4 能识别重点内容。 对于 B 站视频的总结,由于 GPT 无法直接处理视频内容,可利用视频字幕。若视频有字幕,可安装油猴脚本“Bilibili CC 字幕工具”,安装后刷新浏览器,点击字幕会出现“下载”按钮,可选择多种字幕格式,然后将字幕文字内容复制发给 GPTs 进行总结。总结完视频内容后还可继续向 AI 提问更多细节或探讨视频内容。 另外,还提到了一些其他与 AI 相关的信息,如: 一位 B 站 up 主的课程,每节 15 分钟,免费且内容好,涵盖 AI 艺术字等。 14、15 号左右白马老师和麦菊老师将带大家做 AI 星图,还有毛毡字、光影字、机甲字等。 16 号晚上中老师会带大家动手炼丹,炼丹需提前准备一些图。 AI 视频可用于企业宣传片、文旅视频等变现,每周有 video battle 挑战赛,工作流开源,有多种玩法和共创方式。 11 月 2 号左右将开展博物馆奇妙日主题活动,在各地博物馆进行新创意。 在国内选题方面,小红书流量密码是猫咪,标题如“我用 AI 打造了《xx》预告片”;抖音变装视频流量是 AI 视频的百倍,开头最好有美女;B站的情况较复杂,一些高播放量视频的标题有特定特点。
2024-10-15
我要完成基于python交友网站数据撷取与分析这个毕设,如果我选择微博这个网站,你推荐我爬取哪些信息进行怎样的分析使用哪个算法
很抱歉,目前没有关于基于 Python 从微博网站进行交友网站数据撷取与分析的相关内容。但一般来说,您可以考虑爬取用户的基本信息(如年龄、性别、地区等)、发布的内容(包括文字、图片、视频等)、关注与被关注关系等。分析方面,可以进行用户画像构建、社交关系网络分析、内容情感分析等。算法的选择可能包括聚类算法(如 KMeans)、分类算法(如决策树、随机森林)、关联规则挖掘算法(如 Apriori)等。不过需要注意的是,爬取微博数据需要遵守相关法律法规和网站规定。
2024-10-11
怎么使用大模型解析WEB网站、公众号、微博、报社等媒体中的内容,并进行内容分析
使用大型语言模型(LLMs)来解析和分析来自网站、公众号、微博、报社等媒体的内容,通常涉及以下步骤: 1. 数据收集: 使用爬虫或API从目标媒体平台抓取内容。确保遵守相关平台的爬虫政策和法律法规。 2. 数据预处理: 清洗抓取的数据,去除无关内容(如广告、无关评论等),并进行文本格式化,如统一编码、去除特殊字符等。 3. 内容解析: 使用LLMs对文本内容进行解析,提取关键信息,如主题、关键词、实体、摘要等。这可以通过调用预训练模型的API来实现。 4. 情感分析: 对文本进行情感分析,判断内容的情感倾向(正面、负面或中性),这有助于了解公众对某一话题的情感态度。 5. 主题建模: 应用主题建模技术(如LDA)来识别文本中的主要主题或话题,了解媒体内容的焦点和趋势。 6. 趋势分析: 分析内容发布的时间序列,识别热点话题和趋势变化,以便及时捕捉社会关注的焦点。 7. 文本分类: 根据内容的类别(如新闻、评论、报道等)对文本进行分类,以便于进一步的分析和整理。 8. 摘要和提取: 生成文本摘要或提取重要信息,以便快速获取内容的核心要点。 9. 可视化展示: 将分析结果通过图表、词云等形式进行可视化展示,帮助用户直观理解数据分析结果。 10. 报告和洞察: 基于分析结果撰写报告,提供媒体内容的深入洞察和建议。 请注意,进行这类分析时应遵循数据隐私和安全的最佳实践,尊重版权和知识产权,并确保分析结果的客观性和准确性。此外,使用LLMs进行内容分析时,应选择适合的模型和参数,以获得最佳的分析效果。
2024-04-16