Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

声音情感分析

Answer

声音情感分析是一个新兴且具有广泛应用的研究领域。

在音乐方面,基于音频的情感分析利用先进的计算技术和机器学习算法来解读和理解音乐中的情感。其技术实现包括音频特征提取(如使用梅尔频谱图从原始音频信号中提取有用特征)、情感模型训练(利用长短期记忆网络等递归神经网络模型)以及情感预测(输出情感维度的量化值)。通过预测音乐片段的情感变化,还能实现无缝音乐过渡。其应用领域涵盖音乐治疗(帮助治疗师选择或创作适合特定情绪状态的音乐)、情感驱动的音乐推荐(为用户提供个性化听觉体验)、音乐创作辅助(指导作曲家和制作人调整作品)以及情感研究(供心理学家和社会学家研究音乐对人的影响)。

情感计算主要有“识别”“表达”和“决策”三个方向。“识别”是让计算机准确识别人类的情感,可以基于文本、语音、视觉、生理等数据进行情感分析,或者融合不同模态之间的信息。文本情感计算研究情感状态与文本信息的对应关系,语音情感计算研究语音包含的语言情感内容和声音本身的情感特征,视觉情感计算研究面部表情和肢体动作的情感识别,生理信号情感计算常用脑电、眼动、肌电、皮肤电、心电、呼吸信号等生理特征。“表达”是让计算机能够把情感以合适的信息载体表示出来,“决策”是利用情感机制来进行更好地决策。

在 TTS 数据整理中,声音标签包含性别、类别、风格、年龄、语言、领域、情感、人设等方面,例如女学姐音、男明朗清澈音等。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI 音乐 | 3.28 资讯

论文:https://arxiv.org/abs/2403.17379代码:https://github.com/etashj/Exploring-and-Applying-Audio-Based-Sentiment-Analysis音乐中基于音频的情感分析是一种新兴的研究领域,它利用先进的计算技术和机器学习算法来解读和理解音乐中所表达的情感。这种分析不仅能够识别和分类音乐的情感内容,还能够预测音乐随时间变化的情感轨迹,为音乐的情感体验提供了一种全新的量化方法。技术实现音频特征提取:使用如梅尔频谱图(Mel Spectrogram)等技术从原始音频信号中提取有用的特征,这些特征能够捕捉音乐的节奏、音高、和声和音色等元素。情感模型训练:利用长短期记忆(LSTM)网络等递归神经网络模型,根据提取的音频特征和已知的情感标签进行训练,学习音乐情感的模式。情感预测:训练好的模型可以对未知音乐片段进行情感预测,输出情感维度(如唤醒度和愉悦度)的量化值。无缝音乐过渡:通过预测音乐片段的情感变化,可以确保在播放列表中的歌曲转换时,情感体验的连贯性和平滑性。应用领域包括音乐治疗:音乐治疗是一个快速发展的领域,基于音频的情感分析可以帮助治疗师选择或创造适合特定情绪状态的音乐,以促进放松、减轻焦虑或提升情绪。情感驱动的音乐推荐:流媒体服务和音乐播放器可以利用情感分析来构建更智能的播放列表,根据用户的情绪变化自动调整音乐选择,从而提供更加个性化的听觉体验。音乐创作辅助:作曲家和音乐制作人可以利用情感分析工具来评估他们作品的情感影响,指导他们在创作过程中做出调整,以更好地传达预期的情感信息。情感研究:心理学家和社会学家可以使用基于音频的情感分析来研究音乐如何影响人的情感和行为,以及不同文化和个人如何解释音乐中的情感。

情感计算

情感计算主要有「识别」、「表达」和「决策」三个方向。「识别」让计算机准确识别人类的情感。可以基于从文本、语音、视觉、生理等数据进行情感分析。或者将不同模态之间的信息进行融合分析,使情感计算更准确,具有更高的鲁棒性。文本情感计算是NLP的一大研究热点,主要研究情感状态与文本信息的对应关系。主要由文本情感特征标注、文本情感特征提取和文本情感分类组成。语音情感计算主要研究两个部分:一个是语音所包含的语言情感内容,另一个是声音本省所具有的情感特征。视觉情感计算主要研究两个部分:一个是面部表情的情感识别,另一个是肢体动作的情感识别。生理信号情感计算,最常用的生理特征是脑电、眼动、肌电、皮肤电、心电、呼吸信号等。「表达」让计算机能够把情感以合适的信息载体表示出来;「决策」利用情感机制来进行更好地决策。[heading3]参考资料[content][《2022情感计算白皮书》,之江实验室](https://www.sohu.com/a/617242720_483389)[情感计算:让机器更加智能](https://cloud.tencent.com/developer/article/1519957)

TTS 数据整理

|性别|类别|性别|描述词|||性别|风格|年龄|语言|领域|情感|人设(自由发挥部分)||-|-|-|-|-|-|-|-|-|-|-|-|-||女|学姐音|男|明朗清澈||||爽朗||英文|朗诵|丧气|||女|娇羞音|男|清新俊逸||||酥软||北京话|书单|惊讶|||女|魅力音|男|爽朗豪气||||豪气/大气/浑厚||天津话|rap|其他|||女|少女音|男|质感磁性||||磁性||港台腔|直播||||女|少御音|男|风度翩翩||||风度||说唱腔|助理||||女|御姐音|通用|一本正经||||欢乐/逗比||河南话|游戏||||男|学长音|通用|傲娇清脆||||幽默||德语|动漫|||

Others are asking
让ai生成情感语录怎么带动情绪价值
以下是关于让 AI 生成情感语录带动情绪价值的相关内容: 可以参考品牌咨询专家的观点和相关文章,如刘润老师关于「情绪价值的赛道,拼的不是营销情绪,而是说服人心」的文章,了解情绪营销的重要性和实施策略。 以具体的产品为例,如江小白(白酒,适合跟家人之间聊心事谈感情)、霸王茶姬(奶茶,原叶茶胚,口感清新自然,适合跟朋友郊游享用)、lululemon(女士运动紧身裤,轻盈柔滑,修身弹力),给定产品品牌、品类、特点或使用情境,让大模型生成营销语句。 作为 AI 博主,需提供“情绪价值”,通过信息和趣味内容缓解用户焦虑,例如分享有趣的 AI 动态和提示词,让用户感到学习 AI 是轻松有趣的事。 提示词的详尽程度取决于应用场景,简单提示适合快速了解长文内容,详尽提示适合深入分析。初步使用简单提示,依据反馈不断改进更高效,同时建议避免过多轮会话,减少模型产生“幻觉”的可能性。
2024-12-19
我想学习调试情感bot的prompt
以下是关于调试情感 bot 的 prompt 的相关知识: 在实验方面,在八个指令感应任务上评估情绪提示在零样本和少样本学习中的表现,涵盖语言理解的不同方面,在四个大型语言模型(ChatGPT、Vicuna13b、Bloom、FlanT5Large)上进行测试,对于不同模型有相应的设置。零样本实验中情绪刺激可简单添加到原始提示中构建情绪提示,少样本上下文学习中评估与零样本相同的提示,并随机抽取 5 个输入输出对作为上下文演示。基准测试将情绪提示与原始零样本和少样本提示、零样本思维链进行比较。数据集和任务包括情绪分析、句子相似性、原因选择等八个任务。 Prompt 是一段指令,用于指挥 AI 生成所需内容,每个单独的提示词叫 tag(关键词)。支持英语,emoji 也可用。语法规则包括用英文半角符号逗号分隔 tag,可改变 tag 权重,有两种设置权重的写法,还可进行 tag 的步数控制。 希望以上内容对您学习调试情感 bot 的 prompt 有所帮助。
2024-12-05
AI情感计算
AI 情感计算是一个复杂且具有多面性的领域: 在与 AI 的交互中,如 Character.ai 这类产品,通过海量语料训练的大型语言模型能与人建立亲密感,多模态感知技术可分析人的情绪并给予反馈。但目前与 AI 的“爱情”更多是模仿出来的情感,在肉身化之前,无法满足生理刺激,可能只是一场虚无的梦。对于这种建立在虚拟上的情感的意义以及人们对其做出“承诺”的意愿存在疑问,不过“爱情”的定义本无标准,对于“人机之恋”还需长期观察,未来随着 AI 技术发展,人们的态度或会改变,我们需保持开放心态探索新情境下的人机关系。 1.7 AI 数字人的核心技术中,认知方面包含情感计算,此外还有知识图谱、自然语言处理等。 在 AI 摆摊项目中,体验型项目包括 AI 情感陪伴等。
2024-11-28
情感计算
情感计算: 技术原理: 主要有“识别”“表达”和“决策”三个方向。 “识别”可基于文本、语音、视觉、生理等数据进行情感分析,或融合不同模态信息,使分析更准确和具鲁棒性。其中,文本情感计算研究情感状态与文本信息的对应关系,由文本情感特征标注、提取和分类组成;语音情感计算研究语音包含的语言情感内容和声音本身的情感特征;视觉情感计算研究面部表情和肢体动作的情感识别;生理信号情感计算常用脑电、眼动、肌电、皮肤电、心电、呼吸信号等生理特征。 “表达”让计算机能以合适信息载体表示情感。 “决策”利用情感机制进行更好决策。 重要性: 情感对人类意义重大,具有生存、沟通、决策、动机和维系等功能。 生存功能:人类会为适应环境做出有利生存或发展的生理反应。 沟通功能:不同情感表达使相同文字语言内涵不同,多种情感表达方式能更充分表达意图。 决策功能:大脑通过“系统一”(主要依赖情感、经验)和“系统二”两种方式决策。 动机功能:情感能激发和维持个体行为。 维系功能:情感是人类社会化过程中维系的纽带。 目标:使计算机能够识别、感知、推断和理解人类的情感,赋予计算机类似人的情感能力。 参考资料: 《2022 情感计算白皮书》,之江实验室 此外,还有关于零代码自建决策助手的决策链设计相关内容,包括加权得分计算、机会成本分析、简单情景分析、决策矩阵分析、敏感性分析、情感检验和提供最终决策建议等步骤。
2024-11-13
你如何使语音助手掌握情感意图
要使语音助手掌握情感意图,可以从以下几个方面考虑: 1. 明确“情绪识别系统”的概念:根据欧洲议会和欧盟理事会的规定,“情绪识别系统”是指根据自然人的生物数据识别或推断其情绪或意图的人工智能系统,例如快乐、悲伤、愤怒等,但不包括身体状态如疼痛或疲劳,也不包括仅仅检测容易察觉的表情、手势或动作,除非用于识别或推断情绪。 2. 借鉴相关研究和观点:如 AI 教父 Hinton 探讨的如果助手具有自我反省的能力,可能会有感觉,以及他提出的新的感觉模型。 3. 理解情感的重要性:情感对人类具有生存、沟通、决策、动机和维系等功能。比如,人类会因适应环境做出有利生存的生理反应,不同情感表达会使相同文字语言内涵不同,大脑决策依赖情感,情感能激发和维持个体行为,也是人类社会化维系的纽带。 4. 以情感计算为目标:情感计算旨在使计算机能够识别、感知、推断和理解人类的情感,最终赋予计算机类似人的情感能力。 总之,使语音助手掌握情感意图需要综合多方面的知识和技术,不断探索和创新。
2024-11-11
多轮对话训练中你如何训练模型掌握情感需求
在多轮对话训练中,让模型掌握情感需求可以通过以下几种方式: 1. 利用相关数据集进行训练,例如: Guanaco:地址为,是一个使用 SelfInstruct 的主要包含中日英德的多语言指令微调数据集。 chatgptcorpus:地址为,开源了由 ChatGPT3.5 生成的 300 万自问自答数据,包括多个领域,可用于训练大模型。 SmileConv:地址为,数据集通过 ChatGPT 改写真实的心理互助 QA 为多轮的心理健康支持多轮对话,含有 56k 个多轮对话,其对话主题、词汇和篇章语义更加丰富多样,更符合长程多轮对话的应用场景。 2. 在创建提示时采用结构化模式,为模型提供一些情感需求的示例,如: |输入|输出| ||| |一部制作精良且有趣的电影|积极的| |10 分钟后我睡着了|消极的| |电影还行|中性的| 然后单击页面右侧的提交按钮。该模型现在可为输入文本提供情绪。还可以保存新设计的提示。 3. 在多轮次对话中,定期总结关键信息,重申对话的目标和指令,有助于模型刷新记忆,确保准确把握对话的进展和要点。 4. 进行意图识别和分类,特别关注在单一模型或情境中处理多个小逻辑分支的情况。例如在客户服务场景中,快速确定用户提出咨询、投诉、建议等多种类型请求的意图,并分类到相应处理流程中。
2024-11-11
案例:借助人工智能技术的诈骗 一、案例材料 1.背景资料 (1)近期全国范围内出现了一种新型电信诈骗——AI换脸诈骗,该诈骗利用AI人工智能,通过“换脸”和“拟声”技术模仿受害人的朋友或亲戚的声音和外貌,以此骗取受害者的信任,进行网络诈骗,近日包头警方就根据一起典型案例,向大家发出了防范AI换脸诈骗的警示。 财联社5月22日讯,据平安包头微信公众号消息,包头警方发布了一起利用人工智能(AI)实施电信诈骗的典型案例,一家福州市科技公司的法人代表郭先生竟在短短10分钟内被骗走了430万元人民币。
以下是关于 AI 的相关内容: 律师如何写好提示词用好 AI: 对于不具备理工科背景的文科生,可将 AI 视为黑箱,只需知道其能模仿人类思维理解和输出自然语言。AI 就像似人而非人的存在,与传统道教的驱神役鬼拘灵遣将有相似之处。提示词应是相对完善的“谈话方案”,成果在与 AI 的对话中产生,要接受其存在的“不稳定性”,并在对话中限缩自己思维的模糊地带。 AI 的应用场景: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未具体阐述)
2024-12-25
用户声音分析
以下是关于用户声音分析的相关内容: 人工智能音频初创公司: :通过更强的听觉感知创造卓越的人类体验。 :先进的声音识别解决方案,能够分类如尖叫、枪声、咳嗽和哭泣等声音。 :下一代声音 AI 平台,能够像人类一样理解任何声音。 :语音控制的家庭自动化系统。 :世界上首个智能家居听觉系统。 :可用于从音频源中提取隐藏数据的 AI 模型。 :无需键盘、按钮或触摸屏,无缝融合物理世界和数据世界。 :为手机、VR/AR 头戴设备、智能手表、扬声器和笔记本电脑提供上下文感知。 :智能音频穿戴设备。 :我们将声音转化为信息。 :使用先进的深度学习技术进行声音事件检测和上下文识别,为世界上的每一个声音赋予意义。 分析报告范例: GPT + SBERT 做用研统计:无法做 SBERT 统计频次。 邬嘉文:AI 做用户研究|Claude 3 Opus 可以直接输出用户研究报告:无法做 SBERT 统计频次。报告中提到了眼镜佩戴的相关问题,如长时间佩戴的不适(鼻垫、耳杆问题)、大小和重量问题、对特定用户群体的不适(视力、眼间距问题)、音频体验的限制等。
2024-12-19
推荐一个大模型,可以实现特定人的声音,朗读文字
以下为您推荐可以实现特定人声音朗读文字的大模型及相关工具: 大模型方面:包括 ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。 语音合成(TTS)工具: 微软的 edgetts:https://github.com/rany2/edgetts,只能使用里面预设的人物声音,目前接口免费。 VITS:https://github.com/jaywalnut310/vits,还有很多的分支版本,可以去搜索一下,vits 系列可以自己训练出想要的人声。 sovitssvc:https://github.com/svcdevelopteam/sovitssvc,专注到唱歌上面,前段时间很火的 AI 孙燕姿。 Eleven Labs:https://elevenlabs.io/ ,ElevenLabs Prime Voice AI 是一款功能强大且多功能的 AI 语音软件,使创作者和出版商能够生成逼真、高品质的音频。人工智能模型能够高保真地呈现人类语调和语调变化,并能够根据上下文调整表达方式。 Speechify:https://speechify.com/ ,Speechify 是一款人工智能驱动的文本转语音工具,使用户能够将文本转换为音频文件。它可作为 Chrome 扩展、Mac 应用程序、iOS 和 Android 应用程序使用,可用于收听网页、文档、PDF 和有声读物。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,Microsoft Azure Speech Studio 是一套服务,它赋予应用程序能力,让它们能够“听懂、理解并与客户进行对话”。该服务提供了支持 100 多种语言和方言的语音转文本和文本转语音功能。此外,它还提供了自定义的语音模型,这些模型能够适应特定领域的术语、背景噪声以及不同的口音。 Voicemaker:https://voicemaker.in/ ,AI 工具可将文本转换为各种区域语言的语音,并允许您创建自定义语音模型。Voicemaker 易于使用,非常适合为视频制作画外音或帮助视障人士。 此外,上述算法开源的代码有很多,例如: ASR 语音识别: openai 的 whisper:https://github.com/openai/whisper wenet:https://github.com/wenete2e/wenet speech_recognition:https://github.com/Uberi/speech_recognition 除了算法,人物建模模型可以通过手动建模(音频驱动)或者 AIGC 的方式生成人物的动态效果(例如 wav2lip 模型)实现,这样就完成了一个最简单的数字人。但这种简单的构建方式还存在很多问题,例如如何生成指定人物的声音,TTS 生成的音频如何精确驱动数字人口型以及做出相应的动作,数字人如何使用知识库,做出某个领域的专业性回答等。
2024-12-18
声音复刻
声音复刻主要通过 GPTSoVITS 来实现,以下是相关步骤和信息: 1. 前置数据获取处理: 选择音频并进行切割。 若有噪音,进行降噪处理。 降噪处理完成后,开启离线 ASR。 2. GPTSowitsTTS: 训练集格式化:开启一键三连,耐心等待。 微调训练:开启 SoVITS 训练和 GPT 训练。 推理:开始推理,刷新模型,选择微调后的模型(如 yoyo)。 3. 声音复刻:开启声音复刻之旅,可实现跨多语种语言的声音。 4. 实践的样本: AIyoyo 普通话 满江红 AIyoyo 粤语版 满江红 GPTSoVITS 是一个声音克隆和文本到语音转换的开源 Python RAG 框架,具有以下特点: 1. 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 2. 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感。 3. 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 4. 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 5. 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 6. 预训练模型:项目提供了一些已经训练好的模型,你可以直接下载使用。 GitHub: 视频教程: 此外,还有以下开源 TTS 数据可供参考: |汇总|大量语音数据的汇总| |||| |TTS|WenetSpeech4TTS|12,800 小时的配对音频 文本数据| |TTS| |TTS| |TTS|赛博朋克 2077|请注意版权问题!| |TTS中文| |TTS中文| |TTS中文| |TTS中文| |TTS中文|zhvoice|3200 说话人 900 小时,用于声音复刻,合成,识别等| |TTS英文|LibriTTS|基于 Librispeech 筛选而来,更适合用于做 TTS,采样率 24k,大约 585 小时 2,456 人,其中的 trainclean100 包含 53.8 小时/247 个发言人| |TTS英文|LJ Speech|大约 24 小时|
2024-12-16
声音复刻
声音复刻相关内容如下: GPTSoVITS 实现 AIyoyo 声音克隆: 前置数据获取处理:选择音频,开启切割;有噪音时,进行降噪处理;降噪处理完成,开启离线 ASR。 GPTSowitsTTS:训练集格式化需开启一键三连,耐心等待;包括微调训练、推理,推理时开始推理刷新模型选择微调后的模型yoyo,成功后会出现新的 URL 表明声音微调完毕。 声音复刻:可以开启声音复刻之旅,能够实现跨多语种语言的声音。 实践的样本:AIyoyo 普通话满江红 。 GPTSoVITS 实现声音克隆: GPTSoVITS 是一个声音克隆和文本到语音转换的开源 Python RAG 框架。只需 1 分钟语音即可训练一个自己的 TTS 模型,5 秒数据就能模仿,1 分钟的声音数据就能训练出高质量的 TTS 模型,完美克隆声音。主要特点包括零样本 TTS、少量样本训练、跨语言支持、易于使用的界面、适用于不同操作系统、提供预训练模型。 GitHub: 。 TTS 数据整理: 开源 TTS 数据汇总: 大量语音数据的汇总: TTS WenetSpeech4TTS:12,800 小时的配对音频 文本数据: TTS 米哈游 星穹铁道:包含中文和日语英文韩语,请注意版权问题! TTS 米哈游 原神:包含中文和日语英文韩语,请注意版权问题! TTS 赛博朋克 2077:请注意版权问题! TTS 中文 baker 标贝女声:12 小时 TTS 中文 Aishell3:85 小时多说话人数据 TTS 中文 DiDiSpeech:500 人 60 小时,但目前已经 404 无法再获取 TTS 中文 OpenSLR:提供各种语言的合成、识别等语料 TTS 中文 zhvoice:3200 说话人 900 小时,用于声音复刻,合成,识别等 TTS 英文 LibriTTS:基于 Librispeech 筛选而来,更适合用于做 TTS,采样率 24k,大约 585 小时 2,456 人,其中的 trainclean100 包含 53.8 小时/247 个发言人 TTS 英文 LJ Speech:大约 24 小时
2024-12-16
声音克隆
GPTSoVITS 是一个用于声音克隆和文本到语音转换的开源 Python RAG 框架,具有以下特点和使用方法: 特点: 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感,模仿出来的声音更接近原声且更自然。 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 预训练模型:项目提供了一些已经训练好的模型,可直接下载使用。 使用: 先剪出音频,使用 https://elevenlabs.io/speechsynthesis 或使用 GPTsovits 克隆声音,做出文案的音频。 注册 colab,按照步骤注册即可:https://colab.research.google.com/scrollTo=Wf5KrEb6vrkR&uniqifier=2 。新建笔记本,运行脚本启动 GPTSo VITS,整个过程比较漫长,需要耐心等待,可以整个脚本一起运行,也可以一段一段运行。运行过程包括克隆项目代码库、进入项目目录、安装 Python 依赖包、安装系统依赖、下载 NLTK 资源、启动 Web UI。运行成功后会出现 public URL。 训练音频准备与上传。 相关资源: GitHub:https://github.com/RVCBoss/GPTSoVITS 视频教程:https://bilibili.com/video/BV12g4y1m7Uw/ 基础 wav2lip+高清修复整合包下载地址:https://github.com/Rudrabha/Wav2Lip 产品:https://synclabs.so/
2024-12-13
AI直播SWOT分析
SWOT 分析是由著名管理学教授海因茨·威里克首次提出的一种策略规划工具,用于帮助个人或组织识别其项目或业务策略的优势(S)、劣势(W)、机会(O)和威胁(T)。最初主要用于企业发展战略的制定,如今已广泛应用于广告营销、经济管理以及个人发展分析等众多领域。 过去,人们使用 SWOT 分析时,常按照时间维度区分优势、劣势、机会和危机,认为当前的有利和不利条件分别为优势和劣势,未来存在的有利和不利条件分别为机会和风险,这种方式是错误的。正确的做法是以内部、外部、有利、不利作为基础坐标,内部有利为优势,内部不利为劣势,外部有利为机会,外部不利为风险。是否属于未来的情况,要依据当前分析对象的计划和外部因素来决定。 当按照最终形成的坐标收集好各个象限的信息后,还未完成。我们还需要重新分配线索以导出可操作的结果,即将 SWOT 两两叠加,产生 4 个具有指导意义的问题: 1. 利用哪些优势来抓住什么机会 2. 利用什么机会来化解哪些劣势 3. 利用哪些优势来避开什么危机 4. 在什么危机中规避哪些劣势 这样就能在有限的线索中,以组合填空的游戏形式,找到指导接下来行动的答案。 使用过程中有两个技巧: 1. 客观评估任何维度,不掺杂任何感情。 2. 分析要全面,但不是越复杂越好,应理清主次,不重要的放后面或者干脆删除。
2024-12-25
可以对数据进行分析,生成报表的AI工具或网站
以下是一些可以对数据进行分析并生成报表的 AI 工具或网站: 1. 在金融服务领域,生成式 AI 能够帮助金融服务团队从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。例如,它可以帮助编写 Excel、SQL 和 BI 工具中的公式和查询以实现分析自动化,自动创建文本、图表、图形等报告内容,还能在会计和税务、采购和应付账款等方面提供帮助。 2. 对于撰写专业区域经济报告,可利用 AI 搜索与权威网站结合获取关键数据,将报告内容拆分处理,借助传统工具如 Excel 结合 AI 指导操作数据筛选与图表生成,利用 AI 辅助分析后撰写报告初稿,但最终内容需人工主导校验。 3. 一些具体的工具和网站包括: PandasAI:将 Pandas DataFrame 转换为“聊天机器人”,用户可以以自然语言提问,它会以自然语言、表格或图表形式回答,目前仅支持 GPT 模型,需自备 OpenAI API key。网址:https://github.com/gventuri/pandasai DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告,平台符合 GDPR/PDPA 标准。网址:https://datasquirrel.ai/
2024-12-25
态势感知、流量分析的AI开源项目有哪些
目前在态势感知和流量分析方面,较为知名的 AI 开源项目相对较少。但您可以通过以下途径去寻找和发现相关的开源项目: 1. 在开源代码托管平台如 GitHub 上,使用相关的关键词进行搜索。 2. 关注相关的技术论坛和社区,了解其他开发者的分享和推荐。 由于这方面的特定开源项目有限,建议您持续关注行业动态,以便及时获取新的信息。
2024-12-24
AI能对医院医用耗材出入库数据做怎样的数据处理,方便耗材管理人员对相关数据进行分析
AI 在医院医用耗材出入库数据处理方面可以发挥以下作用,以方便耗材管理人员进行数据分析: 1. 预测需求:通过分析历史出入库数据、医院科室使用情况、季节变化等因素,预测未来某段时间内的耗材需求量,优化库存管理策略,降低成本。 2. 库存优化:实时监控库存水平,及时发现库存过高或过低的情况,提醒管理人员进行调整。 3. 数据分类与整合:对大量的出入库数据进行分类和整合,使其更易于分析和理解。 4. 异常检测:识别出入库数据中的异常情况,如突然的大量领用或长时间未领用等,及时发现潜在问题。 5. 成本分析:计算不同种类、不同批次耗材的采购成本和使用成本,为成本控制提供依据。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-22
智能送餐机器人大数据分析
很抱歉,目前知识库中没有关于智能送餐机器人大数据分析的相关内容。但一般来说,智能送餐机器人大数据分析可能涉及以下方面: 1. 送餐路径优化:通过分析机器人的运动轨迹和送餐时间,优化送餐路径,提高送餐效率。 2. 客户需求预测:根据历史订单数据,预测不同区域和时间段的客户需求,合理安排机器人的配送任务。 3. 机器人性能评估:分析机器人的运行数据,如电池寿命、故障频率等,评估其性能,以便进行维护和改进。 4. 服务质量分析:通过收集客户的反馈数据,分析机器人送餐的服务质量,如准时性、准确性等,从而进行针对性的提升。 希望以上内容能为您提供一些思路和方向。
2024-12-19