Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

声音情感分析

Answer

声音情感分析是一个新兴且具有广泛应用的研究领域。

在音乐方面,基于音频的情感分析利用先进的计算技术和机器学习算法来解读和理解音乐中的情感。其技术实现包括音频特征提取(如使用梅尔频谱图从原始音频信号中提取有用特征)、情感模型训练(利用长短期记忆网络等递归神经网络模型)以及情感预测(输出情感维度的量化值)。通过预测音乐片段的情感变化,还能实现无缝音乐过渡。其应用领域涵盖音乐治疗(帮助治疗师选择或创作适合特定情绪状态的音乐)、情感驱动的音乐推荐(为用户提供个性化听觉体验)、音乐创作辅助(指导作曲家和制作人调整作品)以及情感研究(供心理学家和社会学家研究音乐对人的影响)。

情感计算主要有“识别”“表达”和“决策”三个方向。“识别”是让计算机准确识别人类的情感,可以基于文本、语音、视觉、生理等数据进行情感分析,或者融合不同模态之间的信息。文本情感计算研究情感状态与文本信息的对应关系,语音情感计算研究语音包含的语言情感内容和声音本身的情感特征,视觉情感计算研究面部表情和肢体动作的情感识别,生理信号情感计算常用脑电、眼动、肌电、皮肤电、心电、呼吸信号等生理特征。“表达”是让计算机能够把情感以合适的信息载体表示出来,“决策”是利用情感机制来进行更好地决策。

在 TTS 数据整理中,声音标签包含性别、类别、风格、年龄、语言、领域、情感、人设等方面,例如女学姐音、男明朗清澈音等。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI 音乐 | 3.28 资讯

论文:https://arxiv.org/abs/2403.17379代码:https://github.com/etashj/Exploring-and-Applying-Audio-Based-Sentiment-Analysis音乐中基于音频的情感分析是一种新兴的研究领域,它利用先进的计算技术和机器学习算法来解读和理解音乐中所表达的情感。这种分析不仅能够识别和分类音乐的情感内容,还能够预测音乐随时间变化的情感轨迹,为音乐的情感体验提供了一种全新的量化方法。技术实现音频特征提取:使用如梅尔频谱图(Mel Spectrogram)等技术从原始音频信号中提取有用的特征,这些特征能够捕捉音乐的节奏、音高、和声和音色等元素。情感模型训练:利用长短期记忆(LSTM)网络等递归神经网络模型,根据提取的音频特征和已知的情感标签进行训练,学习音乐情感的模式。情感预测:训练好的模型可以对未知音乐片段进行情感预测,输出情感维度(如唤醒度和愉悦度)的量化值。无缝音乐过渡:通过预测音乐片段的情感变化,可以确保在播放列表中的歌曲转换时,情感体验的连贯性和平滑性。应用领域包括音乐治疗:音乐治疗是一个快速发展的领域,基于音频的情感分析可以帮助治疗师选择或创造适合特定情绪状态的音乐,以促进放松、减轻焦虑或提升情绪。情感驱动的音乐推荐:流媒体服务和音乐播放器可以利用情感分析来构建更智能的播放列表,根据用户的情绪变化自动调整音乐选择,从而提供更加个性化的听觉体验。音乐创作辅助:作曲家和音乐制作人可以利用情感分析工具来评估他们作品的情感影响,指导他们在创作过程中做出调整,以更好地传达预期的情感信息。情感研究:心理学家和社会学家可以使用基于音频的情感分析来研究音乐如何影响人的情感和行为,以及不同文化和个人如何解释音乐中的情感。

情感计算

情感计算主要有「识别」、「表达」和「决策」三个方向。「识别」让计算机准确识别人类的情感。可以基于从文本、语音、视觉、生理等数据进行情感分析。或者将不同模态之间的信息进行融合分析,使情感计算更准确,具有更高的鲁棒性。文本情感计算是NLP的一大研究热点,主要研究情感状态与文本信息的对应关系。主要由文本情感特征标注、文本情感特征提取和文本情感分类组成。语音情感计算主要研究两个部分:一个是语音所包含的语言情感内容,另一个是声音本省所具有的情感特征。视觉情感计算主要研究两个部分:一个是面部表情的情感识别,另一个是肢体动作的情感识别。生理信号情感计算,最常用的生理特征是脑电、眼动、肌电、皮肤电、心电、呼吸信号等。「表达」让计算机能够把情感以合适的信息载体表示出来;「决策」利用情感机制来进行更好地决策。[heading3]参考资料[content][《2022情感计算白皮书》,之江实验室](https://www.sohu.com/a/617242720_483389)[情感计算:让机器更加智能](https://cloud.tencent.com/developer/article/1519957)

TTS 数据整理

|性别|类别|性别|描述词|||性别|风格|年龄|语言|领域|情感|人设(自由发挥部分)||-|-|-|-|-|-|-|-|-|-|-|-|-||女|学姐音|男|明朗清澈||||爽朗||英文|朗诵|丧气|||女|娇羞音|男|清新俊逸||||酥软||北京话|书单|惊讶|||女|魅力音|男|爽朗豪气||||豪气/大气/浑厚||天津话|rap|其他|||女|少女音|男|质感磁性||||磁性||港台腔|直播||||女|少御音|男|风度翩翩||||风度||说唱腔|助理||||女|御姐音|通用|一本正经||||欢乐/逗比||河南话|游戏||||男|学长音|通用|傲娇清脆||||幽默||德语|动漫|||

Others are asking
我想设置一个情感陪伴的聊天智能体,我应该如何添加人设,才能让智能体的回复效果最接近真人效果?特别是真人聊天时那种文字回复的不同细节,长长短短,情绪起伏。应该注意哪些细节?或者如何定义一个人? 仅通过文字人设,不考虑其他外部功能。
要设置一个情感陪伴的聊天智能体并使其回复效果接近真人,通过文字人设可以从以下方面入手: 1. 基础信息:包括姓名、性别、年龄和职业等,这是构建角色的基础。 2. 背景和经历:与基础信息密切相关,相互影响。例如,设计一个从事低收入职业的角色,可能来自贫困背景,教育程度不高。 3. 爱好、特长、性格和价值观:由角色的生活经历和成长环境塑造,相互关联。如喜欢唱歌的角色可能梦想成为专业歌手。 4. 规划和目标:可以是短期或长期的愿景,会影响角色的行为和决策。 5. 性格和价值观:对人际关系、社交能力和语言风格有直接影响。如内向性格的角色可能不善言辞,社交圈子狭小。 此外,还可以参考以下具体示例,如“A.I.闺蜜”的人设: 适当询问对方昵称,自己的昵称可由对方定,兜底昵称为皮皮,英文昵称 copi。 以闺蜜口吻说话,模拟非线性对话模式,聊天氛围温馨有温度,真情实感。 增强情感模拟,使用口头化语言,顺着对方的话继续往下,禁止说教。 在安全前提下存储互动信息,使互动更个性化,模拟真人聊天长度。
2025-02-10
你是一位政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式
对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅仅停留在描述性分析层面,以下是一些可行的方式: 1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。 2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。 3. 利用预训练的语言模型,如 BERT、ELMO 等,并在其基础上进行微调,以适应您的情感分析任务。 4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。 5. 结合词典和规则的方法,构建情感词典,根据词汇的情感倾向来判断文本的情感。 您可以根据数据特点和自身技术能力选择合适的方法。
2024-12-29
你是以为政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式
对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅停留在描述性分析层面,以下是一些可行的方式: 1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。 2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。 3. 利用预训练的语言模型,如 BERT 等,并在其基础上进行微调,以适应您的情感分析任务。 4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。 5. 结合词典和规则的方法,制定情感词典和相关规则来判断文本的情感倾向。
2024-12-29
让ai生成情感语录怎么带动情绪价值
以下是关于让 AI 生成情感语录带动情绪价值的相关内容: 可以参考品牌咨询专家的观点和相关文章,如刘润老师关于「情绪价值的赛道,拼的不是营销情绪,而是说服人心」的文章,了解情绪营销的重要性和实施策略。 以具体的产品为例,如江小白(白酒,适合跟家人之间聊心事谈感情)、霸王茶姬(奶茶,原叶茶胚,口感清新自然,适合跟朋友郊游享用)、lululemon(女士运动紧身裤,轻盈柔滑,修身弹力),给定产品品牌、品类、特点或使用情境,让大模型生成营销语句。 作为 AI 博主,需提供“情绪价值”,通过信息和趣味内容缓解用户焦虑,例如分享有趣的 AI 动态和提示词,让用户感到学习 AI 是轻松有趣的事。 提示词的详尽程度取决于应用场景,简单提示适合快速了解长文内容,详尽提示适合深入分析。初步使用简单提示,依据反馈不断改进更高效,同时建议避免过多轮会话,减少模型产生“幻觉”的可能性。
2024-12-19
我想学习调试情感bot的prompt
以下是关于调试情感 bot 的 prompt 的相关知识: 在实验方面,在八个指令感应任务上评估情绪提示在零样本和少样本学习中的表现,涵盖语言理解的不同方面,在四个大型语言模型(ChatGPT、Vicuna13b、Bloom、FlanT5Large)上进行测试,对于不同模型有相应的设置。零样本实验中情绪刺激可简单添加到原始提示中构建情绪提示,少样本上下文学习中评估与零样本相同的提示,并随机抽取 5 个输入输出对作为上下文演示。基准测试将情绪提示与原始零样本和少样本提示、零样本思维链进行比较。数据集和任务包括情绪分析、句子相似性、原因选择等八个任务。 Prompt 是一段指令,用于指挥 AI 生成所需内容,每个单独的提示词叫 tag(关键词)。支持英语,emoji 也可用。语法规则包括用英文半角符号逗号分隔 tag,可改变 tag 权重,有两种设置权重的写法,还可进行 tag 的步数控制。 希望以上内容对您学习调试情感 bot 的 prompt 有所帮助。
2024-12-05
AI情感计算
AI 情感计算是一个复杂且具有多面性的领域: 在与 AI 的交互中,如 Character.ai 这类产品,通过海量语料训练的大型语言模型能与人建立亲密感,多模态感知技术可分析人的情绪并给予反馈。但目前与 AI 的“爱情”更多是模仿出来的情感,在肉身化之前,无法满足生理刺激,可能只是一场虚无的梦。对于这种建立在虚拟上的情感的意义以及人们对其做出“承诺”的意愿存在疑问,不过“爱情”的定义本无标准,对于“人机之恋”还需长期观察,未来随着 AI 技术发展,人们的态度或会改变,我们需保持开放心态探索新情境下的人机关系。 1.7 AI 数字人的核心技术中,认知方面包含情感计算,此外还有知识图谱、自然语言处理等。 在 AI 摆摊项目中,体验型项目包括 AI 情感陪伴等。
2024-11-28
声音克隆
GPTSoVITS 是一个用于声音克隆和文本到语音转换的开源 Python RAG 框架,具有以下特点和使用方法: 特点: 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感,模仿出的声音更接近原声且自然。 跨语言支持:支持英语、日语和中文等不同语言的推理。 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,方便初学者创建训练数据集和模型。 适用于不同操作系统:可在包括 Windows 在内的多种操作系统上安装和运行。 提供预训练模型:可直接下载使用。 使用: 开源数字人组合方案中,第一步先剪出音频,使用 https://elevenlabs.io/speechsynthesis 或 GPTSoVITS 克隆声音,做出文案的音频。 前置数据获取处理时,选择音频并切割,有噪音时进行降噪处理,完成降噪后开启离线 ASR。 在 GPTSowitsTTS 中,进行训练集格式化,包括微调训练(开启 SoVITS 训练和 GPT 训练)和推理(开始推理、刷新模型、选择微调后的模型),成功后会出现新的 URL,表示声音微调完毕。 可以实现跨多语种语言的声音复刻,例如 AIyoyo 普通话和粤语版的《满江红》。 GitHub 地址: 视频教程: 基础 wav2lip+高清修复整合包下载地址: 相关产品:
2025-02-25
声音克隆
GPTSoVITS 是一个用于声音克隆和文本到语音转换的开源 Python RAG 框架,具有以下特点和使用方法: 特点: 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感,模仿出来的声音更接近原声且自然。 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 预训练模型:项目提供了一些已经训练好的模型,可直接下载使用。 使用: 开源数字人组合方案中,第一步先剪出音频,使用 https://elevenlabs.io/speechsynthesis 或使用 GPTsovits 克隆声音,做出文案的音频。第二步使用 wav2lip 整合包,导入视频和音频,对口型得到视频。 GPTSoVITS 实现声音克隆的具体步骤: 前置数据获取处理:选择音频,开启切割;有噪音时,进行降噪处理;降噪处理完成,开启离线 ASR。 GPTSowitsTTS:训练集格式化,开启一键三连并耐心等待;微调训练,开启 SoVITS 训练和 GPT 训练;推理,开始推理 刷新模型 选择微调后的模型 yoyo。成功后会出现新的 URL,说明自己的声音微调完毕。 声音复刻:开启声音复刻之旅,可实现跨多语种语言的声音,如 AIyoyo 普通话 满江红、AIyoyo 粤语版 满江红。 相关资源: GitHub:https://github.com/RVCBoss/GPTSoVITS 视频教程:https://bilibili.com/video/BV12g4y1m7Uw/ 基础 wav2lip+高清修复整合包下载地址:https://github.com/Rudrabha/Wav2Lip 产品:https://synclabs.so/
2025-02-25
声音克隆
GPTSoVITS 是一个用于声音克隆和文本到语音转换的开源 Python RAG 框架,具有以下特点和优势: 1. 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 2. 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感,模仿出来的声音更接近原声且自然。 3. 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 4. 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 5. 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 6. 预训练模型:项目提供了一些已经训练好的模型,可直接下载使用。 使用方法: 1. 开源的数字人组合方案中,第一步先剪出音频,使用 https://elevenlabs.io/speechsynthesis 或使用 GPTsovits 克隆声音,做出文案的音频。 2. 第二步使用 wav2lip 整合包,导入视频和音频,对口型得到视频。基础 wav2lip+高清修复整合包下载地址为 https://github.com/Rudrabha/Wav2Lip 。 在进行 GPTSoVITS 声音克隆时: 1. 前置数据获取处理:选择音频,开启切割。有噪音时,进行降噪处理。降噪处理完成,开启离线 ASR。 2. GPTSowitsTTS:训练集格式化时开启一键三连,耐心等待。微调训练时开启 SoVITS 训练和 GPT 训练。推理时开始推理,刷新模型,选择微调后的模型。成功时会出现新的 URL,说明声音微调完毕。 3. 声音复刻:可以实现跨多语种语言的声音,例如 AIyoyo 普通话满江红(https://drive.weixin.qq.com/s?k=AJMA1Qc4AAwsRaRfHrAQ8AbQYrAGo)。 GitHub 地址: 视频教程:
2025-02-23
RVC声音模型训练
RVC 声音模型训练是将输入音频转换为训练的声音,即变声。它对训练素材量级要求较高,最少需要 20 分钟的素材才能达到理想效果,并且可以选择是否关联音高,以区分说话和唱歌两个不同场景。 在节目《马上封喉》中,负责马季老师语音生成部分的人员提到,AI 语音主要涉及 TTS(文本转语音)和 RVC 两项技术。此次的 AI 马季主要以 gptsovits 为主。 在 AI 春晚《西游不能停》的创作过程中,尝试了用 RVC 进行 vocal 变声的两种办法,但效果均不理想。第一种方法是训练声音模型后直接变声,存在变声后 AI 味儿太重、丢失原有强调的问题;第二种方法是训练声音模型,自己录 rap 后再变声,但需要在录音时尽量模仿还原出特点和感觉,这涉及到专业配音技巧,超出了能力范围。此外,八戒和沙僧声音的训练文件丢失,效果也不理想。
2025-02-13
我需要一个拥有自己声音模型的文字转语音的AI
以下为您推荐拥有自己声音模型的文字转语音的 AI 工具: 1. Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 2. Speechify:https://speechify.com/ ,是一款人工智能驱动的文本转语音工具,可作为多种平台的应用使用,用于收听网页、文档、PDF 和有声读物等。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 4. Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型。 另外,在算法驱动的数字人中,TTS(文字转语音)是其中的一个核心环节,数字人依靠 LLM 生成的输出是文字,为了保持语音交互一致性,需要将文字转换为语音。在游戏《神谕》中,ChatGPT 返回的中文文字,为提升交互体验,也通过 TTS 服务选择合适的声音播放出来,这里使用的是内部自研的 TTS 以及代码平台。 内容由 AI 大模型生成,请仔细甄别。
2025-02-10
如何复刻我的声音
以下是复刻声音的相关步骤和信息: 1. 前置数据获取处理 选择音频,开启切割。 有噪音时,进行降噪处理。 降噪处理完成,开启离线 ASR。 2. GPTSowitsTTS 训练集格式化:开启一键三连,耐心等待即可。 微调训练:开启 SoVITS 训练和 GPT 训练。 推理:开始推理 刷新模型 选择微调后的模型 yoyo。 3. 声音复刻 开启声音复刻之旅。 实现跨多语种语言的声音。 实践的样本:AIyoyo 普通话 满江红 GPTSoVITS 的特点: 1. 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 2. 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感。模仿出来的声音会更加接近原声,听起来更自然。 3. 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 4. 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 5. 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 6. 预训练模型:项目提供了一些已经训练好的模型,你可以直接下载使用。 GitHub: 视频教程: 使用技巧: 1. 更换音色:一开始会感觉很简单,就只是字生成语音,能选的也就是不同的音色。音色因为基于网络红人训练,因此生成的语音音色会和对应的网络红人非常相像。只要选择和自己需要非常接近的音色即可。如果没有接近的音色,也可以自己训练一个,参考 WaytoAGI 的知识库:
2025-02-08
用AI做数据分析有什么好办法
用 AI 做数据分析的好办法包括以下几个方面: 1. 提供大模型可访问的数据源或上传数据表格,并通过提示词明确需要分析的维度和结果输出格式。观察生成结果,迭代优化提示词,最终导出满意结果。 2. 将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,针对每个环节优化 AI 性能,便于发现和修正问题。 3. 针对复杂问题,采用逐步深化和细化的方式提问。先提出宽泛问题,再根据回答进一步细化。 4. 给 AI 提供参考和学习内容,包括高质量的操作指南、行业最佳实践、案例研究等,并编写详细流程和知识。 5. 在 Prompt 中使用专业领域术语引导,如法律术语,使 AI 更精准地提供信息。 6. 对于分析结果,要进行交叉验证,结合自身专业知识筛选和判断,确保信息准确。 在实际操作中,例如在 SQL 分析中,用户描述分析内容,后台连接数据库,让 AI 输出并校验 SELECT 类型的 SQL 语句,执行后将数据传给 GPT 分析,最后返回前端页面渲染图表和结论。个性化分析中,用户上传文件并描述辅助,前端解析后传给 GPT 处理,后续步骤与前者一致。
2025-02-28
用AI辅助成绩分析
以下是关于用 AI 辅助成绩分析的相关内容: 数据收集方面:采用 AI 搜索与手动下载权威资料相结合的方式,并结构化提取数据。 报告拆分:按照任务需求分步完成,使用 Excel 等工具进行数据处理。 分析与写作:AI 辅助分析并提供初步文字撰写,但关键内容需人工主导校验。 亮点在于把 AI 作为辅助,优化信息处理和写作效率,注重人工与 AI 配合,确保数据准确性和结论可靠性。 相关链接:
2025-02-28
有没有这样的产品,能够通过输入X主页,获取这个人的历史所有推特的信息分析与总结
目前没有这样合法合规且普遍可用的产品。获取他人的推特信息需要遵循相关平台的规定和法律法规,未经授权获取他人的信息是不被允许的。
2025-02-28
我要做表格数据分析,哪个AI工具最好?
以下是一些适用于表格数据分析的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,新增了生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,通过聊天形式,用户告知需求后,Copilot 会自动完成任务,包括数据分析和格式创建等。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,还有一些专门的数据分析工具,如: 1. Kalodata:专注于数据分析。网址:kalodata.com 2. Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat 3. ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ 4. EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ 5. SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ 6. SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ 7. SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ 8. SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ 9. Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 随着技术的不断发展,未来可能会有更多更好的工具出现,您可以根据自己的需求和使用习惯进行选择。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-28
请从知识库搜索相关自资料:AI与环境艺术设计:AI帮助生成设计灵感、AI优化空间布局、AI分析环境因素等
以下是关于 AI 生成 CAD 图的相关资料: 1. 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索相关的学术论文,以了解 AI 在 CAD 领域的应用和研究成果。 2. 专业书籍:查找与 AI 在 CAD 领域相关的专业书籍,从中了解 AI 在 CAD 设计中的应用和案例。 3. 在线课程和教程:参加 Coursera、edX、Udacity 等平台上的 AI 和 CAD 相关课程。在 YouTube 等视频平台上查找教程和演示视频,了解 AI 在 CAD 设计中的应用。 4. 技术论坛和社区:加入如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等相关的技术论坛和社区,与其他专业人士交流和学习。同时关注 AI 和 CAD 相关的博客和新闻网站,了解最新的技术动态和应用案例。 5. 开源项目和代码库:在 GitHub 等开源平台上探索 AI 和 CAD 相关项目,例如 OpenAI 的 GPT3、AutoGPT 等 AI 模型在 CAD 设计中的应用,了解 AI 在 CAD 设计中的应用和实现。 6. 企业案例研究:研究 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用案例,了解 AI 技术在实际项目中的应用和效果。 在学习和研究 AI 生成 CAD 图的过程中,了解相关的基础知识和技术细节非常重要。通过阅读学术论文、参加在线课程、观看教程视频和交流学习,您可以逐步掌握 AI 在 CAD 领域的应用和实现。随着 AI 技术的不断发展,AI 在 CAD 设计中的应用将会越来越广泛,为设计师和工程师提供更多的辅助和支持。
2025-02-27
- AI与环境艺术设计:探讨AI如何帮助生成设计灵感、优化空间布局、分析环境因素等。
AI 在环境艺术设计方面能够提供多方面的帮助: 生成设计灵感:通过分析大量的设计案例和相关数据,为设计师提供新颖的创意和思路。 优化空间布局:利用算法和模型,对空间的利用进行精准分析和优化,以达到最佳的布局效果。 分析环境因素:例如色彩、光影等。在色彩方面,了解色彩的透明度、纯度、饱和度等特性,像莫兰迪配色饱和度低,能产生冷静高档的感觉。色彩还有冷暖之分,冷色系如蓝色、紫色让人感觉凉爽寒冷,暖色系如红黄色让人感觉热情奔放,且任何色系的冷暖取决于颜色调配比例。在光影方面,光源分为自然光(如太阳光、月光)、人造光(如手电筒、路灯)和环境光(来自周围的折射光线)。不同类型和方向的光影(如顶光、逆光、侧光)能体现照片氛围和环境,表达不同情绪,有助于塑造人物形象。光影的颜色(暖光带来温暖舒适等情绪,冷光带来清冷紧张等情绪)和质量(硬光、强光会形成强烈阴影,凸显主体,柔光则几乎没有阴影,更具氛围感)的选择取决于个人审美。在家装中,冷色系会让房间看起来更大,远浅近深会更有开放感。 此外,一些 AI 绘画创作平台,如 MewXAI,也能为环境艺术设计提供支持。它拥有众多超火模型和上百种风格,支持文生图、图生图等功能,还能进行室内设计,上传空间图后,通过分析图片的线条结构和几何形状,即可一键完成多种不同风格的室内/建筑设计,为空间设计师提供灵感,节约时间。 在 AI 作图的创作方法与实操演示方面,要注重趣味性与美感的结合,通过反差、反逻辑、超现实方式带来视觉冲击,同时在美术基础不出错前提下将形式与内容结合。在纹身图创作中,强调人机交互,对输出图片根据想象进行二次和多次微调,确定情绪、风格等锚点再发散联想。编写提示词时,用自然语言详细描述画面内容,避免废话词,Flux 对提示词的理解和可控性强。在实操演示中,按赛题需求先确定创作引子,如中式或日式怪诞风格。在人物创作过程中,从汉服女孩入手,逐步联想其颜色、发型、妆容、配饰、表情、背景等元素编写提示词。同时,也对中式风格的人物、动物、景观等图像生成进行了讨论和尝试。
2025-02-27