Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

声音情感分析

Answer

声音情感分析是一个新兴且具有广泛应用的研究领域。

在音乐方面,基于音频的情感分析利用先进的计算技术和机器学习算法来解读和理解音乐中的情感。其技术实现包括音频特征提取(如使用梅尔频谱图从原始音频信号中提取有用特征)、情感模型训练(利用长短期记忆网络等递归神经网络模型)以及情感预测(输出情感维度的量化值)。通过预测音乐片段的情感变化,还能实现无缝音乐过渡。其应用领域涵盖音乐治疗(帮助治疗师选择或创作适合特定情绪状态的音乐)、情感驱动的音乐推荐(为用户提供个性化听觉体验)、音乐创作辅助(指导作曲家和制作人调整作品)以及情感研究(供心理学家和社会学家研究音乐对人的影响)。

情感计算主要有“识别”“表达”和“决策”三个方向。“识别”是让计算机准确识别人类的情感,可以基于文本、语音、视觉、生理等数据进行情感分析,或者融合不同模态之间的信息。文本情感计算研究情感状态与文本信息的对应关系,语音情感计算研究语音包含的语言情感内容和声音本身的情感特征,视觉情感计算研究面部表情和肢体动作的情感识别,生理信号情感计算常用脑电、眼动、肌电、皮肤电、心电、呼吸信号等生理特征。“表达”是让计算机能够把情感以合适的信息载体表示出来,“决策”是利用情感机制来进行更好地决策。

在 TTS 数据整理中,声音标签包含性别、类别、风格、年龄、语言、领域、情感、人设等方面,例如女学姐音、男明朗清澈音等。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI 音乐 | 3.28 资讯

论文:https://arxiv.org/abs/2403.17379代码:https://github.com/etashj/Exploring-and-Applying-Audio-Based-Sentiment-Analysis音乐中基于音频的情感分析是一种新兴的研究领域,它利用先进的计算技术和机器学习算法来解读和理解音乐中所表达的情感。这种分析不仅能够识别和分类音乐的情感内容,还能够预测音乐随时间变化的情感轨迹,为音乐的情感体验提供了一种全新的量化方法。技术实现音频特征提取:使用如梅尔频谱图(Mel Spectrogram)等技术从原始音频信号中提取有用的特征,这些特征能够捕捉音乐的节奏、音高、和声和音色等元素。情感模型训练:利用长短期记忆(LSTM)网络等递归神经网络模型,根据提取的音频特征和已知的情感标签进行训练,学习音乐情感的模式。情感预测:训练好的模型可以对未知音乐片段进行情感预测,输出情感维度(如唤醒度和愉悦度)的量化值。无缝音乐过渡:通过预测音乐片段的情感变化,可以确保在播放列表中的歌曲转换时,情感体验的连贯性和平滑性。应用领域包括音乐治疗:音乐治疗是一个快速发展的领域,基于音频的情感分析可以帮助治疗师选择或创造适合特定情绪状态的音乐,以促进放松、减轻焦虑或提升情绪。情感驱动的音乐推荐:流媒体服务和音乐播放器可以利用情感分析来构建更智能的播放列表,根据用户的情绪变化自动调整音乐选择,从而提供更加个性化的听觉体验。音乐创作辅助:作曲家和音乐制作人可以利用情感分析工具来评估他们作品的情感影响,指导他们在创作过程中做出调整,以更好地传达预期的情感信息。情感研究:心理学家和社会学家可以使用基于音频的情感分析来研究音乐如何影响人的情感和行为,以及不同文化和个人如何解释音乐中的情感。

情感计算

情感计算主要有「识别」、「表达」和「决策」三个方向。「识别」让计算机准确识别人类的情感。可以基于从文本、语音、视觉、生理等数据进行情感分析。或者将不同模态之间的信息进行融合分析,使情感计算更准确,具有更高的鲁棒性。文本情感计算是NLP的一大研究热点,主要研究情感状态与文本信息的对应关系。主要由文本情感特征标注、文本情感特征提取和文本情感分类组成。语音情感计算主要研究两个部分:一个是语音所包含的语言情感内容,另一个是声音本省所具有的情感特征。视觉情感计算主要研究两个部分:一个是面部表情的情感识别,另一个是肢体动作的情感识别。生理信号情感计算,最常用的生理特征是脑电、眼动、肌电、皮肤电、心电、呼吸信号等。「表达」让计算机能够把情感以合适的信息载体表示出来;「决策」利用情感机制来进行更好地决策。[heading3]参考资料[content][《2022情感计算白皮书》,之江实验室](https://www.sohu.com/a/617242720_483389)[情感计算:让机器更加智能](https://cloud.tencent.com/developer/article/1519957)

TTS 数据整理

|性别|类别|性别|描述词|||性别|风格|年龄|语言|领域|情感|人设(自由发挥部分)||-|-|-|-|-|-|-|-|-|-|-|-|-||女|学姐音|男|明朗清澈||||爽朗||英文|朗诵|丧气|||女|娇羞音|男|清新俊逸||||酥软||北京话|书单|惊讶|||女|魅力音|男|爽朗豪气||||豪气/大气/浑厚||天津话|rap|其他|||女|少女音|男|质感磁性||||磁性||港台腔|直播||||女|少御音|男|风度翩翩||||风度||说唱腔|助理||||女|御姐音|通用|一本正经||||欢乐/逗比||河南话|游戏||||男|学长音|通用|傲娇清脆||||幽默||德语|动漫|||

Others are asking
你是一位政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式
对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅仅停留在描述性分析层面,以下是一些可行的方式: 1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。 2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。 3. 利用预训练的语言模型,如 BERT、ELMO 等,并在其基础上进行微调,以适应您的情感分析任务。 4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。 5. 结合词典和规则的方法,构建情感词典,根据词汇的情感倾向来判断文本的情感。 您可以根据数据特点和自身技术能力选择合适的方法。
2024-12-29
你是以为政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式
对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅停留在描述性分析层面,以下是一些可行的方式: 1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。 2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。 3. 利用预训练的语言模型,如 BERT 等,并在其基础上进行微调,以适应您的情感分析任务。 4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。 5. 结合词典和规则的方法,制定情感词典和相关规则来判断文本的情感倾向。
2024-12-29
让ai生成情感语录怎么带动情绪价值
以下是关于让 AI 生成情感语录带动情绪价值的相关内容: 可以参考品牌咨询专家的观点和相关文章,如刘润老师关于「情绪价值的赛道,拼的不是营销情绪,而是说服人心」的文章,了解情绪营销的重要性和实施策略。 以具体的产品为例,如江小白(白酒,适合跟家人之间聊心事谈感情)、霸王茶姬(奶茶,原叶茶胚,口感清新自然,适合跟朋友郊游享用)、lululemon(女士运动紧身裤,轻盈柔滑,修身弹力),给定产品品牌、品类、特点或使用情境,让大模型生成营销语句。 作为 AI 博主,需提供“情绪价值”,通过信息和趣味内容缓解用户焦虑,例如分享有趣的 AI 动态和提示词,让用户感到学习 AI 是轻松有趣的事。 提示词的详尽程度取决于应用场景,简单提示适合快速了解长文内容,详尽提示适合深入分析。初步使用简单提示,依据反馈不断改进更高效,同时建议避免过多轮会话,减少模型产生“幻觉”的可能性。
2024-12-19
我想学习调试情感bot的prompt
以下是关于调试情感 bot 的 prompt 的相关知识: 在实验方面,在八个指令感应任务上评估情绪提示在零样本和少样本学习中的表现,涵盖语言理解的不同方面,在四个大型语言模型(ChatGPT、Vicuna13b、Bloom、FlanT5Large)上进行测试,对于不同模型有相应的设置。零样本实验中情绪刺激可简单添加到原始提示中构建情绪提示,少样本上下文学习中评估与零样本相同的提示,并随机抽取 5 个输入输出对作为上下文演示。基准测试将情绪提示与原始零样本和少样本提示、零样本思维链进行比较。数据集和任务包括情绪分析、句子相似性、原因选择等八个任务。 Prompt 是一段指令,用于指挥 AI 生成所需内容,每个单独的提示词叫 tag(关键词)。支持英语,emoji 也可用。语法规则包括用英文半角符号逗号分隔 tag,可改变 tag 权重,有两种设置权重的写法,还可进行 tag 的步数控制。 希望以上内容对您学习调试情感 bot 的 prompt 有所帮助。
2024-12-05
AI情感计算
AI 情感计算是一个复杂且具有多面性的领域: 在与 AI 的交互中,如 Character.ai 这类产品,通过海量语料训练的大型语言模型能与人建立亲密感,多模态感知技术可分析人的情绪并给予反馈。但目前与 AI 的“爱情”更多是模仿出来的情感,在肉身化之前,无法满足生理刺激,可能只是一场虚无的梦。对于这种建立在虚拟上的情感的意义以及人们对其做出“承诺”的意愿存在疑问,不过“爱情”的定义本无标准,对于“人机之恋”还需长期观察,未来随着 AI 技术发展,人们的态度或会改变,我们需保持开放心态探索新情境下的人机关系。 1.7 AI 数字人的核心技术中,认知方面包含情感计算,此外还有知识图谱、自然语言处理等。 在 AI 摆摊项目中,体验型项目包括 AI 情感陪伴等。
2024-11-28
情感计算
情感计算: 技术原理: 主要有“识别”“表达”和“决策”三个方向。 “识别”可基于文本、语音、视觉、生理等数据进行情感分析,或融合不同模态信息,使分析更准确和具鲁棒性。其中,文本情感计算研究情感状态与文本信息的对应关系,由文本情感特征标注、提取和分类组成;语音情感计算研究语音包含的语言情感内容和声音本身的情感特征;视觉情感计算研究面部表情和肢体动作的情感识别;生理信号情感计算常用脑电、眼动、肌电、皮肤电、心电、呼吸信号等生理特征。 “表达”让计算机能以合适信息载体表示情感。 “决策”利用情感机制进行更好决策。 重要性: 情感对人类意义重大,具有生存、沟通、决策、动机和维系等功能。 生存功能:人类会为适应环境做出有利生存或发展的生理反应。 沟通功能:不同情感表达使相同文字语言内涵不同,多种情感表达方式能更充分表达意图。 决策功能:大脑通过“系统一”(主要依赖情感、经验)和“系统二”两种方式决策。 动机功能:情感能激发和维持个体行为。 维系功能:情感是人类社会化过程中维系的纽带。 目标:使计算机能够识别、感知、推断和理解人类的情感,赋予计算机类似人的情感能力。 参考资料: 《2022 情感计算白皮书》,之江实验室 此外,还有关于零代码自建决策助手的决策链设计相关内容,包括加权得分计算、机会成本分析、简单情景分析、决策矩阵分析、敏感性分析、情感检验和提供最终决策建议等步骤。
2024-11-13
我想实现定时通过用我的声音生成的智能体给微信好友 发送自定义语音消息,,如何实现, 并且帮我做出能实现这个功能的工具
目前暂时没有直接能实现您这个需求的现成工具。但要实现这个功能,可能需要以下步骤: 1. 声音采集与处理:首先需要采集您的声音,并进行处理和特征提取,以便后续生成语音。 2. 智能体开发:利用相关技术开发能够模拟您声音的智能体。 3. 微信接口对接:由于微信的接口限制和安全策略,直接对接微信发送消息可能存在困难,需要寻找合法合规的途径。 4. 定时任务设置:通过编程实现定时发送的功能。 这是一个较为复杂的综合性项目,可能需要涉及语音处理、人工智能、软件开发等多方面的知识和技术。
2025-01-26
声音克隆
GPTSoVITS 是一个用于声音克隆和文本到语音转换的开源 Python RAG 框架,具有以下特点和使用方法: 特点: 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感,模仿出来的声音更接近原声且自然。 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 预训练模型:项目提供了一些已经训练好的模型,可直接下载使用。 使用: 先剪出音频,使用 https://elevenlabs.io/speechsynthesis 或使用 GPTsovits 克隆声音,做出文案的音频。 使用 wav2lip 整合包,导入视频和音频,对口型得到视频。 基础 wav2lip+高清修复整合包下载地址:https://github.com/Rudrabha/Wav2Lip 产品:https://synclabs.so/ 注册 colab,启动准备:点击进入按照步骤注册即可,新建笔记本,运行脚本启动 GPTSo VITS。整个过程比较漫长,需要耐心等待,可以整个脚本一起运行,也可以一段一段运行。运行过程包括克隆项目代码库、进入项目目录、安装 Python 依赖包、安装系统依赖、下载 NLTK 资源、启动 Web UI。运行成功后出现 public URL,然后进行训练音频准备与上传。 开源项目:https://github.com/RVCBoss/GPTSoVITS
2025-01-23
免费克隆一个人的声音
以下是一些可以免费克隆一个人声音的工具和平台: PlayHT:https://play.ht/studio/ ,包含预设音色,可免费克隆一个音色,若想生成多个,删除上一个音色即可做新的。 Elevenlabs:https://elevenlabs.io/app ,包含预设音色,新用户 1 美元开通一个月会员,可使用克隆音色。 魔搭社区:https://www.modelscope.cn/home ,是一个模型开源社区及创新平台,由阿里巴巴通义实验室联合 CCF 开源发展委员会共同发起,包含各种声音模型,有开发经验的朋友可使用。 Dubbingx:https://dubbingx.com/ ,免费克隆音色,有桌面版,Mac、Window 均可用。 魔音工坊:https://www.moyin.com/
2025-01-21
利用自己的声音歌唱AI生成歌曲
以下是一些利用自己的声音歌唱 AI 生成歌曲的相关信息: 1. LAIVE:这是一个利用 AI 技术一次性生成音乐、歌词、主唱等的创作平台。使用者可以选择喜欢的类型和情调,上传参考音源,AI 会通过分析生成音乐,还可以选择主唱和修改歌词,目前为开放测试阶段。输入促销代码“LAIVEcreator”可获得 50 代币(入口在个人资料),令牌有效期为输入代码后的 30 天,促销码失效日期为 4 月 17 日。链接:https://www.laive.io/ 2. Combobulator:DataMind Audio 推出的基于 AI 的效果插件,利用神经网络通过样式转移的过程重新合成输入音频,从而使用您自己的声音重现其他艺术家的风格。链接:https://datamindaudio.ai/ 3. 大峰的经验分享:用 Suno 生成歌曲时,在填写歌曲风格时填写少量风格词,如中国风,给 AI 更多发挥空间。靠音乐审美从生成的歌曲中选出中意的歌曲。将歌词发给 GPT 并告知想法,让其以英文 AI 绘画提示词的形式提供每句歌词的每个分镜,然后丢进 AI 生图平台(如 Midjourney)生成图片,再用 Runway 进行图生视频。 4. UDIO 制作音乐:Udio 不会使用艺术家的声音生成歌曲,在幕后风格参考会被一组相关标签替换。在文本输入下方有两种类型的建议标签可点击添加到提示中,自动完成是当前单词的建议标签补全,您可以移动插入符号到提示的任何部分,相应更改完成。
2025-01-20
声音转文字工具
以下是为您推荐的一些声音转文字工具: 1. 飞书妙记(https://www.feishu.cn/product/minutes):飞书的办公套件之一。 2. 通义听悟(https://tingwu.aliyun.com/home):阿里推出的 AI 会议转录工具。 3. 讯飞听见(https://www.iflyrec.com/):讯飞旗下智慧办公服务平台。 4. Otter AI(https://otter.ai/):转录采访和会议纪要。 更多会议记录工具请访问网站:https://waytoagi.com/sites/category/29 。 此外,在某些场景中还会使用到 GVoice 提供的语音录制和识别能力,中文识别率优秀。听写字幕、翻译配音工具 memo.ac 以及通义听悟也可用于声音转文字。 内容由 AI 大模型生成,请仔细甄别。
2025-01-20
声音复刻
声音复刻相关知识如下: GPTSoVITS 实现声音克隆: 只需 1 分钟语音即可训练一个自己的 TTS 模型,是一个声音克隆和文本到语音转换的开源 Python RAG 框架。 5 秒数据就能模仿,1 分钟声音数据可训练出高质量 TTS 模型,完美克隆声音,适配中文,界面易用。 主要特点包括零样本 TTS、少量样本训练、跨语言支持、易用界面、适用于不同操作系统、提供预训练模型。 GitHub 链接: 视频教程: 前置数据获取处理: 选择音频,开启切割。 有噪音时,进行降噪处理。 降噪处理完成,开启离线 ASR。 GPTSowitsTTS: 训练集格式化:开启一键三连,耐心等待。 微调训练:开启 SoVITS 训练和 GPT 训练。 推理:开始推理 刷新模型 选择微调后的模型 yoyo。 成功后出现新的 URL 表明声音微调完毕。 声音复刻之旅:可实现跨多语种语言的声音。 实践样本:AIyoyo 普通话 满江红 TTS 数据整理: 开源 TTS 数据汇总: 大量语音数据的汇总:https://github.com/RevoSpeechTech/speechdatasetscollection WenetSpeech4TTS:12,800 小时的配对音频 文本数据, 米哈游 星穹铁道:包含中文和日语英文韩语,请注意版权问题!https://github.com/AIHobbyist/StarRail_Datasets 米哈游 原神:包含中文和日语英文韩语,请注意版权问题! 赛博朋克 2077:请注意版权问题! baker 标贝女声:12 小时, Aishell3:85 小时多说话人数据, DiDiSpeech:500 人 60 小时,但目前已经 404 无法再获取, OpenSLR:提供各种语言的合成、识别等语料,https://www.openslr.org/resources.php zhvoice:3200 说话人 900 小时,用于声音复刻,合成,识别等, LibriTTS:基于 Librispeech 筛选而来,更适合用于做 TTS,采样率 24k,大约 585 小时 2,456 人,其中的 trainclean100 包含 53.8 小时/247 个发言人, LJ Speech:大约 24 小时,
2025-01-10
用 ai 来分析数据,附件大小有限制吗
使用 AI 来分析数据时,附件大小通常是有限制的。 对于代码解释器(一种 GPT4 模式),您可以将文件上传到 AI,它可用于执行程序、运行数据分析等,但使用时需要充分了解统计数据和数据以检查其工作。 在 ChatGPT 助力的数据分析中,文中所提到的个性化分析示例使用的均是假数据。在实际业务中处理大量数据时,除了长类型字段有限制外,还需指定允许查询或解析的字段告诉 ChatGPT,结果数据要进一步校验是否符合要求,超长数据可以截取关键字段的内容丢给 GPT 总结分析。 需要注意的是,不同的 AI 工具和应用场景可能会有不同的附件大小限制和数据处理要求。
2025-01-28
智能合规性分析
以下是关于智能合规性分析的相关内容: 在金融服务业中,生成式 AI 能带来更好的合规性,具体表现为: 1. 高效筛查:迅速汇总个体在不同系统中的关键信息,让合规官员更快得出交易是否存在问题的答案。 2. 更准确地预测洗钱者:根据过去 10 年的可疑活动报告训练模型,创建对洗钱者构成的定义。 3. 更快的文档分析:分析大量文档,标记潜在问题或关注区域。 4. 培训和教育:开发培训材料,模拟真实场景,教育合规官员。 欧洲议会和欧盟理事会规定了人工智能的统一规则,包括成员国的市场监督管理机关和委员会应能提议联合行动,促进合规、查明不合规情况等。对于建立在通用人工智能模型基础上的人工智能系统,明确了国家和联盟一级的责任和权限。 未来,拥抱生成式 AI 的合规部门有望阻止每年在全球范围内非法洗钱的巨额资金。如今,合规软件主要基于“硬编码”规则,存在诸多问题,生成式 AI 可能带来改变。
2025-01-27
如果我想让一个agent的回复的观点更鲜明,而非对一连串的侧面做分析,然后给出分散的建议, 如何做到?
要让一个智能体(agent)的回复观点更鲜明,而非分散地分析侧面和给出建议,您可以考虑以下几个方法: 1. 明确任务设定:在与智能体交互之前,清晰准确地定义任务目标和期望的回复形式,强调需要鲜明的观点表达。 2. 优化训练数据:确保用于训练智能体的数据集包含观点鲜明的示例,让智能体学习到这种表达模式。 3. 调整提示词:精心设计提示词,明确要求智能体给出直接、明确且鲜明的观点,避免模糊或宽泛的指令。 4. 引入奖励机制:在训练过程中,对观点鲜明的回复给予更高的奖励,激励智能体朝着这个方向优化。 5. 后处理和筛选:对智能体的初步回复进行后处理,筛选出观点鲜明的部分,或者对不够鲜明的部分进行修改和优化。
2025-01-26
分析英文期刊论文的ai有哪些?哪个好用?
以下是一些可用于分析英文期刊论文的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,以下是一些常见的文章润色 AI 工具: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可生成符合要求的学术论文。 在 AI 文章排版工具方面: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. Latex:广泛用于学术论文排版的软件,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 通常是受欢迎的选择;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-22
推荐一个数据分析的AI产品
以下为您推荐一些数据分析的 AI 产品: 1. PandasAI:让 Pandas DataFrame“学会说人话”的工具,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业,并符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/ 3. 医渡云病历分析系统:利用 AI 分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 4. 讯飞听见会议总结功能:在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。
2025-01-21
推荐一个数据分析的AI产品
以下为您推荐一些数据分析的 AI 产品: 1. PandasAI:让 Pandas DataFrame“学会说人话”的工具,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业,且平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/ 3. 医渡云病历分析系统:利用 AI 分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 4. 讯飞听见会议总结功能:在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。
2025-01-21