Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

AIGC的底层科学原理是神经网络吗?

Answer

AIGC 的底层科学原理包含神经网络。

神经网络是一种模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。它由大量的人工神经元联结进行计算,是一种自适应系统,具备学习功能。

在 AI 领域,神经网络是一种重要的技术。深度学习就是一种参照人脑结构,包含神经网络和神经元的方法(因层数较多而称为深度)。神经网络可以用于监督学习、无监督学习、强化学习等多种学习方式。

同时,Transformer 模型的出现也对 AIGC 产生了重要影响,它完全基于自注意力机制处理序列数据,比循环神经网络更适合处理文本的长距离依赖性。

Content generated by AI large model, please carefully verify (powered by aily)

References

AIGC常见名词解释(字典篇)

人工神经网络(英语:Artificial Neural Network,ANN),简称神经网络(Neural Network,NN)或类神经网络,在机器学习和认知科学领域,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统,通俗地讲就是具备学习功能。现代神经网络是一种非线性统计性数据建模工具,神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method)得以优化,所以也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。参考|AI维基百科|https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD|<br>|-|-|<br>|sdbook术语<br>|https://stable-diffusion-book.vercel.app/GettingStarted/term/#_8|<br>|人工智能科普<br>|https://zhuanlan.zhihu.com/p/521942102|

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

Others are asking
AIGC
AIGC 即 AI generated content,又称为生成式 AI,意为人工智能生成内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等都属于 AIGC 的应用。 AIGC 常见的应用包括: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 在 CRM(客户关系管理)领域有着广阔的应用前景,主要包括以下几个方面: 1. 个性化营销内容创作:根据客户的个人信息、购买历史、偏好等数据,生成高度个性化且富有创意的营销文案、视觉内容等,提高营销效率和转化率。 2. 客户服务对话系统:基于 AIGC 的对话模型,开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。 3. 产品推荐引擎:借助 AIGC 生成丰富的产品描述、视觉展示等内容,结合推荐算法,为客户推荐更贴合需求的产品,提升销售业绩。 4. CRM 数据分析报告生成:自动生成数据分析报告内容,包括文字、图表、视频演示等形式,加快分析报告的生产流程。 5. 智能翻译和本地化:提供高质量的多语种翻译及本地化服务,帮助企业打造精准的全球化营销内容。 6. 虚拟数字人和营销视频内容生成:快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。 7. 客户反馈分析:高效分析海量的客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。 AIGC、UGC(普通用户生产)和 PGC(专业用户生产)都是内容生成的不同方式,主要区别在于内容的创作者和生成方式: 1. AIGC:由人工智能生成的内容。AI 通过学习大量的数据,能够自动生成文本、图像、视频等内容。优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。 2. UGC:由用户生成的内容。用户通过社交媒体、博客、论坛等平台发布自己的内容,如文章、评论、照片、视频等。优势在于内容丰富多样,能够反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。 3. PGC:由专业人士或机构生成的内容。专业团队或机构根据特定的标准和流程创作高质量的内容,如新闻报道、影视作品、专业文章等。优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 SD 是 Stable Diffusion 的简称。它是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。SD 的代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。我们可以通过一系列的工具搭建准备,使用 SD 进行想要的图片 AIGC。 不过在 AIGC 的应用过程中,仍需解决算法偏差、版权和知识产权等伦理法律问题。
2024-12-25
AIGC
AIGC 即 AI generated content,又称为生成式 AI,意为人工智能生成内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等都属于 AIGC 的应用。 AIGC 常见的应用包括: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 在 CRM(客户关系管理)领域有着广阔的应用前景,主要包括以下几个方面: 1. 个性化营销内容创作:根据客户的个人信息、购买历史、偏好等数据,生成高度个性化且富有创意的营销文案、视觉内容等,提高营销效率和转化率。 2. 客户服务对话系统:基于 AIGC 的对话模型,开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。 3. 产品推荐引擎:借助 AIGC 生成丰富的产品描述、视觉展示等内容,结合推荐算法,为客户推荐更贴合需求的产品,提升销售业绩。 4. CRM 数据分析报告生成:自动生成期望的数据分析报告内容,包括文字、图表、视频演示等形式,加快分析报告的生产流程。 5. 智能翻译和本地化:提供高质量的多语种翻译及本地化服务,帮助企业打造精准的全球化营销内容。 6. 虚拟数字人和营销视频内容生成:快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。 7. 客户反馈分析:高效分析海量的客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。 AIGC、UGC(普通用户生产)和 PGC(专业用户生产)都是内容生成的不同方式,主要区别在于内容的创作者和生成方式: 1. AIGC:由人工智能生成的内容。AI 通过学习大量的数据,能够自动生成文本、图像、视频等内容。优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。 2. UGC:由用户生成的内容。用户通过社交媒体、博客、论坛等平台发布自己的内容,如文章、评论、照片、视频等。优势在于内容丰富多样,能够反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。 3. PGC:由专业人士或机构生成的内容。专业团队或机构根据特定的标准和流程创作高质量的内容,如新闻报道、影视作品、专业文章等。优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 能进行 AIGC 的产品项目也很多,能进行 AIGC 的媒介也很多包括且不限于: 1. 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 2. 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 3. 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。 SD 是 Stable Diffusion 的简称。它是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像。Stable Diffusion 是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。SD 的代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。我们可以通过一系列的工具搭建准备,使用 SD 进行想要的图片 AIGC(心想事成的魔法施与)。 不过在 AIGC 的应用过程中,仍需解决算法偏差、版权和知识产权等伦理法律问题。
2024-12-25
AIGC的技术原理
AIGC(Artificial Intelligence Generated Content,人工智能生成内容)的技术原理如下: 生成式人工智能(GenAI):基于深度学习技术和机器学习算法,从已有数据中学习并生成新的数据或内容。通过大规模数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。典型的 GenAI 包括 OpenAI 推出的语言模型 ChatGPT、GPT4、图像模型 DALLE 以及百度推出的文心一言、阿里云推出的通义千问等。 机器学习:让机器自动从资料中找到公式。 深度学习:一种更厉害的手段,类神经网络,具有非常大量参数的函数。 大语言模型:是一类具有大量参数的“深度学习”模型。 AIGC 工具通常以自然语言处理为基础,分析大型文本数据集,并学习如何生成风格和语气相似的新内容,从而能够生成包括文本、图像、音频、视频和三维模型等多种形式的内容。
2024-12-24
如何利用 AIGC 技术实现游戏产业的生产力革命,请结合相关技术的原理和框架图进行阐述
利用 AIGC 技术实现游戏产业的生产力革命主要体现在以下几个方面: 1. 降低开发成本:AIGC 技术能够极大程度地减少游戏开发过程中的人力、物力和时间投入。 2. 缩减制作周期:加快游戏的制作速度,使游戏能够更快地面向市场。 3. 提升游戏质量:例如生成新的高质量游戏内容,如地图、角色和场景,改进游戏的图像和声音效果等。 4. 带来新的交互体验:为玩家提供更加丰富和独特的游戏体验。 游戏人工智能技术的未来发展方向还包括: 1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所,但将游戏中的技术推广到现实世界应用仍面临诸多挑战,需要进一步研究和发展。 2. 为通用人工智能的孵化给予帮助:经多个复杂游戏训练后的“玩游戏”的人工智能体,将为通用人工智能的发展提供支持。 随着游戏中生成式人工智能革命的进展,它将彻底重塑用户生成内容(UGC),创造一个任何人都可以构建游戏的世界,并将游戏市场扩大到超出许多人的想象。在未来几年,深厚的技术知识或艺术掌握将不再是开发游戏所需的基本技能,创作者只会受到他们的精力、创造力和想象力的限制。生成式人工智能将通过使游戏创作民主化来改变和颠覆 UGC 游戏领域,让数百万人能够制作他们的第一款游戏,新一代游戏开发者将释放出一波游戏设计创造力浪潮,从而永远改变游戏行业。
2024-12-24
AIGC是什么?
AIGC 即 AI generated content,又称为生成式 AI,意为人工智能生成内容。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,在内容创作、广告、媒体等领域有着广泛的应用。 其应用包括但不限于以下方面: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目也很多,能进行 AIGC 的媒介也很多,包括且不限于: 1. 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 2. 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 3. 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。 AIGC 强调的是 GC 部分,也就是 decoder 部分。常见的生成算法包括 VAE、GAN、Flow Model 和 Diffusion Model,同时还有 IS(Inception Score)和 FID(Frechet Inception Distance)两种生成图片常见评价指标。
2024-12-24
AIGC提示词工程师怎么考
成为 AIGC 提示词工程师通常需要具备以下条件: 1. 学历要求:本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 工具熟悉度:熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验;熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 3. 项目经验:负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 4. 技术理解:了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 5. 数据分析能力:对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 6. 创新思维:具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 7. 行业关注:对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 8. 编程能力:具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成;具有一定的编程基础,熟练使用 Python、Git 等工具。 在面试过程中,以下方面是加分项: 1. 需求拆解能力/产品需求嗅觉:考验需求拆解、控制 AI 稳定输出理想结果的能力。 2. 懂技术:Prompt 设计离不开有 AIGC 开发经验,懂开发和底层原理才能写出更好的 Prompt。 3. 有参与做过 AIGC 产品应用:例如用 Langchain 等框架去写,解决应用场景及其中的技术细节,包括商业化变现、解决 OpenAI 请求需要科学上网的问题、负载均衡/APIKey 管理等。 4. 想法在用户需求认知前面:面试官给出行业场景(例如美妆),在无提示情况下,能畅享 AI 在该行业上赋能的功能场景,能联想到 To B 或 B2B2C 的场景是加分项。因为用户往往无法感知到 AI 能带来的帮助,需要面试者去了解用户工作流,有种“创造需求”的感觉。 公司在筛选几百份简历后,最终选择的 AIGC 提示词工程师和 AI 训练师,通常是像爱折腾的 00 后,有技术开发背景,对 Prompt 有独特深刻见解的人员。
2024-12-22
卷积神经网络模型原理
卷积神经网络(CNN)通常由卷积层、池化层和全连接层叠加构成。在卷积过程中,卷积层中的卷积核依次与输入图像的像素做卷积运算来自动提取图像中的特征。卷积核尺寸一般小于图像,并以一定的步长在图像上移动得到特征图。步长设置越大,特征图尺寸越小,但过大步长会损失部分图像特征。此外,池化层作用于产生的特征图上,能保证 CNN 模型在不同形式的图像中识别出相同物体,同时减少模型对图像的内存需求,其最大特点是为 CNN 模型引入了空间不变性。
2024-12-19
神经网络
神经网络是机器学习文献中的一类模型,受到生物神经网络的启发,是一种特定的算法,能应用于从输入到输出空间复杂映射的各类机器学习问题。 神经网络的发展历程如下: 早期,康奈尔航天实验室的 Mark I 感知机是第一台感知机的硬件,罗森布拉特用定制硬件的方法实现了感知机的想法,展示出它可对简单形状进行正确分类,自此机器学习问世。 神经网络本质上是多层感知机,在早期只有一层输出层。例如分辨手写数字时,输入是图像像素,有 10 个输出神经元,分别对应 10 个可能的数字,权值最高的和被视为正确输出。 神经网络的架构主要分为三类: 前馈神经网络:这是实际应用中最常见的类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数。 循环网络:在连接图中有定向循环,可按箭头回到起始点。其动态复杂,训练难度大,但更具生物真实性。 Geoffrey Hinton 对神经网络的发展做出了重要贡献。早在 80 年代初期,他和同事开展研究时,因电脑性能限制成果有限,且当时 AI 主流研究方向不同,处境艰难。但他们坚持下来,到 2004 年创立了 Neural Computation and Adaptive Perception 项目。随着时间推移和计算机能力发展,神经网络更加快速、灵活、高效和可扩展。 神经网络可用于解决分类和回归等问题,在多个输出值的函数或具有多个类别的分类任务中,多输出函数能用位于同一层的多个感知机来学习。
2024-11-01
神经网络和深度学习简史
神经网络和深度学习有着丰富的发展历史: 1. 1958 年感知机神经网络诞生。 2. 70 年代经历了人工智能寒冬。 3. 1986 年 BP 算法让神经网络再度流行。 4. 尽管取得了一些成功,但在人工智能寒冬期间,用于神经网络研究的资金很少,人工智能一词近乎成为伪科学的代名词。 5. 1997 年,Hochreiter 和 Schmidhuber 为递归神经网络开发了长短期记忆(LSTM),但在当时被忽视。 6. 随着计算机变得更快和图形处理单元(GPU)的引入,神经网络逐渐与支持向量机相竞争。 7. 训练大型、深层网络存在梯度消失问题,解决方法包括逐层预训练,如 Schmidhuber 于 1992 年为递归神经网络开发的预训练方法,以及 Hinton 和 Salakhutdinov 于 2006 年为前馈网络开发的预训练方法。1997 年提出的长短期记忆(LSTM)也是解决递归神经网络中梯度消失问题的方案之一。
2024-10-23
神经网络的简单理解
神经网络是一种模仿生物神经网络结构和功能的数学模型或计算模型,用于分析图像、视频、音频和文本等复杂数据类型。 对于不同类型的数据有专门优化的神经网络,如分析图像时常用卷积神经网络,其模仿人脑处理视觉信息的方式。 在 2017 年推出 Transformer 之前,理解文本常用循环神经网络。而 Transformer 完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性,在处理每个词时会注意输入序列里所有其他的词,并给予不同的注意力权重以捕获依赖关系和相关性,且具有自注意力机制和位置编码(因语言顺序很重要)。 神经网络由大量人工神经元联结进行计算,大多数情况下能在外界信息基础上改变内部结构,是一种自适应系统,具备学习功能。它是一种非线性统计性数据建模工具,通常通过基于数学统计学类型的学习方法得以优化,也是数学统计学方法的实际应用,能通过统计学方法让人 工神经网络具有类似人的简单决定和判断能力,这种方法比正式的逻辑学推理演算更具优势。 神经网络可用于监督学习、无监督学习、强化学习。
2024-09-06
卷积神经网络
卷积神经网络,也称为卷积网络,使用卷积层来过滤输入以获取有用信息。卷积层具有可学习的参数,能自动调整滤波器以提取对应任务的最有用特征。例如在一般目标识别中侧重对象形状信息,鸟类识别中更倾向于鸟的颜色信息,它会自动适配以找到最佳特征。 通常,多个卷积层依次作用,在每一层后对图像进行过滤,获取越来越多的抽象信息,形成层次特征。 卷积网络还常使用池层,以实现有限的平移和旋转不变性,即便对象出现在异常位置也能检测到,同时能减少内存消耗,从而支持使用更多卷积层。 近期的卷积网络采用初始模块,利用 1×1 卷积核进一步降低内存消耗并加快计算速度,提高训练效率。 例如在自动驾驶汽车场景中,可将驾驶员当前视野的图像输入到卷积神经网络,训练其预测下一个可能行动的奖励。相似状态的图像相似,行动也相似,网络能针对不同情况进行微调。 相关附加材料: 。 图 5 展示了一个交通标志的图像被 4 个 5×5 的卷积核过滤,生成 4 个特征图,再通过最大池化进行二次采样。下一层将 10 个 5×5 的卷积核应用于这些子采样图像,并再次将特征映射集中在一起。最后一层是完全连接的层,用于组合所有生成的特征并用于分类器(本质上是逻辑回归)。图像由提供。
2024-07-20
帮我写一个R语言的神经网络分类问题代码
好的,下面是一个使用R语言进行神经网络分类问题的示例代码。我们将使用著名的鸢尾花数据集(Iris dataset)进行演示。这个数据集包含了150条记录,每条记录有4个特征和一个目标变量(花的种类)。 安装并加载所需的包 首先,我们需要安装并加载所需的包,如`neuralnet`和`nnet`。 ```r install.packages install.packages library library ``` 加载和准备数据 接下来,我们将加载Iris数据集,并将数据标准化,以便神经网络能够更好地处理。 ```r 加载内置的Iris数据集 data 查看数据集的结构 str 标准化函数 normalize < function { return } 对特征进行标准化 iris_norm < as.data.frame iris_norm$Species < iris$Species 将目标变量转换为因子类型 iris_norm$Species < as.factor 将数据集分为训练集和测试集 set.seed index < sample train_data < iris_norm test_data < iris_norm ``` 创建和训练神经网络模型 我们将使用`neuralnet`包创建一个简单的神经网络模型,并进行训练。 ```r 创建公式 formula < as.formula 训练神经网络模型 nn_model < neuralnet 查看模型结果 print ``` 可视化神经网络 我们可以使用内置的绘图功能来可视化神经网络。 ```r 绘制神经网络 plot ``` 进行预测并评估模型 使用测试数据进行预测,并评估模型的性能。 ```r 进行预测 nn_predictions < compute 将预测结果转换为因子类型 nn_predicted < as.factor(ifelse(nn_predictions$net.result > 0.5, "versicolor", ifelse 查看混淆矩阵 confusion_matrix < table print 计算准确率 accuracy < sum print ``` 完整代码 下面是完整的代码段,整合了上述各个步骤: ```r install.packages install.packages library library 加载内置的Iris数据集 data 查看数据集的结构 str 标准化函数 normalize < function { return } 对特征进行标准化 iris_norm < as.data.frame iris_norm$Species < iris$Species 将目标变量转换为因子类型 iris_norm$Species < as.factor 将数据集分为训练集和测试集 set.seed index < sample train_data < iris_norm test_data < iris_norm 创建公式 formula < as.formula 训练神经网络模型 nn_model < neuralnet 查看模型结果 print 绘制神经网络 plot 进行预测 nn_predictions < compute 将预测结果转换为因子类型 nn_predicted < as.factor(ifelse(nn_predictions$net.result > 0.5, "versicolor", ifelse 查看混淆矩阵 confusion_matrix < table print 计算准确率 accuracy < sum print ``` 以上代码演示了如何使用R语言中的`neuralnet`包创建和训练一个简单的神经网络模型,并使用该模型对鸢尾花数据集进行分类预测。通过标准化数据、分割数据集、训练模型、进行预测和评估模型,你可以全面了解如何在R中使用神经网络进行分类任务。
2024-06-03
ChatGPT的底层原理是什么
ChatGPT 的底层原理主要包括以下几个方面: 1. 数据获取与训练:从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本。 2. 神经网络结构:由非常简单的元素组成,尽管数量庞大。基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”(没有任何循环等)。 3. 生成文本方式:通过自回归生成,即把自己生成的下一个词和之前的上文组合成新的上文,再生成下一个词,不断重复生成任意长的下文。 4. 训练目的:不是记忆,而是学习以单字接龙的方式训练模型,学习提问和回答的通用规律,实现泛化,以便在遇到没记忆过的提问时,能利用所学规律生成用户想要的回答。 5. 与搜索引擎的区别:搜索引擎无法给出没被数据库记忆的信息,而ChatGPT作为生成模型,可以创造不存在的文本。 其结果表明人类语言(以及背后的思维模式)的结构比我们想象的要简单和更具有“法律属性”,ChatGPT已经隐含地发现了它。同时,当人类生成语言时,许多方面的工作与ChatGPT似乎相当相似。此外,GPT的核心是单字接龙,在翻译等场合应用时,先直译再改写能使Transform机制更好地起作用。
2024-12-03
ai的底层逻辑是什么
AI 的底层逻辑包括以下几个方面: 1. 决策方面:AI 在越来越多的场景落地,成为企业管理和决策的重要工具。然而,AI 的决策过程并非真正的“理解”,而是基于复杂计算和模式匹配,其本质存在局限性,是个“黑盒”,输出结果可见但决策过程难以理解,这种不透明性给企业决策带来风险。 2. 大模型方面:大模型依靠概率计算逐字接龙工作,参数规模的增加使其实现量变到质变的突破,从而“涌现”出智能。大模型的知识是通过预训练预先学习和存储的,但在没有外部帮助时,其知识信息可能不完备和滞后。 3. 神经网络方面:计算机科学家以人脑神经元细胞结构为灵感,利用概览模型在计算机上实现对人脑结构的模仿,但大模型内部如同人类大脑一样是混沌系统,即使是开发者也无法解释其微观细节。
2024-11-13
ai的底层逻辑
AI 的底层逻辑主要涉及以下几个方面: 1. 大模型的底层原理: 大语言模型依靠概率计算逐字接龙的方式工作,平时看到的逐字输出并非特效,而是其真实的工作方式。 大模型参数规模的增加,如从 GPT1 的 1.5 亿到 GPT3.5 的 1750 亿,实现了量变到质变的突破,从而“涌现”出智能。这种“涌现”结构在人类的进化和个体学习成长中也存在。 预训练是大模型获取知识的方式,其需要大量时间和算力资源。在没有外部帮助的情况下,大模型的知识信息可能不完备且滞后。 GPT 是生成式预训练转换器模型(Generative Pretrained Transformer),生成式指大模型根据已有输入不断计算生成下一个字词,直至计算出概率最大时结束输出。 2. 必须理解的核心概念: LLM 是 Large language model 的缩写,即大语言模型。 Prompt 是提示词,即输入给大模型的文本内容,其质量会显著影响回答质量。 Token 是大模型语言体系中的最小单元,不同厂商对中文的切分方法不同,通常 1Token≈12 个汉字,大模型的收费和输入输出长度限制以 token 为单位。 上下文指对话聊天内容的前后信息,其长度和窗口会影响大模型回答质量。
2024-11-06
如果想学习ai,作为ai产品经理,需要ai底层的算法掌握到什么程度
作为 AI 产品经理,对 AI 底层算法的掌握程度需要达到以下几个方面: 1. 理解产品核心技术:了解基本的机器学习算法原理,以便做出更合理的产品决策。 2. 与技术团队有效沟通:掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性:在产品规划阶段,能够准确判断某些功能的技术可行性。 4. 把握产品发展方向:了解算法前沿,更好地把握产品未来的发展趋势。 5. 提升产品竞争力:发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力:掌握相关算法知识,提升数据分析能力。 同时,如果希望在 AI 领域继续精进,还需要了解以下基础内容: AI 背景知识: 基础理论:清楚人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 评估和调优: 性能评估:知道如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学会使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等的基本结构。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-05
AI搜索的底层逻辑是怎样的
AI 搜索的底层逻辑主要是“检索增强生成(RAG)”,具体包括以下步骤: 1. 检索(Retrieve):使用用户的查询(query)调用搜索引擎 API,获取搜索结果。 2. 增强(Augmented):设置提示词,将检索结果作为挂载的上下文。 3. 生成(Generation):大模型回答问题,并标注引用来源。 在检索过程中,还涉及以下原理: 1. 信息筛选与确认:对检索器提供的信息进行评估,筛选出最相关和最可信的内容,并验证信息的来源、时效性和相关性。 2. 消除冗余:识别和去除多个文档或数据源中的重复信息,避免在生成回答时出现重复或矛盾。 3. 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建结构化的知识框架。 4. 上下文构建:将筛选和结构化的信息组织成连贯的上下文环境,包括排序、归类和整合。 5. 语义融合:必要时合并意义相近但表达不同的信息片段,减少语义重复并增强表达力。 6. 预备生成阶段:将整合好的上下文信息编码成适合生成器处理的格式,如转化为适合输入到生成模型的向量形式。 最后,全新的上下文被传递给大语言模型,大语言模型根据提供的信息生成准确和连贯的答案。影响 AI 搜索的关键因素包括挂载的上下文信息密度和基座模型的智能程度。在响应速度方面,Retrieve 要求联网检索信息的速度快,Generation 要求大模型生成内容的速度快,同时为提高准确度可能存在耗时的重排和获取内容详情步骤。
2024-10-16
模型训练的底层原理
模型训练的底层原理如下: 对于多模态模型,以生图片环节的扩散模型(如 StableDiffusion)为例,其训练过程是先对海量带有标注文字描述的图片逐渐加满噪点,模型学习并沉淀每一步图片向量值和文字向量值的数据分布演变规律。后续输入文字后,模型根据文字转化的向量指导充满噪点的图片减噪点以生成最终图片。 大语言模型在接收到请求时,会将自然语言转化为机器可理解的向量格式。其训练过程类似于通过已知的几组值计算方程式中的参数,大语言模型的参数可能多达 1750 亿个。 大型语言模型(LLMs)的参数获取是关键,训练是一个计算量极大的过程,如 Llama2 70B 模型的训练涉及约 10TB 的互联网文本抓取,需要大量互联网资源和约 6000 个 GPU 运行约 12 天,花费约 200 万美元,将文本压缩成参数文件,这是一种有损压缩,得到的是训练文本的一种格式塔。
2024-10-15
请描述具身智能的技术原理
具身智能是人工智能领域的一个子领域,其原理包括以下几个方面: 1. 强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。智能体的“身体”或“形态”很重要,它可以是物理形态如机器人的机械结构,也可以是虚拟形态如模拟环境中的虚拟角色。这些身体为智能体提供了与环境互动的手段,并影响其学习和发展。 2. 涉及多个学科,如机器人学、认知科学、神经科学和计算机视觉等。在机器人学中关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中致力于开发使智能体能够理解和解释视觉信息的算法。 3. 以“具身+智能”的范式,将机器学习算法适配至物理实体,与物理世界交互。例如将大模型嵌入到物理实体上,通过机器配备的传感器与人类交流。 4. 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 5. 行动分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。 6. 在追求人工通用智能(AGI)的过程中,具身 Agent 强调将智能系统与物理世界紧密结合,能够主动感知和理解所在环境并互动,产生具身行动。 具身智能在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面有重要应用,也在虚拟现实、增强现实和游戏设计等领域广泛应用。但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂环境中有效学习、处理智能体与人类社会的伦理和安全问题等。
2024-12-25
ai原理
AI 的原理包括以下几个方面: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑的方法,具有神经网络和神经元,因层数多被称为深度,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,无需依赖循环神经网络(RNN)或卷积神经网络(CNN),Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-19
deepfake的技术原理是什么?
深度伪造技术(deepfakes)是一种利用 AI 程序和深度学习算法实现音视频模拟和伪造的技术。其原理在于投入深度学习的内容库越大,合成的视音频真实性越高,甚至可以达到以假乱真的程度。例如,粉丝们会通过 Stems 音轨分离工具将人声与原始歌曲分离,再使用人声转换模型将人声转换成另一位明星的风格,然后将新的人声轨道与原始作品重新拼接在一起。DiffSVC 就是一种特别流行的用于此目的的语音传输模型。 目前,深度赝品的创建需要大量的计算技能,但现在几乎任何人都可以创建它们。生成式人工智能系统迅速导致了许多法律和道德问题,比如由人工智能创建的图像和视频声称是真实的,但实际上并非如此,已经出现在媒体、娱乐和政治领域。
2024-12-14