Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

神经网络和深度学习简史

Answer

神经网络和深度学习有着丰富的发展历史:

  1. 1958 年感知机神经网络诞生。
  2. 70 年代经历了人工智能寒冬。
  3. 1986 年 BP 算法让神经网络再度流行。
  4. 尽管取得了一些成功,但在人工智能寒冬期间,用于神经网络研究的资金很少,人工智能一词近乎成为伪科学的代名词。
  5. 1997 年,Hochreiter 和 Schmidhuber 为递归神经网络开发了长短期记忆(LSTM),但在当时被忽视。
  6. 随着计算机变得更快和图形处理单元(GPU)的引入,神经网络逐渐与支持向量机相竞争。
  7. 训练大型、深层网络存在梯度消失问题,解决方法包括逐层预训练,如 Schmidhuber 于 1992 年为递归神经网络开发的预训练方法,以及 Hinton 和 Salakhutdinov 于 2006 年为前馈网络开发的预训练方法。1997 年提出的长短期记忆(LSTM)也是解决递归神经网络中梯度消失问题的方案之一。
Content generated by AI large model, please carefully verify (powered by aily)

References

深度|神经网络和深度学习简史(第一部分):从感知机到BP算法

整个研究领域的成熟方法已经迅速被新发现超越,这句话听起来有些夸大其词,就像是说它被「海啸」袭击了一样。但是,这种灾难性的形容的确可以用来描述深度学习在过去几年中的异军突起——显著改善人们对解决人工智能最难问题方法的驾驭能力,吸引工业巨人(比如谷歌等)的大量投资,研究论文的指数式增长(以及机器学习的研究生生源上升)。在听了数节机器学习课堂,甚至在本科研究中使用它以后,我不禁好奇:这个新的「深度学习」会不会是一个幻想,抑或上世纪80年代已经研发出来的「人工智能神经网络」扩大版?让我告诉你,说来话长——这不仅仅是一个有关神经网络的故事,也不仅仅是一个有关一系列研究突破的故事,这些突破让深度学习变得比「大型神经网络」更加有趣,而是一个有关几位不放弃的研究员如何熬过黑暗数十年,直至拯救神经网络,实现深度学习梦想的故事。

深度|神经网络和深度学习简史(第一部分):从感知机到BP算法

[title]深度|神经网络和深度学习简史(第一部分):从感知机到BP算法[heading1]人工智能冬天的复苏文章特别谈到了Minsky在《感知机》中讨论过的问题。尽管这是过去学者的构想,但是,正是这个1986年提出的构想让人们广泛理解了应该如何训练多层神经网络解决复杂学习问题。而且神经网络也因此回来了!第二部分,我们将会看到几年后,《Learning internal representations by error propagation》探讨过的BP算法和其他一些技巧如何被用来解决一个非常重要的问题:让计算机识别人类书写。(待续)参考文献Christopher D.Manning.(2015).Computational Linguistics and Deep Learning Computational Linguistics,41(4),701–707.↩F.Rosenblatt.The perceptron,a perceiving and recognizing automaton Project Para.Cornell Aeronautical Laboratory,1957.↩W.S.McCulloch and W.Pitts.A logical calculus of the ideas immanent in nervous activity.The bulletin of mathematical biophysics,5(4):115–133,1943.↩The organization of behavior:A neuropsychological theory.D.O.Hebb.John Wiley And Sons,Inc.,New York,1949 ↩B.Widrow et al.Adaptive ”Adaline” neuron using chemical ”memistors”.Number Technical Report 1553-2.Stanford Electron.Labs.,Stanford,CA,October 1960.↩“New Navy Device Learns By Doing”,New York Times,July 8,1958.↩Perceptrons.An Introduction to Computational Geometry.MARVIN MINSKY and SEYMOUR PAPERT.M.I.T.Press,Cambridge,Mass.,1969.↩Linnainmaa,S.(1970).The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.Master’s thesis,Univ.Helsinki.↩

深度学习(2)历史和训练

[title]深度学习(2)历史和训练[heading1]历史[heading2]深度学习的简史尽管取得了这些成功,但用于神经网络研究的资金仍然很少。[在人工智能寒冬](https://developer.nvidia.com/blog/deep-learning-nutshell-history-training/#ai-winter)期间,人工智能一词近乎成为伪科学的代名词,该领域仍需一段时间才能恢复。这一时期取得了一些重要的进展,例如,Hochreiter和Schmidhuber在1997年为递归神经网络开发的长短期记忆(LSTM),但是这些进展在Cortes和Vapnik于1995年开发的支持向量机(VCM)面前相形见绌,因此大多数被人们所忽视。下一个重大转变的契机出现在静待计算机变得更快,和接下来引入的图形处理单元(GPU)。仅等待更快的计算机和GPU就可以在10年内将计算速度提高1000倍。在这期间,神经网络逐渐开始与支持向量机相竞争。与支持向量机相比,神经网络可能会慢一些,但是在相同数量的数据下可以获得更好的结果。与简单算法不同,神经网络在有更多训练数据时会持续改进。此时的主要障碍是训练大型、深层的网络,这些网络因遭受梯度消失问题,无法学习早期层的特征,因为没有学习信号到达这些层。解决这个问题的第一个方法是逐层预训练,即通过使用无监督学习以逐层方式构建模型,以便早期层中的特征已经用一些合适的特征进行初始化或“预训练”(权重)。早期层中的预训练特征只需要在监督学习期间略微调整即可获得良好的结果。第一个预训练方法是由Schmidhuber于1992年为递归神经网络开发的,另一个预训练方法是由Hinton和Salakhutdinov于2006年为前馈网络开发的。另一个解决递归神经网络中梯度消失问题的解决方案是于1997年提出的长短期记忆(LSTM)。

Others are asking
什么是深度神经网络
深度神经网络是机器学习文献中的一类模型,受到生物神经网络的启发。一般来说,深度神经网络可分为以下几类: 1. 前馈神经网络:这是实际应用中最常见的类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数。 2. 循环网络:在其连接图中有定向循环,可能具有复杂动态,训练较难,但更具生物真实性。 深度神经网络具有以下特点和应用: 1. 可以计算一系列改变样本相似性的变换,几乎能应用于任何从输入到输出空间复杂映射的机器学习问题。 2. 能够用于模拟大脑工作方式、了解并行计算风格以及解决实际问题。 在其发展过程中,如感知机的出现推动了机器学习的问世,展示了其对简单形状分类的学习能力。神经网络本质上是多层感知机,早期只有输出层,而典型应用如分辨手写数字。 同时,在深度神经网络的研究中,还涉及到如深度玻尔兹曼机、受限玻尔兹曼机、深度信念网络等相关内容。但使用反向传播等方法存在需要有标签的训练数据、学习时间不理想、可能陷入局部最小等问题。
2025-02-03
如何学习对抗神经网络
以下是关于学习对抗神经网络的相关内容: 图像生成方面:Google 有一个 AI 入门课程,介绍扩散模型,课程地址为 https://www.cloudskillsboost.google/course_templates/541,相关视频学习可参考 https://youtu.be/J0AuVBxzui0 。扩散模型是 Google Cloud 上许多先进图像生成模型和工具的基础,课程会介绍其背后理论及在 Vertex AI 上的训练和部署。图像生成领域有多种方法,如变分自动编码器将图像编码为压缩形式再解码回原始大小;生成对抗模型(GAN)让两个神经网络相互对抗,一个生成图像,一个鉴别真伪;自回归模型将图像视为一系列像素来生成。 主要人工智能技术概览:生成对抗网络是一种深度学习模型,由生成器和判别器构成。生成器生成虚拟数据,判别器判断数据真假,二者不断训练竞争以提高生成器生成真实数据的能力,广泛应用于图像、声音、文本等领域。 进化史:生成对抗网络(GAN)是深度学习领域的重要里程碑,诞生于 2014 年,可帮助神经网络用更少数据学习,生成更多合成图像,用于识别和创建更好的神经网络。GAN 由两个神经网络玩猫捉老鼠的游戏,一个创造假图像,一个判断真假。它有助于创建图像和现实世界的软件模拟。
2025-01-26
神经网络相关书籍推荐
以下是为您推荐的神经网络相关书籍: 1. 《这就是 ChatGPT》:作者被称为“在世的最聪明的人”,研究神经网络几十年,创作了 Mathematica、Wolfram 等备受推崇的软件。该书的导读序是美团技术学院院长刘江老师回顾了整个 AI 技术发展的历史,对于了解 AI、大语言模型计算路线的发展,起到提纲挈领的作用。 2. 关于神经网络信念网络方面的研究文献: Gail A.Carpenter and Stephen Grossberg.1988.The ART of Adaptive Pattern Recognition by a SelfOrganizing Neural Network.Computer 21,3,7788. H.Bourlard and Y.Kamp.1988.Autoassociation by multilayer perceptrons and singular value decomposition.Biol.Cybern.59,45,291294. P.Baldi and K.Hornik.1989.Neural networks and principal component analysis:learning from examples without local minima.Neural Netw.2,1,5358. Hinton,G.E.&Zemel,R.S.,Autoencoders,Minimum Description Length and Helmholtz Free Energy.,in Jack D.Cowan;Gerald Tesauro&Joshua Alspector,ed.,‘NIPS’,Morgan Kaufmann,,pp.310. Ackley,D.H.,Hinton,G.E.,&Sejnowski,T.J.,147169. LeCun,Y.,Chopra,S.,Hadsell,R.,Ranzato,M.,&Huang,F..A tutorial on energybased learning.Predicting structured data,1,0. Neal,R.M.,71113. Hinton,G.E.,Dayan,P.,Frey,B.J.,&Neal,R.M.,11581161. 此外,您还可以参考“三本神经科学书籍”,原文地址:https://web.okjike.com/originalPost/64f2b8ff0c915376a20c5d61 作者:
2025-01-14
卷积神经网络模型原理
卷积神经网络(CNN)通常由卷积层、池化层和全连接层叠加构成。在卷积过程中,卷积层中的卷积核依次与输入图像的像素做卷积运算来自动提取图像中的特征。卷积核尺寸一般小于图像,并以一定的步长在图像上移动得到特征图。步长设置越大,特征图尺寸越小,但过大步长会损失部分图像特征。此外,池化层作用于产生的特征图上,能保证 CNN 模型在不同形式的图像中识别出相同物体,同时减少模型对图像的内存需求,其最大特点是为 CNN 模型引入了空间不变性。
2024-12-19
神经网络
神经网络是机器学习文献中的一类模型,受到生物神经网络的启发,是一种特定的算法,能应用于从输入到输出空间复杂映射的各类机器学习问题。 神经网络的发展历程如下: 早期,康奈尔航天实验室的 Mark I 感知机是第一台感知机的硬件,罗森布拉特用定制硬件的方法实现了感知机的想法,展示出它可对简单形状进行正确分类,自此机器学习问世。 神经网络本质上是多层感知机,在早期只有一层输出层。例如分辨手写数字时,输入是图像像素,有 10 个输出神经元,分别对应 10 个可能的数字,权值最高的和被视为正确输出。 神经网络的架构主要分为三类: 前馈神经网络:这是实际应用中最常见的类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数。 循环网络:在连接图中有定向循环,可按箭头回到起始点。其动态复杂,训练难度大,但更具生物真实性。 Geoffrey Hinton 对神经网络的发展做出了重要贡献。早在 80 年代初期,他和同事开展研究时,因电脑性能限制成果有限,且当时 AI 主流研究方向不同,处境艰难。但他们坚持下来,到 2004 年创立了 Neural Computation and Adaptive Perception 项目。随着时间推移和计算机能力发展,神经网络更加快速、灵活、高效和可扩展。 神经网络可用于解决分类和回归等问题,在多个输出值的函数或具有多个类别的分类任务中,多输出函数能用位于同一层的多个感知机来学习。
2024-11-01
AIGC的底层科学原理是神经网络吗?
AIGC 的底层科学原理包含神经网络。 神经网络是一种模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。它由大量的人工神经元联结进行计算,是一种自适应系统,具备学习功能。 在 AI 领域,神经网络是一种重要的技术。深度学习就是一种参照人脑结构,包含神经网络和神经元的方法(因层数较多而称为深度)。神经网络可以用于监督学习、无监督学习、强化学习等多种学习方式。 同时,Transformer 模型的出现也对 AIGC 产生了重要影响,它完全基于自注意力机制处理序列数据,比循环神经网络更适合处理文本的长距离依赖性。
2024-10-30
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并保持知识库准确成本高,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现卓越性能,过去十年中“人工智能”常被视为“神经网络”同义词。 以国际象棋计算机对弈程序为例,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,搜索策略在对局结束时效果好,开始时因搜索空间大需学习人类对局改进算法,后续采用基于案例的推理,现代能战胜人类棋手的程序基于神经网络和强化学习。 创建“会说话的程序”方法也在变化,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,使用神经网络转换语音、识别意图,未来有望出现完整基于神经网络的独立处理对话模型,如 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 最初查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机仍遵循相同理念。但有些任务如根据照片判断年龄无法明确编程,因不知大脑完成任务的具体步骤,这类任务是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md 。 您还可以思考如果人工智能得以实现,哪些任务可以交给计算机完成,比如金融、医学和艺术领域如今如何从人工智能中受益。
2025-01-06
描述下人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现的任务复杂且成本高,无法大规模拓展应用场景,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词,多数成功案例基于神经网络。 在创建国际象棋计算机对弈程序方面,早期如 Eliza 基于简单语法规则,将输入句子重述为问题;现代助手如 Cortana、Siri 或谷歌助手是混合系统,用神经网络转换语音并识别意图,再执行操作。未来有望出现完整基于神经网络的独立处理对话模型,如最近的 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 早期国际象棋对弈程序以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,搜索策略在对局结束时效果好,开始时因搜索空间大需改进,随后采用基于案例的推理,在知识库中找相似案例决定棋步。能战胜人类棋手的现代对弈程序基于神经网络和强化学习,通过与自己对弈从错误中学习,学习速度比人类快。
2024-08-22
AI领域,传统机器学习,nlp,深度学习,大语言模型,rag,agent,请生成一张让普通人能看懂的AI领域概念图
以下是为您生成的 AI 领域概念图的相关解释: 人工智能(AI):一种目标,让机器展现智慧。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容。 机器学习:一种手段,让机器自动从资料中找到公式,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失。 深度学习:一种更厉害的手段,参照人脑有神经网络和神经元(因为有很多层所以叫深度),神经网络可用于多种学习方式。 大语言模型(LLM):是一类具有大量参数的“深度学习”模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。它是美国 OpenAI 公司开发的一款基于大型语言模型(LLM)的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-02-11
DeepSeek深度推理+联网搜索 目前断档第一
DeepSeek 深度推理+联网搜索目前断档第一,具有以下特点和成就: 发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。 统一 Transformer 架构,使用同一个模型就能完成图片理解和生成。 提供 1B 和 7B 两种规模,适配多元应用场景。 全面开源,支持商用,MIT 协议,部署使用便捷。 Benchmark 表现优异,能力更全面。 模型(7B):https://huggingface.co/deepseekai/JanusPro7B 模型(1B):https://huggingface.co/deepseekai/JanusPro1B 官方解释:JanusPro 是一种新型的自回归框架,通过将视觉编码解耦为独立路径解决先前方法局限性,利用单一统一 Transformer 架构处理,缓解视觉编码器角色冲突,增强框架灵活性,超越之前统一模型,匹配或超过特定任务模型性能,成为下一代统一多模态模型有力候选者。 下载地址:https://github.com/deepseekai/Janus 官方频道: 微信公众号:DeepSeek 小红书:@DeepSeek(deepseek_ai) X DeepSeek R1 的成就: App Store 排名:冲到美国区 App Store 第一名,超越 OpenAI 的 ChatGPT。 口碑与技术实力:依靠技术实力和口碑赢得用户认可,没有市场部和市场投放。 技术特点: 性能与成本:效果比肩顶尖闭源模型 o1,价格仅为 o1 的 27 分之一。 开源与创新:开源让行业认知整体拉齐,得到全世界尊重和喜爱。 创新模型 R1 Zero:跳过监督微调训练,发现模型思考能力可自我涌现。 影响: 行业影响:引发美国科技界恐慌,Meta 内部对 DeepSeek V3 出色表现感到震惊。 市场影响:低成本和高性能使英伟达市场地位受挑战,股价短期内大跌超 3%,市值蒸发超 300 亿美元(27 日盘前又跌 14%)。 未来展望: 开源模型的进步将超越闭源模型,顶级模型推理价格急速下降,技术更加普惠平权。 AI 编程将随着模型能力提高显著提升效率并降低门槛,AI 创作能力不断提升,催生更多 AI 创作的可消费内容形式。
2025-02-08
我需要你给我生成一些提示词,我会给你我想的想法。《》以内的是想法。《我想写一篇影视解说的文案,写作的视角以我,第一人称的视角来写。想要风格偏幽默风趣一点,就像跟朋友在讲述一样,可以模仿鲁迅先生的手法。而且还想把影片的剧情内容写出来,从开篇到电影的结尾,如果有需要保留原片的地方,请把原片的画面场景以及时间段描述出来。要求这篇文案要附上我自己的内心独白,以此引人深思!请你深度思考后,在做答复!要求字数不少于5000字。》请问我该如何写提示词?请你整理好提示词后发给我
以下是为您生成的一些提示词,希望对您有所帮助: 影视解说文案提示词 1. 以第一人称幽默风趣的口吻,像与朋友讲述般,描绘影片从开篇到结尾的精彩剧情,融入自己的内心独白,模仿鲁迅先生的手法,展现独特的视角和深刻的思考。 2. 用轻松幽默的语言,以我的视角详述影片情节,穿插搞笑的评论和内心想法,借鉴鲁迅先生的讽刺技巧,使解说引人入胜。 3. 以亲切自然的叙述方式,如同与好友聊天,讲述影片故事,从开头至结束,结合鲁迅先生的文风,加入个人的情感起伏和独特见解。 DALL·E 相关提示词 1. 绘画:提及颜料种类、画布纹理和笔触形状/纹理(列表)。 2. 数字:注明使用的软件、阴影技术和多媒体方法(列表)。 3. 基于详细提示使用 DALL·E 3 生成图像,让创意鲜活起来,为提示的每个元素做出大胆有趣的选择。 4. 遵循提示指南,提出四个全新的简单概念,而非完整提示,从上次给出的建议中获取灵感。 请注意,默认方面比率为正方形(1:1),默认风格为摄影,包括相机设置、摄影类型和设备。同时,避免违反服务条款的词汇或概念,不侵犯版权,不使用暗示性或露骨的图像,强调符合 G 级评级的元素。
2025-02-06
那深度学习是监督学习、无监督学习还是强化学习呢?又或者他们四个是并列的?
深度学习是一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习和强化学习。监督学习是使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。无监督学习是学习没有标签的数据,算法自主发现规律,经典任务如聚类。强化学习是从反馈中学习,以最大化奖励或最小化损失,类似训小狗。所以深度学习与监督学习、无监督学习、强化学习不是并列关系,而是其应用的一种方式。
2025-01-21
机器学习的子领域包括: 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 无监督学习,如聚类、降维等算法。 强化学习,那深度学习是哪一种啊
深度学习是机器学习的一个子领域。 在机器学习中,深度学习是一种利用深度神经网络来学习数据特征和模式的方法。 深度学习的特点包括: 1. 具有复杂的网络结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 能够自动从大量数据中提取高级特征。 深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
2025-01-21
我是一个零基础的小白用户,可以给我制定一个周期为两个月的关于大模型知识的学习计划么
以下是为您制定的一个为期两个月的大模型知识学习计划: 第一个月: 第一周: 了解 AI 的基本概念,包括人工智能、机器学习、监督学习、无监督学习和强化学习等。 熟悉生成式 AI 生成的内容(AIGC)。 第二周: 深入学习大语言模型(LLM)的概念,区分其与其他生成式 AI 模型的不同。 研究 Transformer 模型,理解其基于自注意力机制处理序列数据的原理。 第三周: 学习不同类型的大模型架构,如 encoderonly、encoderdecoder 和 decoderonly 模型,并了解其应用场景。 了解大模型预训练数据的来源和规模。 第四周: 研究大模型的参数规模和其对性能的影响。 分析大模型在自然语言处理中的任务,如分类、情感分析、翻译和摘要等。 第二个月: 第一周: 比较不同大模型的特点和优势,如 GPT3 和 ChatGPT。 学习大模型在安全性方面的问题和挑战。 第二周: 探索大模型在实际应用中的案例,如文本生成、故事写作等。 了解大模型的发展趋势和未来方向。 第三周: 复习和巩固之前所学的大模型知识,查漏补缺。 尝试自己动手实践一些简单的大模型应用。 第四周: 总结所学的大模型知识,形成自己的理解和体系。 思考如何将大模型知识应用到实际工作或学习中。
2025-02-11
没有接触过AI的小白刚来到这个网站应该从哪里学习
对于刚接触 AI 的小白,您可以从以下几个方面开始学习: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 您还可以参考《雪梅 May 的 AI 学习日记》,这适合纯 AI 小白。其学习模式是输入→模仿→自发创造。学习内容方面,由于 AI 节奏快,很多材料可能不适用,您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。而且学习时间灵活,资源免费开源。另外,像元子语从 prompt 开始自己的 AI 之旅,通过参与活动和近距离观察,发现 AI 的门槛并非高不可攀。
2025-02-11
deepseek相关的学习文档
以下是关于 DeepSeek 的学习文档: 2025 年 2 月 6 日的智能纪要中,分享了 DP 模型的使用,包括其功能(能进行自然语言理解与分析、编程、绘图等)、使用优势(能用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容)、存在问题(思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本)、审核方法(可用其他大模型来解读其给出的内容)、使用建议(使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知)、使用场景(包括阅读、育儿、写作、随意交流等方面),还展示了案例,如与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互。此外,还涉及音系学研究和与大模型互动的分享,如通过对比不同模型的回答来深入理解音系学,与大模型进行多轮对话来取队名。 全新 AI 整活第六期|DeepSeek 小说家的相关资料: 宝玉日报 2 月 6 日中提到 Dario Amodei 认为 DeepSeek 进入前沿 AI 竞赛,但美国应保持领先优势,还提到 OpenAI 向所有免费用户开放 AI 搜索,Andrej Karpathy 发布 3 小时 31 分钟 LLM 深度讲解视频。
2025-02-11
请帮我找AI拆书相关的学习文档
以下为您推荐与 AI 拆书相关的学习资料: 1. 【包教包会】一条视频速通 AI 大模型原理_哔哩哔哩_bilibili 链接:https://www.bilibili.com/video/BV17t4218761/?vd_source=3cc4af77a2ef185635e8097d3326c893 介绍:由(女神)主讲,和某知识 up 主 Genji 一起制作的免费公益课。干货满满,新手友好,带你 50 分钟速通 AI 大模型原理。 2. 用大模型保存你的全部人生,你会接受吗:专访安克创新 CEO 阳萌|大咖谈芯第 11 期_哔哩哔哩_bilibili 链接:https://www.bilibili.com/video/BV1iT421Q7M1 介绍:某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频,一共两期,此链接为第二期。两期内容都值得观看,访谈非常硬核。
2025-02-11
我该如何系统学习ai
以下是系统学习 AI 的一些建议: 1. 从编程语言入手学习:可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习筑牢根基。 2. 尝试使用 AI 工具和平台:例如 ChatGPT、Midjourney 等生成工具,体验其应用场景。也可以探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程,掌握主要技术如机器学习、深度学习等,同时学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,锻炼动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,要从编程基础、工具体验、知识学习、实践项目等多方面着手,全面系统地学习 AI 知识和技能。 另外,《雪梅 May 的 AI 学习日记》中提到,学习 AI 要注重系统性,避免碎片化输入,比如可以通过看书听课进社区的方式。初期可以系统地看书听课,了解 AI 的底层原理和发展历程。同时,加入像“通往 AGI 之路”这样的开源社区,按照新手指引入门,能帮助您少走弯路,更高效地学习。
2025-02-11
系统学习ai
以下是关于系统学习 AI 的建议: 对于中学生: 1. 从编程语言入手:可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习筑牢根基。 2. 尝试使用 AI 工具和平台:体验如 ChatGPT、Midjourney 等生成工具,探索面向中学生的教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程,掌握主要技术如机器学习、深度学习等,学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试运用 AI 技术解决实际问题,锻炼动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,思考 AI 技术对未来社会的影响,培养思考和判断能力。 对于一般学习者: 1. 系统性学习:避免碎片化输入,通过系统地看书、听课来打好基础,了解 AI 的底层原理和发展历程。 2. 加入相关社区:如“通往 AGI 之路”开源知识库,参考新手指引和学习路径课程,避免弯路,直接获取有用信息。 此外,鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习更快地获取知识,并可能成为下一代专家(人类或 AI)的教师。
2025-02-11