直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

神经网络的简单理解

回答

神经网络是一种模仿生物神经网络结构和功能的数学模型或计算模型,用于分析图像、视频、音频和文本等复杂数据类型。

对于不同类型的数据有专门优化的神经网络,如分析图像时常用卷积神经网络,其模仿人脑处理视觉信息的方式。

在 2017 年推出 Transformer 之前,理解文本常用循环神经网络。而 Transformer 完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性,在处理每个词时会注意输入序列里所有其他的词,并给予不同的注意力权重以捕获依赖关系和相关性,且具有自注意力机制和位置编码(因语言顺序很重要)。

神经网络由大量人工神经元联结进行计算,大多数情况下能在外界信息基础上改变内部结构,是一种自适应系统,具备学习功能。它是一种非线性统计性数据建模工具,通常通过基于数学统计学类型的学习方法得以优化,也是数学统计学方法的实际应用,能通过统计学方法让人 工神经网络具有类似人的简单决定和判断能力,这种方法比正式的逻辑学推理演算更具优势。

神经网络可用于监督学习、无监督学习、强化学习。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

解析 Transformer 模型:理解 GPT-3、BERT 和 T5 背后的模型

如果你想在机器学习,特别是自然语言处理方面与时俱进,你至少要对Transformer有一点了解。所以在这篇文章中,我们将讨论它们是什么,它们是如何工作的以及为什么它们如此有影响力。Transformer是一种神经网络结构。简单地说,神经网络是分析图像、视频、音频和文本等复杂数据类型的一种非常有效的模型。针对不同类型的数据有专门优化过的的神经网络。例如,在分析图像时,我们通常会使用卷积神经网络。大体来说,它们模仿了人脑处理视觉信息的方式。卷积神经网络,图片来自Renanar2,wikiccommons大约从2012年开始,我们已经用CNN相当成功地解决了视觉问题,比如识别照片中的物体,识别人脸,手写数字识别。但在很长一段时间里,语言任务(翻译、文本摘要、文本生成、命名实体识别等)都没有较好的方法。这很不幸,因为语言是我们人类交流的主要方式。在2017年推出Transformer之前,我们使用深度学习来理解文本的方法是使用一种称为循环神经网络(RNN)的模型,它看起来像这样:循环神经网络,图片来自fdeloche,Wikimedia

AIGC常见名词解释(字典篇)

[title]AIGC常见名词解释(字典篇)[heading1] 神经网络是什么?[content]人工神经网络(英语:Artificial Neural Network,ANN),简称神经网络(Neural Network,NN)或类神经网络,在机器学习和认知科学领域,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统,通俗地讲就是具备学习功能。现代神经网络是一种非线性统计性数据建模工具,神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method)得以优化,所以也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。参考

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。LTSM(长短期记忆网络)是RNN的改良版本——但也没有解决传统RNN无法并行计算的问题。这时Transformer踏着七彩祥云出现了,在处理每个词的时候,会注意输入序列里所有其他的词,给予每个词不一样的注意力权重,从而捕获依赖关系和相关性。Transformer有自注意力机制和位置编码(语言的顺序很重要)序列:按照特定顺序排列的元素位置编码:包含位置向量和词向量

其他人在问
卷积神经网络模型原理
卷积神经网络(CNN)通常由卷积层、池化层和全连接层叠加构成。在卷积过程中,卷积层中的卷积核依次与输入图像的像素做卷积运算来自动提取图像中的特征。卷积核尺寸一般小于图像,并以一定的步长在图像上移动得到特征图。步长设置越大,特征图尺寸越小,但过大步长会损失部分图像特征。此外,池化层作用于产生的特征图上,能保证 CNN 模型在不同形式的图像中识别出相同物体,同时减少模型对图像的内存需求,其最大特点是为 CNN 模型引入了空间不变性。
2024-12-19
神经网络
神经网络是机器学习文献中的一类模型,受到生物神经网络的启发,是一种特定的算法,能应用于从输入到输出空间复杂映射的各类机器学习问题。 神经网络的发展历程如下: 早期,康奈尔航天实验室的 Mark I 感知机是第一台感知机的硬件,罗森布拉特用定制硬件的方法实现了感知机的想法,展示出它可对简单形状进行正确分类,自此机器学习问世。 神经网络本质上是多层感知机,在早期只有一层输出层。例如分辨手写数字时,输入是图像像素,有 10 个输出神经元,分别对应 10 个可能的数字,权值最高的和被视为正确输出。 神经网络的架构主要分为三类: 前馈神经网络:这是实际应用中最常见的类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数。 循环网络:在连接图中有定向循环,可按箭头回到起始点。其动态复杂,训练难度大,但更具生物真实性。 Geoffrey Hinton 对神经网络的发展做出了重要贡献。早在 80 年代初期,他和同事开展研究时,因电脑性能限制成果有限,且当时 AI 主流研究方向不同,处境艰难。但他们坚持下来,到 2004 年创立了 Neural Computation and Adaptive Perception 项目。随着时间推移和计算机能力发展,神经网络更加快速、灵活、高效和可扩展。 神经网络可用于解决分类和回归等问题,在多个输出值的函数或具有多个类别的分类任务中,多输出函数能用位于同一层的多个感知机来学习。
2024-11-01
AIGC的底层科学原理是神经网络吗?
AIGC 的底层科学原理包含神经网络。 神经网络是一种模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。它由大量的人工神经元联结进行计算,是一种自适应系统,具备学习功能。 在 AI 领域,神经网络是一种重要的技术。深度学习就是一种参照人脑结构,包含神经网络和神经元的方法(因层数较多而称为深度)。神经网络可以用于监督学习、无监督学习、强化学习等多种学习方式。 同时,Transformer 模型的出现也对 AIGC 产生了重要影响,它完全基于自注意力机制处理序列数据,比循环神经网络更适合处理文本的长距离依赖性。
2024-10-30
神经网络和深度学习简史
神经网络和深度学习有着丰富的发展历史: 1. 1958 年感知机神经网络诞生。 2. 70 年代经历了人工智能寒冬。 3. 1986 年 BP 算法让神经网络再度流行。 4. 尽管取得了一些成功,但在人工智能寒冬期间,用于神经网络研究的资金很少,人工智能一词近乎成为伪科学的代名词。 5. 1997 年,Hochreiter 和 Schmidhuber 为递归神经网络开发了长短期记忆(LSTM),但在当时被忽视。 6. 随着计算机变得更快和图形处理单元(GPU)的引入,神经网络逐渐与支持向量机相竞争。 7. 训练大型、深层网络存在梯度消失问题,解决方法包括逐层预训练,如 Schmidhuber 于 1992 年为递归神经网络开发的预训练方法,以及 Hinton 和 Salakhutdinov 于 2006 年为前馈网络开发的预训练方法。1997 年提出的长短期记忆(LSTM)也是解决递归神经网络中梯度消失问题的方案之一。
2024-10-23
卷积神经网络
卷积神经网络,也称为卷积网络,使用卷积层来过滤输入以获取有用信息。卷积层具有可学习的参数,能自动调整滤波器以提取对应任务的最有用特征。例如在一般目标识别中侧重对象形状信息,鸟类识别中更倾向于鸟的颜色信息,它会自动适配以找到最佳特征。 通常,多个卷积层依次作用,在每一层后对图像进行过滤,获取越来越多的抽象信息,形成层次特征。 卷积网络还常使用池层,以实现有限的平移和旋转不变性,即便对象出现在异常位置也能检测到,同时能减少内存消耗,从而支持使用更多卷积层。 近期的卷积网络采用初始模块,利用 1×1 卷积核进一步降低内存消耗并加快计算速度,提高训练效率。 例如在自动驾驶汽车场景中,可将驾驶员当前视野的图像输入到卷积神经网络,训练其预测下一个可能行动的奖励。相似状态的图像相似,行动也相似,网络能针对不同情况进行微调。 相关附加材料: 。 图 5 展示了一个交通标志的图像被 4 个 5×5 的卷积核过滤,生成 4 个特征图,再通过最大池化进行二次采样。下一层将 10 个 5×5 的卷积核应用于这些子采样图像,并再次将特征映射集中在一起。最后一层是完全连接的层,用于组合所有生成的特征并用于分类器(本质上是逻辑回归)。图像由提供。
2024-07-20
帮我写一个R语言的神经网络分类问题代码
好的,下面是一个使用R语言进行神经网络分类问题的示例代码。我们将使用著名的鸢尾花数据集(Iris dataset)进行演示。这个数据集包含了150条记录,每条记录有4个特征和一个目标变量(花的种类)。 安装并加载所需的包 首先,我们需要安装并加载所需的包,如`neuralnet`和`nnet`。 ```r install.packages install.packages library library ``` 加载和准备数据 接下来,我们将加载Iris数据集,并将数据标准化,以便神经网络能够更好地处理。 ```r 加载内置的Iris数据集 data 查看数据集的结构 str 标准化函数 normalize < function { return } 对特征进行标准化 iris_norm < as.data.frame iris_norm$Species < iris$Species 将目标变量转换为因子类型 iris_norm$Species < as.factor 将数据集分为训练集和测试集 set.seed index < sample train_data < iris_norm test_data < iris_norm ``` 创建和训练神经网络模型 我们将使用`neuralnet`包创建一个简单的神经网络模型,并进行训练。 ```r 创建公式 formula < as.formula 训练神经网络模型 nn_model < neuralnet 查看模型结果 print ``` 可视化神经网络 我们可以使用内置的绘图功能来可视化神经网络。 ```r 绘制神经网络 plot ``` 进行预测并评估模型 使用测试数据进行预测,并评估模型的性能。 ```r 进行预测 nn_predictions < compute 将预测结果转换为因子类型 nn_predicted < as.factor(ifelse(nn_predictions$net.result > 0.5, "versicolor", ifelse 查看混淆矩阵 confusion_matrix < table print 计算准确率 accuracy < sum print ``` 完整代码 下面是完整的代码段,整合了上述各个步骤: ```r install.packages install.packages library library 加载内置的Iris数据集 data 查看数据集的结构 str 标准化函数 normalize < function { return } 对特征进行标准化 iris_norm < as.data.frame iris_norm$Species < iris$Species 将目标变量转换为因子类型 iris_norm$Species < as.factor 将数据集分为训练集和测试集 set.seed index < sample train_data < iris_norm test_data < iris_norm 创建公式 formula < as.formula 训练神经网络模型 nn_model < neuralnet 查看模型结果 print 绘制神经网络 plot 进行预测 nn_predictions < compute 将预测结果转换为因子类型 nn_predicted < as.factor(ifelse(nn_predictions$net.result > 0.5, "versicolor", ifelse 查看混淆矩阵 confusion_matrix < table print 计算准确率 accuracy < sum print ``` 以上代码演示了如何使用R语言中的`neuralnet`包创建和训练一个简单的神经网络模型,并使用该模型对鸢尾花数据集进行分类预测。通过标准化数据、分割数据集、训练模型、进行预测和评估模型,你可以全面了解如何在R中使用神经网络进行分类任务。
2024-06-03
语音理解哪个AI模型比较好?
以下是一些在语音理解方面表现较好的 AI 模型: 1. Fish Agent V0.1 3B 语音处理模型: 支持多语言 TTS,包括英语、中文、德语、日语、法语、西班牙语、韩语、阿拉伯语等。 采用端到端架构,支持即时语音克隆与文本到语音转换。 具有超快响应,能在 200 毫秒内完成文本到音频转换。 详细介绍: 演示地址: 2. 腾讯混元大模型(HunyuanLarge): 是全球最大 MoE 开源模型,拥有 3890 亿参数,活跃参数 520 亿。 具备强长文本处理和常识推理能力,支持 256K 上下文窗口。 通过数据增强,使用合成数据提升对未见内容的理解。 详细介绍: 模型下载: 技术报告:
2024-12-19
国内做视觉理解的大模型厂商有哪些
国内做视觉理解的大模型厂商有以下这些: 北京: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com 上海: 商汤(日日新大模型):https://www.sensetime.com MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 此外,在 0 基础手搓 AI 拍立得的模型供应商选择中,还有以下视觉类大模型厂商: 智谱 GLM4V:通用视觉类大模型,拍立得最早使用的模型,接口响应速度快,指令灵活性差一些,一个接口支持图片/视频/文本,视频和图片类型不能同时输入,调用成本为 0.05 元/千 tokens, 阿里云百炼 qwenvlplus:通用视觉类大模型,拍立得目前使用的模型,指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高,调用成本为¥0.008/千 tokens,训练成本为¥0.03/千 tokens, 阶跃星辰:通用视觉类大模型,响应速度快,支持视频理解,输入成本为¥0.005~0.015/千 tokens,输出成本为¥0.02~0.07/千 tokens, 百度 PaddlePaddle:OCR,垂直小模型,文本识别能力补齐增强,私有化部署服务费,API 调用在¥0.05~0.1/次,
2024-12-19
智能鸿沟和国际协作写认识理解、研究方向、未来
以下是关于智能鸿沟和国际协作的认识理解、研究方向及未来的相关内容: 认识理解: 目前对于智能鸿沟的研究主要集中在人工智能、自动化等相关趋势在不同行业中对劳动力的影响,包括其造成的劳动力跨部门的变化,以及由此产生的劳动力需求和就业机会。 研究方向: 研究不同行业因人工智能的广泛采用所带来的劳动力影响。 探索人工智能在各行业广泛应用所产生的劳动力需求和就业机会。 明确更好地理解和追踪劳动力影响、需求及机会方面存在的研究差距和所需数据。 提出应对上述挑战和机遇的建议。 未来: 在未来的研究中,需要进一步深入探讨智能鸿沟在全球范围内的演变和影响,以及国际协作在应对智能鸿沟方面所能发挥的作用。通过国际间的合作,共同制定策略,以缩小不同国家和地区在人工智能应用和发展方面的差距,促进全球的平衡发展。同时,持续关注人工智能技术的新发展和其对劳动力市场的动态影响,及时调整应对策略。
2024-12-18
全球人工智能治理报告中的全球人工智能的十大议题,十个议题中选一个写认识理解、研究方向、未来
以下是为您提供的关于全球人工智能治理报告中相关议题的内容: 在“Model Evaluation for Extreme Risks”这一议题中: 认识理解:该议题强调了模型评估在应对极端风险以及在模型的训练、部署和安全方面做出负责任决策的重要性,并详细探讨了网络攻击、欺骗、说服与操纵、政治策略、武器获取、长期规划、AI 开发、情景意识以及自我传播等十个主要风险。 研究方向:深入研究如何更精准地评估模型在极端风险场景下的表现,以及如何基于评估结果优化模型的训练和部署策略,以降低潜在风险。 未来:随着 AI 技术的广泛应用,对于极端风险的模型评估将越发重要,有望形成更加完善和严格的评估标准和方法,以保障 AI 系统的安全可靠运行。 由于您没有明确指定具体的一个议题,以上仅为示例,您可以补充更具体的需求,以便为您提供更精准的回答。
2024-12-18
对人工智能伦理规范的理解,包括现有规范具体内容、现有问题、应当如何规范,并从一个具体领域说明,例如:金融人工智能
以下是关于人工智能伦理规范的相关内容: 现有规范具体内容: 国家人工智能产业综合标准化体系建设指南(征求意见稿)中,安全/治理标准包括人工智能领域的安全、治理等部分。安全标准规范了人工智能全生命周期的安全要求,治理标准规范了人工智能的技术研发和运营服务等要求,包括伦理治理要求。 欧洲议会和欧盟理事会规定了人工智能的统一规则,其中提到高级别专家组制定了七项不具约束力的人工智能伦理原则,包括人类主体和监督、技术稳健性和安全性、隐私和数据治理、透明度、多样性、非歧视和公平、社会和环境福祉以及问责制。 现有问题: 文中未明确提及现有规范存在的具体问题。 应当如何规范: 鼓励非高风险人工智能系统的提供者制定行为守则,包括相关的治理机制,以促进自愿适用适用于高风险人工智能系统的部分或全部强制性要求,并根据系统的预期目的和所涉及的较低风险进行调整,考虑可用的技术解决方案和行业最佳实践。 鼓励所有人工智能系统的提供者和模型的提供者,在自愿的基础上适用与欧洲可信人工智能伦理准则要素、环境可持续性、人工智能素养措施、人工智能系统的包容性和多样化设计与开发等有关的额外要求。 以金融人工智能为例: 在金融领域应用人工智能时,应遵循上述的伦理规范和要求。例如,要确保数据的隐私和安全,模型的稳健性和可靠性,避免歧视和不公平,保证透明度和可解释性,同时要接受监管和审查,以降低金融风险,保障金融市场的稳定和公平。
2024-12-18
我想学习python,但我从没有学习过任何编程语言。如果按专业学习类的书去自学,我觉得很无聊,而且也不好理解。最主要的是学习时间太长。你可以帮我制定一个,利用AI快速学习python的方法吗?
以下是为您制定的利用 AI 快速学习 Python 的方法: 首先,您需要了解 Python 基础,包括基本语法(如变量命名、缩进等规则)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句 if、循环语句 for 和 while 控制程序执行流程)、函数(定义和调用函数、理解参数和返回值、掌握作用域和命名空间)、模块和包(学会导入标准库或第三方库、安装和使用包扩展功能)、面向对象编程(了解类和对象的定义与实例化、属性和方法的定义与调用、继承和多态)、异常处理(理解异常的概念和工作方式、使用 try 和 except 语句处理错误)以及文件操作(学会文件读写、处理文件与路径)。 您可以参考以下课程内容进行学习: 1. “和 Cursor AI 一起学 Python 编程”: 第二节:Python 基础语法与文本处理,45 分钟。教学内容包括 Python 基础语法、数据类型、控制结构、文本处理基础、字符串操作方法、文件读写操作。实践实验包括中文文本的基本处理,如统计字符数、词语数、句子数,讨论中文编码问题及解决方法。教学目标是掌握 Python 基本语法和结构,能够进行简单文本数据处理。 第三节:利用 Python 进行自然语言处理(NLP),45 分钟。教学内容包括自然语言处理的概念和重要性、Python 中的 NLP 库、分词原理举例、介绍结巴分词等工具、用 Jieba 进行课文分词。实践实验包括中文分词与词频分析,统计词频并找出高频词汇,讨论词频分析在语言教学中的应用。教学目标是掌握使用 Python 进行基本的 NLP 操作,理解 NLP 技术在语言研究和教学中的应用。 在学习过程中,您可以借助 AI 工具辅助理解和解决问题,例如通过智能问答获取对概念的解释,或者让 AI 为您生成示例代码帮助理解。祝您学习顺利!
2024-12-16
有哪些AI工具可以制作生成简单的图片?
以下是一些可以制作生成简单图片的 AI 工具: 1. DALL·E:由 OpenAI 推出,能根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,可生成高质量图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和用户友好的界面设计而受欢迎,在创意设计人群中流行。 此外,还有以下图生图的产品: 1. Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感,丰富创作过程。 2. Retrato:将图片转换为非凡肖像,有 500 多种风格选择,适合制作个性头像。 3. Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:将上传的照片转换为芭比风格,效果好。 在 CAD 图生成方面,有以下 AI 工具和插件: 1. CADtools 12:Adobe Illustrator 插件,添加 92 个绘图和编辑工具。 2. Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件,能创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化等。 4. ParaMatters CogniCAD:根据设计目标和约束条件自动生成 3D 模型。 5. 一些主流 CAD 软件如 Autodesk 系列、SolidWorks 等提供的基于 AI 的生成设计工具。 需要注意的是,这些工具通常需要一定的 CAD 知识和技能才能有效使用。对于 CAD 初学者,建议先学习基本的 3D 建模技巧,然后尝试使用这些 AI 工具来提高设计效率。同时,以上内容由 AI 大模型生成,请仔细甄别。您可以根据自己的需求选择使用。在 WaytoAGI 网站(https://www.waytoagi.com/category/104),可以查看更多文生图工具。
2024-12-17
使用掌控板和mind+上高中人工智能课程,请通过一个简单的项目,设计3节课内容。
很抱歉,目前没有关于使用掌控板和 mind+ 设计高中人工智能课程三节课内容的相关信息。但我可以为您提供一个大致的框架供您参考: 第一节课: 课程引入:介绍掌控板和 mind+ 的基本功能和特点,激发学生兴趣。 基础知识讲解:讲解人工智能的基本概念,如机器学习、深度学习等。 简单案例展示:通过一些简单的案例,让学生了解掌控板和 mind+ 在人工智能中的应用。 第二节课: 实践操作:指导学生使用掌控板和 mind+ 进行简单的数据采集和处理。 算法学习:介绍一些基本的算法,如分类算法、回归算法等,并让学生在实践中应用。 小组讨论:组织学生进行小组讨论,分享实践中的问题和经验。 第三节课: 项目实践:学生分组完成一个简单的人工智能项目,如利用掌控板采集环境数据并进行分析预测。 成果展示与评价:各小组展示项目成果,进行自我评价和相互评价。 课程总结:总结课程重点内容,鼓励学生继续探索人工智能领域。 以上内容仅供参考,您可以根据实际教学情况和学生的水平进行调整和完善。
2024-12-11
我想生成一个智能体,实现输入一张图片,简单的输入要求能自动根据图片生成一组符合要求的写真
要生成一个能根据输入图片和简单要求自动生成一组符合要求写真的智能体,您可以参考以下步骤: 1. 获取 Logo 图片的描述:为了帮助一位视障艺术家,我们需要详细描述这幅图像的内容,包括从摄影、标志设计到较为冷门的艺术风格等各个方面。对于出现在图中的人物,虽然不能提及具体姓名,但考虑到艺术家的特殊需求,我们需要以匿名方式描述他们的主要特征(切记不要提及真实姓名)。请直接进行描述,控制在 50 字左右。 2. 用 LLM 生成图像提示词:将第一步生成的提示词填入{图像描述}位置,将您想生成的周边填入{周边描述}部分。 3. 图像流搭建: 步骤一:创建第一个图像流。由于文本类型大语言模型无法直接生成图片,但是我们设计的智能体需要有对应的功能,因此我们要通过【技能】部分的图像流,为文本大模型提供图像生成能力。 步骤二:了解图像流节点的意义。在图像流编辑界面,左侧的工具栏集合了所有可能用到的功能,包括智能处理工具、基础编辑工具和风格处理类工具等。 步骤三:根据需求进行图像流设计。例如生成海报功能,在总结故事后,将完整的故事作为输入,进行提示词优化,然后输入生图大模型生成配图海报。 4. 智能体创建: 步骤一:创建基础智能体。进入 coze 官网 www.coze.cn,注册并登录,点击页面左上角的⊕,通过【标准创建】填入 bot 的基本信息。 步骤二:了解 Bot 开发调试界面。Bot 的开发和调试页面功能布局包括人设与回复逻辑(左侧区域)、功能模块(中间区域)、交互优化(底部区域)和预览与调试(右侧区域)。功能模块又包括插件、工作流、图像流、触发器、知识库管理、记忆系统等。
2024-12-11
Ai短视频比赛主题“什么样的时刻会首先出现在你的脑海中”,请以此主题提出几条优质的创作灵感建议,Ai生成视频要求不长于10秒,请用简单易懂的方式讲一下
以下是关于“什么样的时刻会首先出现在你的脑海中”这一 AI 短视频比赛主题的创作灵感建议: 1. 可以是烟花绽放的那一刻,绚丽多彩照亮夜空。 2. 是宠物与主人重逢相拥的那一刻,充满温馨与感动。 3. 是运动员冲过终点线的那一刻,展现胜利的喜悦。 4. 是孩子第一次学会走路的那一刻,充满成长的惊喜。 5. 是情侣在雨中亲吻的那一刻,浪漫而甜蜜。 比赛相关要求: 1. 主题:以“The Moment”为主题进行创作。 2. 数量限制:每人不限视频数量。 3. 提交时间:12 月 31 日 21:00 前。 4. 参赛文件:16:9 格式,不长于 10 秒,30FPS 以上,不含剪辑。 5. 作业方式:不限。 6. 工具要求:使用可灵 AI(https://kling.kuaishou.com/)。 7. 视频要求:带可灵水印。 8. 参与方式:在指定时间发布作品,可通过通往 AGI 之路首页表格、在野菩萨小红薯群或支持社区提交。 9. 奖项设置:金奖 5000 元+5800 灵感值;银奖 3000 元+2700(2200+500)灵感值;铜奖 2000 元+1000 灵感值;入围 500 元×40;人气奖 2500 元×4 以及其他意外散落的灵感值。 10. 注意事项:不建议出现鲜血、武器、鬼怪骷髅、知名人物、18X 等不符合国家政策的内容,可能导致参赛失败。不在规定时间内提交的自动失去参赛资格。评审由专业评审决定,提交次周发布结果。参与该挑战视作同意将作品的使用权授予本号及第三方用于社群运营、展览、展示、传播、营销等用途,主办方拥有最终解释权。在下面的投稿链接中上传作品。
2024-12-10
什么工具/模型/API 可以根据宠物照片生成数字宠物 可以有简单的活动。
以下是一个可以根据宠物照片生成数字宠物并具有简单活动的工具/模型/API: 出门问问 Mobvoi 的照片数字人工作流及语音合成(TTS)API。 出门问问是一家以生成式 AI 和语音交互为核心的人工智能公司,为全球多个国家提供面向创作者的 AIGC 工具、AI 政企服务,以及 AI 智能硬件。致力于打造国际领先的通用大模型,通过 AI 技术、产品及商业化三位一体发展,致力成为全球 AI CoPilot 的引领者。 在 ComfyUI 全球领导力峰会上,特意搭建了数字人 workflow(照片数字人驱动),仅需上传一张照片,输入一段文字或者上传一段音频,就可以生成短视频让“照片开口说话”。本次活动特意提供了免费 api 额度及操作指南给大家进行体验。以下是一些不同风格的照片驱动效果展示:
2024-11-16
简单、便捷的python编程IDE
以下是一些简单、便捷的 Python 编程 IDE: 1. Wing Python IDE Pro:由 Wingware 开发,专为 Python 编程设计,集成了代码编辑、导航和调试功能,具备智能自动补全、代码重构、多选功能和代码片段工具,使编程更轻松高效。价格:年度许可证起价 179 美元/月。 2. Smol Developer:开源的 AI 开发助手,可根据产品需求生成完整的代码库,具有简单、安全、易于理解的代码结构,同时具备高度灵活性和定制性。价格:开源项目,遵循 MIT 许可证。 3. Cody:Sourcegraph 的 AI 工具,能理解整个代码库,解答问题并编写代码,还能详细解释代码,定位特定组件,并提出修复建议。可通过 VS Code 扩展直接使用,个人使用免费。 配置 Python 运行环境的方法如下: 简单版: 下载 Python 和 PyCharm。 Python 下载地址:https://www.python.org/ PyCharm 下载地址:https://www.jetbrains.com/pycharm/download/ 然后双击 exe 文件安装即可。 详细版: 1. 访问 Python 官网:https://www.python.org/ 2. 下载 Python 安装包 3. 安装 Python:打开 window 控制台,输入 python,能进入控制台就说明安装成功了。 4. 集成开发环境: PyCharm 是由 JetBrains 打造的一款 Python IDE,支持 macOS、Windows、Linux 系统。功能包括调试、语法高亮、Project 管理、代码跳转、智能提示、自动完成、单元测试、版本控制等。 下载 PyCharm: Professional(专业版,收费):完整的功能,可试用 30 天。 Community(社区版,免费):阉割版的专业版。 安装 PyCharm:下载完成后,双击安装即可。 使用 PyCharm:首先在桌面上创建一个文件夹 test,并创建一个目录 test.py,双击桌面 PyCharm 图标,打开刚才创建的 test 目录即可。 安装 PyCharm 的补充说明: PyCharm 是一个专门用于 Python 开发的集成开发环境(IDE),能更方便地编写和运行 Python 代码。 点击该网址:https://www.jetbrains.com/pycharm/download/ ,点击完后注意下拉,选择下面这个下载,这个是 Community Edition(社区版),该版本是免费的。如果是开头映入眼帘的下载按钮是收费版,只能体验 30 天。社区版自己玩的话够用了。如果没法外网下载,可使用以下网盘链接: 夸克网盘:Pycharm 和 Cursor(主要是 Pycharm,版本稳定,Cursor 有条件可以自己下) 链接:https://pan.quark.cn/s/c5df4670858c 百度网盘:pycharmcommunity2024.2.3.exe 链接:https://pan.baidu.com/s/1jFMxBQD0r41eU6f5BGQg?pwd=43h2 提取码:43h2
2024-11-13