Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai的底层逻辑

Answer

AI 的底层逻辑主要涉及以下几个方面:

  1. 大模型的底层原理:
    • 大语言模型依靠概率计算逐字接龙的方式工作,平时看到的逐字输出并非特效,而是其真实的工作方式。
    • 大模型参数规模的增加,如从 GPT-1 的 1.5 亿到 GPT-3.5 的 1750 亿,实现了量变到质变的突破,从而“涌现”出智能。这种“涌现”结构在人类的进化和个体学习成长中也存在。
    • 预训练是大模型获取知识的方式,其需要大量时间和算力资源。在没有外部帮助的情况下,大模型的知识信息可能不完备且滞后。
    • GPT 是生成式预训练转换器模型(Generative Pre-trained Transformer),生成式指大模型根据已有输入不断计算生成下一个字词,直至计算出[end of text]概率最大时结束输出。
  2. 必须理解的核心概念:
    • LLM 是 Large language model 的缩写,即大语言模型。
    • Prompt 是提示词,即输入给大模型的文本内容,其质量会显著影响回答质量。
    • Token 是大模型语言体系中的最小单元,不同厂商对中文的切分方法不同,通常 1Token≈1-2 个汉字,大模型的收费和输入输出长度限制以 token 为单位。
    • 上下文指对话聊天内容的前后信息,其长度和窗口会影响大模型回答质量。
Content generated by AI large model, please carefully verify (powered by aily)

References

走入AI的世界

没错,这就是大语言模型真实工作的样子,平时使用大模型看到他逐字输出的样子,并不是程序员做的酷炫“打字机”效果,而是大模型就是如此这般工作的。按照我们的常识认知,这种依靠概率计算逐字接龙的方法,恐怕连生成一个通顺的句子都难,更别提生成高质量有意义的回答了,为什么这种方法会有效呢?答案就是大,GPT-1的参数规模是1.5亿,GPT-2 Medium的参数规模是3.5亿,到GPT-3.5时,他的参数规模来到了惊人的1750亿,我们常说大力出奇迹,参数规模的增加,使得大模型实现了量变到质变的突破,最终“涌现”出了这种惊人的“智能”。反观人类自身,无论是长周期看物种的进化,还是短周期看一个个体的学习成长历程,都有这样“涌现”的结构,就像当我打下这些文字的时候,我的大脑也在神奇的进行着快速的语言组织,这个边打字边思考边输出的过程,又何尝不是一场接龙游戏呢?图15文字接龙游戏预训练(Pre-trained):正如我们前面五点朴素洞察提到的,人类是不知道自己没见过/学过的知识的,大模型也是如此,大模型“脑袋”里存储的知识,都是预先学习好的,这个预先学习并把对知识理解存储记忆在“脑袋”里的过程,就称为预训练。预训练是需要花费相当多的时间和算力资源的,当你了解并意识到预训练机制的时候,你就会明白,在没有其他外部帮助(例如使用浏览器插件,RAG等)的情况下,大模型所知道的知识信息总是不完备的,滞后的(非实时)。

走入AI的世界

总结一下,以上这段讨论,你要重点记住这句话:模仿人类大脑结构的AI,也自然而然的表现出人的特征,很多我们应对大模型回答不及预期的解决之道,也和人与人交流沟通的技巧如出一辙,息息相关。关于这一点,我们会在后续各种真实案例的分析拆解中再来讨论。GPT的全称是生成式预训练转换器模型(Generative Pre-trained Transformer),他的名字里就蕴含了大量重要的信息,接下来我们来聊聊GPT这三个字母的分别含义:图14 Generative Pre-trained Transformer生成式(Generative):所谓生成式,说的是大模型是根据已有的输入为基础,不断计算生成下一个字词(token),从而逐字完成回答的过程。这一过程,像极了一个单字接龙的游戏,图15中给出了一个简单的例子做为说明:1.一开始我们给了大模型一些提示词Prompt,为了简化,在图中这个提示词只有一个单词:How;2.接下来,大模型会结合自己“大脑中存储的知识”进行计算推理,算出how后面接are这个单词的概率最大,于是输出are接在how后面;3.在已知how are的情况下,大模型再次推理计算,算出how are后面接you这个单词概率最大,于是输出you接在how are后面;4.不断重复上面步骤,每次大模型会多输出一个词(token),新的输出会和过去的输入一并成为新的输入,用来计算下一个词;5.直到计算出下一个词是[end of text]的概率最大,于是结束输出,回答结束([end of text]是一个特殊的token,用来终止对话输出)

走入AI的世界

首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行😌Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)

Others are asking
多维表格AI接入分享课程有回放么
多维表格 AI 接入分享课程有回放。例如,在“1204|微信超级 AI 知识助手教学(上)—智谱共学营智能纪要”中提到直播有回放。在“飞书多维表格 AI 共学解锁更强大的豆包 2024 年 12 月 21 日”中,王大仙表示分享有回放,可顺着搭建流程使用。
2025-02-18
我的毕业论文是AIGC的陶寺遗址空间可视分析技术研究,请问有何思路
对于您的毕业论文主题“AIGC 的陶寺遗址空间可视分析技术研究”,以下是一些可能的思路供您参考: 首先,深入了解陶寺遗址的相关背景和特点,包括其历史、文化、地理等方面的信息,这将为后续的分析提供基础。 其次,研究 AIGC 技术在空间可视分析方面的应用现状和前沿成果,了解相关的算法、模型和工具。 然后,考虑如何收集和整理陶寺遗址的空间数据,例如通过实地测量、卫星图像、考古记录等方式获取数据,并对数据进行预处理和清洗。 接着,运用合适的 AIGC 技术和算法,对陶寺遗址的空间数据进行可视化呈现,例如创建三维模型、绘制地图、生成动态图像等,以直观展示遗址的空间特征和关系。 在可视化的基础上,进行深入的分析,例如探究遗址的布局规律、空间结构、功能分区等,挖掘潜在的历史和文化信息。 最后,对研究结果进行评估和验证,确保其准确性和可靠性,并提出进一步的改进和优化方向。 希望这些思路能对您有所帮助,祝您顺利完成毕业论文!
2025-02-18
请介绍一下如何使用AI进行PPT生成
以下是使用 AI 进行 PPT 生成的方法: 1. 利用闪击: 访问国内网站 https://ppt.isheji.com/?code=ysslhaqllp&as=invite ,无需魔法。 选择模板。 将准备的大纲转换成适配闪击的语法,可参考官方使用指南:https://zhuanlan.zhihu.com/p/607583650 。 点击文本转 PPT,并在提示框中选择确定,得到转换后的 PPT。 可在线编辑,但导出有会员限制。 2. 以爱设计为例: 导入大纲到工具生成 PPT,其他工具操作方式大同小异,基本基于 Markdown 语法的内容来完成 PPT 生成。 优化整体结构,按照公司要求自行优化字体、图片等元素,针对下载后的 PPT 可删改内容。 3. 结合 GPT4、WPS AI 和 chatPPT: 先让 GPT4 生成 PPT 大纲。 把大纲导入到 WPS 当中,启用 WPS AI 一键生成 PPT。 让 chatPPT 添加一些动画。 手动修改细节,如字体、事实性错误等。
2025-02-18
AI制图 描述词网站
以下是一些关于 AI 制图描述词的网站: 1. http://www.atoolbox.net/ ,它可以通过选项卡的方式快速填写关键词信息。 2. https://ai.dawnmark.cn/ ,每种参数都有缩略图参考,方便更加直观地选择提示词。 3. https://civitai.com/ ,每一张图都有详细的参数,可以点击复制数据按钮,将参数粘贴到正向提示词栏里。 在进行 AI 制图描述时,通常的描述逻辑包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。通过这些详细的提示词,能更精确地控制绘图。 对于新手而言,还需注意以下几点: 1. 图片内容通常分为二维插画以及三维立体两种主要表现形式。 2. 主题描述时,对于场景中的人物要进行独立描述,不要用一长串文字表达,以免 AI 识别不到。 3. 设计风格方面,可以找风格类的关键词参考或垫图/喂图,让 AI 根据给出的图片风格结合主题描述生成相应风格的图片。 4. 某些材质的描述,如玻璃、透明塑料、霓虹色彩等,关键词的运用有很多门道,需要针对某一种风格单独进行“咒语测试”。
2025-02-18
怎么用AI画漫画
以下是使用 AI 画漫画的相关内容: 使用 Anifusion 画漫画 局限性:对特定艺术细节的控制有限,生成的艺术作品可能缺乏独特性,需要订阅才能使用高级功能,可能无法完全替代专业级工作的熟练人类艺术家。 定价:提供免费和高级订阅选项。免费层级提供 50 个免费信用点和一个工作空间,适合初学者体验;高级层级每月 20 欧元,包含 10,000 个信用点、无限工作空间、无限漫画生成、多种 LoRA 模型支持,以及新功能的早期访问权限。 步骤: 1. 注册账户:访问 anifusion.ai 并创建一个免费账户以开始使用。 2. 选择布局:从预设计的漫画预设中选择,或使用 Anifusion 的直观布局工具创建您自己的独特布局。 3. 描述页面内容:使用简单的文本提示来描述您漫画中每个页面或面板的内容。 4. 生成 AI 艺术:让 AI 根据您的文本描述生成动漫风格的艺术作品。 5. 优化结果:使用 Anifusion 强大的画布编辑器根据需要优化和调整 AI 生成的艺术作品。 6. 添加文本和效果:添加对话气泡、字幕和视觉效果以完成您的漫画页面。 7. 导出和分享:导出您完成的漫画并与世界分享。您对您的创作拥有完全的商业权利。 借鉴 Sarah Andersen 的风格 主题风格: 1. 通常使用简单的黑白线条作画,配以极富表现力的角色表情。 2. 简洁的线条和明确的轮廓。 3. 黑白色调,偶尔使用强调色。 4. 表情丰富的角色设计。 5. 包含幽默和讽刺元素。 技巧: 1. 在主要描述语后面加上“by Sarah Andersen”或者“style reference Sarah Andersen”。 2. 在提示中加入情感色彩的描述,比如使用“joyful,”“awkward,”或“anxious”等词。 3. 利用cref 命令保持人物的一致性。 应用: 1. 社交媒体上进行漫画创作。 2. 使故事更加生动有趣的插图。 3. 个性化礼物和商品设计(需注意版权问题)。 线稿上色 Midjourney + Stable Diffusion 在学习 AI 绘画这段时间,发现 AI 绘画并不会完全替代设计师,而是可以让出图质量更好,效率更高。比如上面是用 midjourney 生成线稿,PS 稍微做一些修正,再用 controlnet 控制,stable diffusion 上色,多套 AI 组合拳,可以快速生成效果惊艳的图。 1. 线稿产出:mj 关键词:Black and white line drawing illustration of a cute cat cartoon IP character,black line sketch,wearing a fortune hat,wearing a collar around the neck,Carrying a huge bag containing scrolls and ingots,matching rope and straps at his wrists,Chinese element style,popular toys,blind box toys,Disney style,white backgroundniji 5style expressive 2. PS 手动手动重绘错误的地方:有些图出来没有阴影容易飘,可以自己画一个出来。
2025-02-18
AI动画
以下是关于 AI 动画的相关内容: Runway 生成 AI 动画: 使用图片和文字描述功能,将 MJ 生成的图片增加对应的动态描述,输入 Runway,同时增加镜头变换的设置。具体教程可查看。 悦音 AI 配音: 旁白质感有磁性浑厚、大片质感、娓娓道来等。 小白参与制作 AI 动画短片的 SOP 流程: 1. 项目规划:确定短片主题和目标观众,制定详细的制作计划。 2. 剧本创作:编写故事脚本,设计角色和场景以及创意。剧本创作资料:https://waytoagi.feishu.cn/wiki/G11fwW8bmiVLe6kYLgYc2iGin6e ;捏剧本 Bot(捏剧本离谱村专用 https://www.coze.cn/store/bot/7367669913697239052?panel=1&bid=6cs144r404016 ) 3. 分镜头脚本:根据脚本制作分镜头脚本,确定每个镜头的画面和动作。 4. 资源准备:准备动画制作所需的素材,包括背景、角色和音效。 5. 画面图片制作:利用 AI 出图工具,比如通过 ChatGPT、MJ、SD 等工具快速生成高质量的图片。 6. 视频制作:利用 AI 工具制作动画,通过 RUNWAY、Luma、Dreamina 等平台快速生成高质量的动画。 7. 后期剪辑:添加音效、配音和字幕,进行最终的剪辑和合成。 8. 发布和推广:将完成的动画短片发布到各大平台,并进行推广和宣传。 大雷 2 天爆肝 3 分半 AI 动画短片的制作复盘: 在时间和金钱的双重压力下,找到了适合的制作捷径。AI 主要帮忙搞定图和片,其他部分靠人。分工上,大雍负责前期的内容构思和脚本编写,大雷主要负责图片、视频生成和视频剪辑。Midjourney 提示词主要围绕皮克斯、迪士尼、3D 风格来写,例如:"a small white Chiense dragon,anthropomorphic,Smile with surprise,wearing a school uniform,looking at a blurry gift box in the foreground,super closeup shot,camera focus on his face,3D render,Unreal Engine,Pixar 3D style,blurry classroom scene,bright sunshinear 16:9niji 6"。重点是"a small white Chiense dragon,anthropomorphic,3D render,Unreal Engine,Pixar 3D style",尺寸比例 16:9,模型选择 niji 6,其他根据需求调整。动画主要用的是 Runway,因为看中它的控制笔刷。
2025-02-18
你的底层大模型用的是哪个?
目前常见的大型语言模型多采用右侧只使用 Decoder 的 Decoderonly 架构,例如我们熟知的 ChatGPT 等。这些架构都是基于谷歌 2017 年发布的论文“attention is all you need”中提出的 Transformer 衍生而来,其中包括 Encoder 和 Decoder 两个结构。 大模型的特点在于: 1. 预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 2. 参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 大模型之所以能有效生成高质量有意义的回答,关键在于“大”。例如 GPT1 的参数规模是 1.5 亿,GPT2 Medium 的参数规模是 3.5 亿,到 GPT3.5 时,参数规模达到惊人的 1750 亿,参数规模的增加实现了量变到质变的突破,“涌现”出惊人的“智能”。 大模型的预训练机制是指其“脑袋”里存储的知识都是预先学习好的,预训练需要花费相当多的时间和算力资源。在没有其他外部帮助的情况下,大模型所知道的知识信息总是不完备且滞后的。
2025-02-18
不同厂家的AI产品是底层算法不一样吗?比如ChatGPT和豆包
不同厂家的 AI 产品底层算法通常是不一样的。 以常见的 ChatGPT 和豆包为例,ChatGPT 是由 OpenAI 开发的,其底层算法具有独特的特点和优势。而豆包是由字节跳动开发的,也有其自身的算法设计和优化。 在当前的 AI 领域,大多数 AI 应用程序都由大型语言模型(LLMs)驱动,其中只有几个基础模型,由少数几个组织创建。例如 OpenAI 制作了 GPT3.5 和 GPT4,Google 有 Bard 等。 从相关的访问量数据来看,不同的 AI 产品在市场上的表现也有所不同。比如在某些月份,ChatGPT 的访问量较高,而豆包的访问量也在不断变化。但这并不能直接反映其底层算法的差异,只是从侧面反映了它们在用户中的受欢迎程度和使用情况。
2025-01-17
ChatGPT的底层原理是什么
ChatGPT 的底层原理主要包括以下几个方面: 1. 数据获取与训练:从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本。 2. 神经网络结构:由非常简单的元素组成,尽管数量庞大。基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”(没有任何循环等)。 3. 生成文本方式:通过自回归生成,即把自己生成的下一个词和之前的上文组合成新的上文,再生成下一个词,不断重复生成任意长的下文。 4. 训练目的:不是记忆,而是学习以单字接龙的方式训练模型,学习提问和回答的通用规律,实现泛化,以便在遇到没记忆过的提问时,能利用所学规律生成用户想要的回答。 5. 与搜索引擎的区别:搜索引擎无法给出没被数据库记忆的信息,而ChatGPT作为生成模型,可以创造不存在的文本。 其结果表明人类语言(以及背后的思维模式)的结构比我们想象的要简单和更具有“法律属性”,ChatGPT已经隐含地发现了它。同时,当人类生成语言时,许多方面的工作与ChatGPT似乎相当相似。此外,GPT的核心是单字接龙,在翻译等场合应用时,先直译再改写能使Transform机制更好地起作用。
2024-12-03
ai的底层逻辑是什么
AI 的底层逻辑包括以下几个方面: 1. 决策方面:AI 在越来越多的场景落地,成为企业管理和决策的重要工具。然而,AI 的决策过程并非真正的“理解”,而是基于复杂计算和模式匹配,其本质存在局限性,是个“黑盒”,输出结果可见但决策过程难以理解,这种不透明性给企业决策带来风险。 2. 大模型方面:大模型依靠概率计算逐字接龙工作,参数规模的增加使其实现量变到质变的突破,从而“涌现”出智能。大模型的知识是通过预训练预先学习和存储的,但在没有外部帮助时,其知识信息可能不完备和滞后。 3. 神经网络方面:计算机科学家以人脑神经元细胞结构为灵感,利用概览模型在计算机上实现对人脑结构的模仿,但大模型内部如同人类大脑一样是混沌系统,即使是开发者也无法解释其微观细节。
2024-11-13
如果想学习ai,作为ai产品经理,需要ai底层的算法掌握到什么程度
作为 AI 产品经理,对 AI 底层算法的掌握程度需要达到以下几个方面: 1. 理解产品核心技术:了解基本的机器学习算法原理,以便做出更合理的产品决策。 2. 与技术团队有效沟通:掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性:在产品规划阶段,能够准确判断某些功能的技术可行性。 4. 把握产品发展方向:了解算法前沿,更好地把握产品未来的发展趋势。 5. 提升产品竞争力:发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力:掌握相关算法知识,提升数据分析能力。 同时,如果希望在 AI 领域继续精进,还需要了解以下基础内容: AI 背景知识: 基础理论:清楚人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 评估和调优: 性能评估:知道如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学会使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等的基本结构。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-05
AIGC的底层科学原理是神经网络吗?
AIGC 的底层科学原理包含神经网络。 神经网络是一种模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。它由大量的人工神经元联结进行计算,是一种自适应系统,具备学习功能。 在 AI 领域,神经网络是一种重要的技术。深度学习就是一种参照人脑结构,包含神经网络和神经元的方法(因层数较多而称为深度)。神经网络可以用于监督学习、无监督学习、强化学习等多种学习方式。 同时,Transformer 模型的出现也对 AIGC 产生了重要影响,它完全基于自注意力机制处理序列数据,比循环神经网络更适合处理文本的长距离依赖性。
2024-10-30
文学性强、逻辑性差的文字描述转成图片或图表的AI工具有什么
以下是一些可以将文学性强、逻辑性差的文字描述转成图片或图表的 AI 工具: 1. AI“词生卡”:通过将抽象的文字描述转化为直观的逻辑图表和流程图,改变处理和呈现信息的方式。例如,在商业领域可根据项目描述自动生成流程图,还能用于自定义活动海报、商务名片、简历等,实现文图双输出。 2. 以下工具可用于绘制逻辑视图、功能视图和部署视图: Lucidchart:流行的在线绘图工具,支持多种图表创建,用户可通过拖放界面轻松操作。 Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 ArchiMate:开源建模语言,与 Archi 工具配合使用,支持逻辑视图创建。 Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 draw.io(现称为 diagrams.net):免费在线图表软件,支持多种图表类型创建。 PlantUML:文本到 UML 转换工具,通过编写描述生成序列图等。 Gliffy:基于云的绘图工具,提供架构图创建功能。 Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型。 Rational Rose:IBM 的 UML 工具,支持多种视图创建。 如果您想将小说做成视频,可以参考以下工具和流程: 工具与网址: 1. Stable Diffusion(SD):AI 图像生成模型,基于文本描述生成图像。网址: 2. Midjourney(MJ):AI 图像生成工具,适用于创建小说中的场景和角色图像。网址: 3. Adobe Firefly:Adobe 的 AI 创意工具,生成图像和设计模板。网址: 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址: 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址: 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址: 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址: 8. 故事 AI 绘图:小说转视频的 AI 工具。网址: 一般流程包括文本分析、角色与场景生成、视频编辑与合成等。
2025-02-09
哪款AI软件,逻辑性最强,知识点最全面
目前市场上有多种 AI 软件在不同领域展现出较强的逻辑性和全面的知识点。以下为您列举部分示例: 医渡云病历分析系统:使用数据分析和自然语言处理技术,能够分析医疗病历,为医生提供辅助诊断建议,市场规模达数十亿美元。 讯飞听见会议总结功能:运用自然语言处理和机器学习技术,可自动总结会议发言内容,市场规模达数亿美元。 英语流利说纠错功能:借助自然语言处理和机器学习,帮助语言学习者纠正发音、语法等错误,并提供纠正建议和练习,市场规模达数十亿美元。 腾讯文档分类功能:通过数据分析和机器学习,自动分类办公文件,方便管理,市场规模达数亿美元。 美图美妆 APP:利用图像识别和数据分析,根据用户肤质提供美容护肤建议,市场规模达数亿美元。 喜马拉雅儿童版:采用自然语言处理和机器学习,为儿童生成有趣故事,激发想象力,市场规模达数亿美元。 汽车之家 APP:使用数据分析和机器学习,快速诊断汽车故障,提供维修建议,市场规模达数十亿美元。 顺丰速运 APP:凭借数据分析和机器学习,优化物流配送路径,提高物流效率,市场规模达数十亿美元。
2025-02-06
大模型搭建知识库的逻辑是什么
大模型搭建知识库的逻辑主要包括以下几个方面: 1. 理解 RAG 技术:利用大模型搭建知识库本质上是 RAG 技术的应用。在大模型训练数据有截止日期或不包含所需数据时,通过检索增强生成(RAG)来解决。RAG 可抽象为 5 个过程: 文档加载:从多种来源加载包括非结构化、结构化和代码等不同类型的文档。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片一起提交给大模型,生成更合理的答案。 2. 构建知识库各个流程: 从用户提出问题开始,经历用户问题的理解、路由、初步检索、重排序等环节,最终将重排序后的结果和用户的查询意图组合成上下文输入给大模型生成输出结果。需要注意重排序结果的使用限制,如设置阈值进行截断或筛选相关性分数等。 后置处理包括敏感内容检测和移除、格式化输出等。 3. 知识库的需求:大模型并非 100%准确,存在数据日期限制和无法感知公司内部私有数据等问题,知识库的出现就是为解决大模型的数据准确性问题。例如在客服系统中,公司将用户问题及答案记录在文档中以知识库形式投喂给大模型,使其能更准确回答用户自然语言询问的问题。
2025-02-03
Deepseek 使用逻辑
DeepSeek 的使用逻辑如下: 效果对比:用 Coze 做了小测试,可对比查看相关视频。 如何使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 DeepSeek。 认真阅读开场白后正式开始对话。 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用,减轻调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力基础上优化输出质量,减轻 AI 味,增加可读性。 设计了阈值系统,可能会根据反馈修改。 用 XML 进行更为规范的设定,而非 Lisp 和 Markdown。 关于 DeepSeek 的其他信息: 1 月 26 日社区动态速览: 提示词框架包含四大模块:任务目的、计划规则、格式规则、输出说明。通过明晰的任务拆分与规则定义,让提示更具可操作性,但不可过度依赖,有示例模板可清晰展现相关内容。 Anthropic 的“计算机使用”模型,Claude 有新能力,如可识别屏幕截图,计算光标像素坐标并执行操作,结合了图像识别、推理和动作能力,能将用户指令转化为具体步骤并执行,少量软件训练后能自我纠正并迅速上手。 OpenAI Operator 工作机制,利用虚拟主机、Chrome 浏览器、CUA 实现网页实时操控,能执行复杂导航任务,结合 GPT4o 的视觉处理与强化学习,可处理屏幕截图、推理操作并发送指令,在感知—推理—动作循环中迭代,遇敏感任务则提示用户确认。 开源项目 Browser Use。 1 月 28 日社区动态速览: 华尔街分析师认为 DeepSeek 以小成本实现媲美领先 AI 产品的性能,并在全球主要市场 App Store 登顶,高盛认为其或改变科技格局,降低 AI 行业进入门槛。 DeepSeek 中文场景表现优秀,日常写作和表达习惯贴近人类,但专业论文总结略弱,数学能力不错,编程能力逊于 GPT,采用 GRPO 算法替代传统 PPO,提升语言评价灵活性与训练速度。 复旦大学 OpenMOSS 发布实时语音交互模型,中文语音体验近似 GPT4o 高级语音,响应时间低于 200 毫秒,支持打断和自然互动,可生成多情感、多风格语音,包含方言、戏剧化台词等,多语言适配,嘈杂环境下仍具备强逻辑推理能力。 阿里巴巴推出 Qwen2.51M 模型。
2025-01-30
如何优化ai对话脚本和逻辑(多轮对话测试提升ai上下文理解)
以下是优化 AI 对话脚本和逻辑(多轮对话测试提升 AI 上下文理解)的方法: 1. 样例驱动的渐进式引导法 评估样例,尝试提炼模板:独自产出高质量样例较难,可借助擅长扮演专家角色的 AI 改进初始正向样例,如使用 Claude 3.5 进行对话,输入初始指令,通过其回复侧面印证对样例的理解与建议。 多轮反馈,直至达到预期:AI 可能犯错输出要求外内容,需多轮对话引导,使其不断修正理解,直至达成共识。 用例测试,看看 AI 是否真正理解:找 13 个用例,让 AI 根据模板生成知识卡片,根据结果验证是否符合预期,不符合则继续探讨调整。用例测试和多轮反馈步骤灵活,可根据需要自由反馈调整。 2. Coze 全方位入门剖析 标准流程创建 AI Bot(进阶推荐) 为 Bot 添加技能:国内版暂时只支持使用“云雀大模型”作为对话引擎,可根据业务需求决定上下文轮数。在 Bot 编排页面的“技能”区域配置所需技能,可选择自动优化插件或自定义添加插件。还可根据需求配置知识库、数据库、工作流等操作,参考相关介绍和实战操作或官方文档学习。 测试 Bot:在“预览与调试”区域测试 Bot 是否按预期工作,可清除对话记录开始新测试,确保能理解用户输入并给出正确回应。
2024-12-29
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。介绍技术点的技术逻辑以及技术细节。
目前在游戏领域应用的前沿 AI 技术点主要包括以下几个方面: 1. 利用 AIGC 技术实现游戏产业的生产力革命: 降低开发成本:借助人工智能的内容创作工具,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等,能够缩减游戏开发的成本。 缩短制作周期:例如通过程序化内容生成,包括利用人工智能生成文字、图像、音频、视频等来创作游戏剧本、人物、道具、场景、用户界面、配音、音效、配乐、动画和特效等,从而减少游戏开发时间。 提升游戏质量和带来新交互体验:AIGC 技术为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。 2. 游戏内容辅助生成: 生成文、生成图、生成 3D 以及生成音乐。应用场景包括游戏策划人和制作人、美术设计师等。 对于工业化的游戏公司,基于 Stable Difussion 的生成能够通过 2D 美术素材的辅助生成提高创业效率 50%,降低 20%80%的成本。 文生图:通过提示词加参数就可以形成 2D 的参考图,适配度高。 图生图:原画师或美术可以使用,用一个线稿或原画,在原画基础上加一些 Prompt 和参数,就可以形成一个效果图和二级的素材。 动画辅助渲染:用 Lora 对角色背景、关键帧进行风格渲染,例如将真人视频渲染成二次元风。 3. 游戏的智能运营: 智能 NPC 互动:保持长期记忆,保持人物个性和对话表现形式,同时满足成本平衡。 客服、攻略的问答、代码和脚本的生成。主要针对游戏的产品经理、运营经理和社区的运营经理。 游戏社区运营:如海外的 Discord,国内的 Fanbook,让更多玩家在游戏之外,在社群里面很好地互动,基于游戏的美术素材进行二创、查询攻略和使用智能客服。 这些技术的技术逻辑和技术细节如下: 1. AIGC 技术:基于大语言模型和扩散模型,通过机器学习、强化学习等先进技术进行训练,能够理解和生成各种游戏相关的内容。 2. 游戏内容辅助生成:利用深度学习算法对大量的游戏相关数据进行学习和分析,从而能够根据给定的提示或参数生成相应的游戏内容。 3. 智能运营方面:通过构建智能模型,对玩家的行为和需求进行分析和预测,从而提供个性化的服务和互动。
2024-12-22