直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

ai的底层逻辑

回答

AI 的底层逻辑主要涉及以下几个方面:

  1. 大模型的底层原理:
    • 大语言模型依靠概率计算逐字接龙的方式工作,平时看到的逐字输出并非特效,而是其真实的工作方式。
    • 大模型参数规模的增加,如从 GPT-1 的 1.5 亿到 GPT-3.5 的 1750 亿,实现了量变到质变的突破,从而“涌现”出智能。这种“涌现”结构在人类的进化和个体学习成长中也存在。
    • 预训练是大模型获取知识的方式,其需要大量时间和算力资源。在没有外部帮助的情况下,大模型的知识信息可能不完备且滞后。
    • GPT 是生成式预训练转换器模型(Generative Pre-trained Transformer),生成式指大模型根据已有输入不断计算生成下一个字词,直至计算出[end of text]概率最大时结束输出。
  2. 必须理解的核心概念:
    • LLM 是 Large language model 的缩写,即大语言模型。
    • Prompt 是提示词,即输入给大模型的文本内容,其质量会显著影响回答质量。
    • Token 是大模型语言体系中的最小单元,不同厂商对中文的切分方法不同,通常 1Token≈1-2 个汉字,大模型的收费和输入输出长度限制以 token 为单位。
    • 上下文指对话聊天内容的前后信息,其长度和窗口会影响大模型回答质量。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

走入AI的世界

没错,这就是大语言模型真实工作的样子,平时使用大模型看到他逐字输出的样子,并不是程序员做的酷炫“打字机”效果,而是大模型就是如此这般工作的。按照我们的常识认知,这种依靠概率计算逐字接龙的方法,恐怕连生成一个通顺的句子都难,更别提生成高质量有意义的回答了,为什么这种方法会有效呢?答案就是大,GPT-1的参数规模是1.5亿,GPT-2 Medium的参数规模是3.5亿,到GPT-3.5时,他的参数规模来到了惊人的1750亿,我们常说大力出奇迹,参数规模的增加,使得大模型实现了量变到质变的突破,最终“涌现”出了这种惊人的“智能”。反观人类自身,无论是长周期看物种的进化,还是短周期看一个个体的学习成长历程,都有这样“涌现”的结构,就像当我打下这些文字的时候,我的大脑也在神奇的进行着快速的语言组织,这个边打字边思考边输出的过程,又何尝不是一场接龙游戏呢?图15文字接龙游戏预训练(Pre-trained):正如我们前面五点朴素洞察提到的,人类是不知道自己没见过/学过的知识的,大模型也是如此,大模型“脑袋”里存储的知识,都是预先学习好的,这个预先学习并把对知识理解存储记忆在“脑袋”里的过程,就称为预训练。预训练是需要花费相当多的时间和算力资源的,当你了解并意识到预训练机制的时候,你就会明白,在没有其他外部帮助(例如使用浏览器插件,RAG等)的情况下,大模型所知道的知识信息总是不完备的,滞后的(非实时)。

走入AI的世界

总结一下,以上这段讨论,你要重点记住这句话:模仿人类大脑结构的AI,也自然而然的表现出人的特征,很多我们应对大模型回答不及预期的解决之道,也和人与人交流沟通的技巧如出一辙,息息相关。关于这一点,我们会在后续各种真实案例的分析拆解中再来讨论。GPT的全称是生成式预训练转换器模型(Generative Pre-trained Transformer),他的名字里就蕴含了大量重要的信息,接下来我们来聊聊GPT这三个字母的分别含义:图14 Generative Pre-trained Transformer生成式(Generative):所谓生成式,说的是大模型是根据已有的输入为基础,不断计算生成下一个字词(token),从而逐字完成回答的过程。这一过程,像极了一个单字接龙的游戏,图15中给出了一个简单的例子做为说明:1.一开始我们给了大模型一些提示词Prompt,为了简化,在图中这个提示词只有一个单词:How;2.接下来,大模型会结合自己“大脑中存储的知识”进行计算推理,算出how后面接are这个单词的概率最大,于是输出are接在how后面;3.在已知how are的情况下,大模型再次推理计算,算出how are后面接you这个单词概率最大,于是输出you接在how are后面;4.不断重复上面步骤,每次大模型会多输出一个词(token),新的输出会和过去的输入一并成为新的输入,用来计算下一个词;5.直到计算出下一个词是[end of text]的概率最大,于是结束输出,回答结束([end of text]是一个特殊的token,用来终止对话输出)

走入AI的世界

首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行😌Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)

其他人在问
有没有可以帮我做作品集的ai工具?
以下为您介绍一些可以帮助制作作品集的 AI 工具: 1. GPT4、WPS AI 和 chatPPT:可以用于制作 PPT 类型的作品集。例如,在制作 PPT 时,大纲内容、排版、动画等都可以借助这些工具完成。 2. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 3. Rezi:是一个受到众多用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的各个方面,包括写作、编辑、格式化和优化。 4. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结、技能、成就生成器和 AI 驱动的简历工作匹配。 更多相关工具,您还可以查看:https://www.waytoagi.com/category/79 。 需要注意的是,AI 工具生成的内容可能需要您进一步甄别和调整,以满足您的具体需求。
2024-11-12
什么是AI
AI 是一门令人兴奋的科学,它研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情。 对于 AI 的理解,对于不具备理工科背景的文科生来说可能较困难,可将其当成一个黑箱,只需要知道它是某种能模仿人类思维、理解自然语言并输出自然语言的东西即可。其生态位是一种似人而非人的存在,即便技术再进步,这一生态位也不会改变。 在实际应用中,有些任务无法明确编程让计算机完成,比如根据照片判断一个人的年龄,而这类任务正是 AI 所感兴趣的。 AI 健身是利用人工智能技术辅助或改善健身训练和健康管理的方法,能根据用户情况提供定制化训练计划和建议。相关的 AI 工具包括 Keep、Fiture、Fitness AI、Planfit 等。
2024-11-12
如何使用ai帮助我写作
利用 AI 帮助写作可以参考以下步骤和方法: 1. 确定写作主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成写作的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写初稿:可以利用 AI 写作工具草拟任何东西的初稿,如博客文章、论文、宣传材料、演讲、讲座等。 6. 优化内容:将文本粘贴到 AI 中,要求它改进内容,或就如何为特定受众提供更好的建议。也可以要求它以不同风格创建多个草稿,使事物更生动,或者添加例子,以激发您做得更好。 7. 帮助完成任务:AI 可以做您没有时间做的事情,像实习生一样使用它写邮件,创建销售模板,提供商业计划的下一步等。 8. 数据分析(若涉及):如果写作内容涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查写作的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保写作的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代您的专业判断和创造性思维。在使用 AI 进行写作时,应保持批判性思维,并确保写作的质量和学术诚信。 目前,一些较好的写作工具包括: 最佳免费选项: 付费选项:带有插件的4.0/ChatGPT 此外,GPT4 仍然是功能最强的人工智能写作工具,您可以在 Bing(选择“创新模式”)上免费访问,或者通过购买 ChatGPT 的$20/月订阅来访问。Claude 是紧随其后的第二名,也提供了有限的免费选项。这些工具也被直接集成到常见的办公应用程序中,如 Microsoft Office 将包括一个由 GPT 提供支持的副驾驶,Google Docs 将整合 Bard 的建议。
2024-11-12
为什么AI那么厉害
AI 之所以厉害,原因主要包括以下几点: 1. 具有非凡的潜力,能够在众多领域得到应用,如改善社会和经济,其影响力可与电力和互联网相媲美,能推动增长并创造就业机会。 2. 可支持人们完成现有工作,提高劳动力效率和工作场所安全性。 3. 是人类研究世界的有力工具,能帮助解决基础科学面临的瓶颈,例如在生物领域能快速计算蛋白质的折叠结构。 4. 不断发展和创新,如 GPT4 的升级,能为用户提供更多帮助。但同时也存在耗能等问题。
2024-11-12
国内有哪些AI出海产品
国内的 AI 出海产品有 ThinkAny、GenSpark、Devv 等。 在图像类 AI 产品方面,国内有可灵和通义万相。可灵由快手团队开发,用于生成高质量的图像和视频,图像质量高,但价格相对较高;通义万相是阿里旗下的工具,在中文理解和处理方面表现出色,用户可选择多种艺术和图像风格,操作界面简洁直观,且目前免费,但在某些方面存在局限性。 在 PPT 类 AI 产品方面,国内推荐爱设计 PPT,其背后有强大的团队,能敏锐把握市场机遇,已确立市场领先地位,能提高制作效率并保证高质量输出。
2024-11-12
0基础怎么快速学会做AI
对于 0 基础学习 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,您还可以参考以下具体的学习活动: 1. 参加“AI 编程共学”活动,例如: 10 月 28 日 20:00 开始的“0 基础做小游戏分享:通往 AGI 之路增量小游戏、转生之我是野菩萨”,回放链接:。 10 月 29 日 20:00 开始的“0 编程基础入门 Cursor 极简使用指南”,回放链接:。 10 月 30 日 20:00 开始的“0 基础学做 AI 拍立得:Coze 工作流实现手把手教学、AI 拍立得开源代码开箱即用”,回放链接:。 10 月 31 日 20:00 开始的“0 基础做小游戏分享:猪猪🐷撞南墙”,回放链接:。 2. 对于技术纯小白,您可以: 从一个最最基础的小任务开始,让 AI 先帮您按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 通过和 AI 的对话,逐步明确项目需求,让 AI 帮助您梳理出产品需求文档。
2024-11-12
如果想学习ai,作为ai产品经理,需要ai底层的算法掌握到什么程度
作为 AI 产品经理,对 AI 底层算法的掌握程度需要达到以下几个方面: 1. 理解产品核心技术:了解基本的机器学习算法原理,以便做出更合理的产品决策。 2. 与技术团队有效沟通:掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性:在产品规划阶段,能够准确判断某些功能的技术可行性。 4. 把握产品发展方向:了解算法前沿,更好地把握产品未来的发展趋势。 5. 提升产品竞争力:发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力:掌握相关算法知识,提升数据分析能力。 同时,如果希望在 AI 领域继续精进,还需要了解以下基础内容: AI 背景知识: 基础理论:清楚人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 评估和调优: 性能评估:知道如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学会使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等的基本结构。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-05
AIGC的底层科学原理是神经网络吗?
AIGC 的底层科学原理包含神经网络。 神经网络是一种模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。它由大量的人工神经元联结进行计算,是一种自适应系统,具备学习功能。 在 AI 领域,神经网络是一种重要的技术。深度学习就是一种参照人脑结构,包含神经网络和神经元的方法(因层数较多而称为深度)。神经网络可以用于监督学习、无监督学习、强化学习等多种学习方式。 同时,Transformer 模型的出现也对 AIGC 产生了重要影响,它完全基于自注意力机制处理序列数据,比循环神经网络更适合处理文本的长距离依赖性。
2024-10-30
AI搜索的底层逻辑是怎样的
AI 搜索的底层逻辑主要是“检索增强生成(RAG)”,具体包括以下步骤: 1. 检索(Retrieve):使用用户的查询(query)调用搜索引擎 API,获取搜索结果。 2. 增强(Augmented):设置提示词,将检索结果作为挂载的上下文。 3. 生成(Generation):大模型回答问题,并标注引用来源。 在检索过程中,还涉及以下原理: 1. 信息筛选与确认:对检索器提供的信息进行评估,筛选出最相关和最可信的内容,并验证信息的来源、时效性和相关性。 2. 消除冗余:识别和去除多个文档或数据源中的重复信息,避免在生成回答时出现重复或矛盾。 3. 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建结构化的知识框架。 4. 上下文构建:将筛选和结构化的信息组织成连贯的上下文环境,包括排序、归类和整合。 5. 语义融合:必要时合并意义相近但表达不同的信息片段,减少语义重复并增强表达力。 6. 预备生成阶段:将整合好的上下文信息编码成适合生成器处理的格式,如转化为适合输入到生成模型的向量形式。 最后,全新的上下文被传递给大语言模型,大语言模型根据提供的信息生成准确和连贯的答案。影响 AI 搜索的关键因素包括挂载的上下文信息密度和基座模型的智能程度。在响应速度方面,Retrieve 要求联网检索信息的速度快,Generation 要求大模型生成内容的速度快,同时为提高准确度可能存在耗时的重排和获取内容详情步骤。
2024-10-16
模型训练的底层原理
模型训练的底层原理如下: 对于多模态模型,以生图片环节的扩散模型(如 StableDiffusion)为例,其训练过程是先对海量带有标注文字描述的图片逐渐加满噪点,模型学习并沉淀每一步图片向量值和文字向量值的数据分布演变规律。后续输入文字后,模型根据文字转化的向量指导充满噪点的图片减噪点以生成最终图片。 大语言模型在接收到请求时,会将自然语言转化为机器可理解的向量格式。其训练过程类似于通过已知的几组值计算方程式中的参数,大语言模型的参数可能多达 1750 亿个。 大型语言模型(LLMs)的参数获取是关键,训练是一个计算量极大的过程,如 Llama2 70B 模型的训练涉及约 10TB 的互联网文本抓取,需要大量互联网资源和约 6000 个 GPU 运行约 12 天,花费约 200 万美元,将文本压缩成参数文件,这是一种有损压缩,得到的是训练文本的一种格式塔。
2024-10-15
大模型训练的底层逻辑是什么
大模型训练的底层逻辑主要包括以下方面: 1. 参数数量庞大:大模型拥有从数十亿到数千亿的大量参数,这些参数在学习过程中不断调整,帮助模型更深入地理解和生成数据。 2. 多模态原理:以图片生成为例,如当前较火的 StableDiffusion 所采用的扩散模型,其训练过程是先给海量带有标注文字描述的图片逐渐加满噪点,模型学习每一步图片向量值和文字向量值的数据分布演变规律并沉淀下来。后续输入文字后,模型根据文字转化的向量指导充满噪点的图片减噪点以生成最终图片。 3. 数据依赖:大模型通过处理和理解海量数据来学习,包括文本、图像、音频等。但也存在知识局限性,如无法获取实时性、非公开或离线的数据。 4. 存在问题:大模型技术本质导致输出结果具有不可预测性,存在幻觉问题,会提供虚假、过时或通用信息,且应用时还需考虑数据安全性。
2024-09-20
你是用什么底层模型驱动?
目前常见的 AI 模型驱动情况如下: 谷歌的 Bard 由各种基础模型驱动,最近是名为 PaLM 2 的模型。 Anthropic 发布了 Claude 2,Claude 最显著的特点是有一个非常大的上下文窗口。 OpenAI 制作了 GPT3.5 和 GPT4,它们驱动了 ChatGPT 和微软的 Bing(在 Edge 浏览器上访问)。 ComfyUI Playground2.5 是一个根据文本提示生成图像的模型,它是一个使用两个固定的、预训练的文本编码器(OpenCLIPViT/G 和 CLIPViT/L)的潜在扩散模型,遵循与 Stable Diffusion XL 相同的架构(底层框架是 SDXL)。
2024-09-03
搭建一个数据解读的ai工具,文字描述要有逻辑性,符合金字塔原则
很抱歉,目前知识库中没有关于搭建一个数据解读的 AI 工具且文字描述要符合金字塔原则的相关内容。但一般来说,搭建这样一个工具需要以下几个关键步骤: 1. 明确数据来源和类型:确定您要处理的数据是来自数据库、文件、网络等,以及数据的格式和特点,例如结构化数据、非结构化数据等。 2. 选择合适的技术框架:根据需求和技术能力,选择适合的 AI 框架和工具,如 TensorFlow、PyTorch 等。 3. 数据预处理:对原始数据进行清洗、转换、归一化等操作,以提高数据质量和模型的训练效果。 4. 特征工程:提取有意义的特征,以便模型能够更好地理解和处理数据。 5. 选择模型:根据数据特点和任务需求,选择合适的 AI 模型,如决策树、神经网络等。 6. 训练模型:使用预处理后的数据对模型进行训练,并不断调整参数以优化性能。 7. 评估模型:使用合适的指标对训练好的模型进行评估,如准确率、召回率等。 8. 优化和改进:根据评估结果对模型进行优化和改进。 9. 设计文字描述逻辑:按照金字塔原则,先给出结论或主要观点,然后逐步展开支持性的细节和论据。 需要注意的是,这只是一个大致的框架,实际搭建过程中可能会遇到各种技术和业务上的挑战,需要不断探索和优化。
2024-11-03
生成逻辑图或结构图的工具
以下是一些可以用于绘制逻辑视图、功能视图和部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建相关视图。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括逻辑视图和部署视图。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 请注意,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及到智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,您应该考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2024-11-03
我想让AI帮我润色两句话,让其符合科研论文的用语习惯,并且有逻辑,可以适当改变语序、及表达方式,也允许添加或删除部分内容,该怎么下指令
以下是关于让 AI 润色两句话使其符合科研论文用语习惯且有逻辑的指令建议: 首先,明确您要润色的两句话的具体内容,并清晰地向 AI 描述您的需求。例如:“请将以下两句话按照科研论文的用语习惯进行润色,使其逻辑清晰、表达准确。句子 1:。” 在指令中,可以强调一些具体的要求,比如:“适当调整语序和表达方式,在不改变原意的基础上,优化句子结构,使其更具学术性和专业性。” 同时,您还可以补充一些相关的背景信息或特定的学科领域,以便 AI 更好地理解您的需求并进行更精准的润色。 常见的适合文章润色的 AI 工具包括: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体的 AI 写作助手,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于学生和写作人员的多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 总的来说,这些 AI 工具涵盖了文章润色的各个环节,包括校对、改写、大纲生成、内容生成等,可以有效提高写作效率和质量。科研人员和学生可以根据自身需求选择合适的工具进行使用。
2024-10-20
神经活动中内在思想的逻辑演算
以下是关于您提到的“神经活动中内在思想的逻辑演算”的相关内容: 在神经网络和深度学习的发展历程中,沃伦·麦卡洛克(Warren McCulloch)和沃尔特·皮兹(Walter Pitts)曾表明,把二进制输入值加起来,并在和大于一个阈值时输出 1,否则输出 0 的神经元模型,可以模拟基本的或/与/非逻辑函数。这为后续对神经活动中内在思想的研究奠定了基础。 同时,在相关研究中,弗兰克·罗森布拉特(Frank Rosenblatt)构想了感知机,它作为简化的数学模型解释大脑神经元如何工作。感知机取一组二进制输入值,将每个输入值乘以一个连续值权重,并设立一个阈值,如果这些加权输入值的和超过这个阈值,就输出 1,否则输出 0 。 此外,1986 年提出的构想让人们广泛理解了应该如何训练多层神经网络解决复杂学习问题,使得神经网络得以回归和发展。 参考文献: Christopher D.Manning. , 701–707.↩ F.Rosenblatt. The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957.↩ W.S.McCulloch and W.Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5:115–133, 1943.↩ The organization of behavior: A neuropsychological theory. D.O.Hebb. John Wiley And Sons, Inc., New York, 1949 ↩ B.Widrow et al. Adaptive ”Adaline” neuron using chemical ”memistors”. Number Technical Report 15532. Stanford Electron. Labs., Stanford, CA, October 1960.↩ “New Navy Device Learns By Doing”, New York Times, July 8, 1958.↩ Perceptrons. An Introduction to Computational Geometry. MARVIN MINSKY and SEYMOUR PAPERT. M.I.T. Press, Cambridge, Mass., 1969.↩ Linnainmaa, S. . The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master’s thesis, Univ. Helsinki.↩
2024-10-09