Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

ai的底层逻辑

Answer

AI 的底层逻辑主要涉及以下几个方面:

  1. 大模型的底层原理:
    • 大语言模型依靠概率计算逐字接龙的方式工作,平时看到的逐字输出并非特效,而是其真实的工作方式。
    • 大模型参数规模的增加,如从 GPT-1 的 1.5 亿到 GPT-3.5 的 1750 亿,实现了量变到质变的突破,从而“涌现”出智能。这种“涌现”结构在人类的进化和个体学习成长中也存在。
    • 预训练是大模型获取知识的方式,其需要大量时间和算力资源。在没有外部帮助的情况下,大模型的知识信息可能不完备且滞后。
    • GPT 是生成式预训练转换器模型(Generative Pre-trained Transformer),生成式指大模型根据已有输入不断计算生成下一个字词,直至计算出[end of text]概率最大时结束输出。
  2. 必须理解的核心概念:
    • LLM 是 Large language model 的缩写,即大语言模型。
    • Prompt 是提示词,即输入给大模型的文本内容,其质量会显著影响回答质量。
    • Token 是大模型语言体系中的最小单元,不同厂商对中文的切分方法不同,通常 1Token≈1-2 个汉字,大模型的收费和输入输出长度限制以 token 为单位。
    • 上下文指对话聊天内容的前后信息,其长度和窗口会影响大模型回答质量。
Content generated by AI large model, please carefully verify (powered by aily)

References

走入AI的世界

没错,这就是大语言模型真实工作的样子,平时使用大模型看到他逐字输出的样子,并不是程序员做的酷炫“打字机”效果,而是大模型就是如此这般工作的。按照我们的常识认知,这种依靠概率计算逐字接龙的方法,恐怕连生成一个通顺的句子都难,更别提生成高质量有意义的回答了,为什么这种方法会有效呢?答案就是大,GPT-1的参数规模是1.5亿,GPT-2 Medium的参数规模是3.5亿,到GPT-3.5时,他的参数规模来到了惊人的1750亿,我们常说大力出奇迹,参数规模的增加,使得大模型实现了量变到质变的突破,最终“涌现”出了这种惊人的“智能”。反观人类自身,无论是长周期看物种的进化,还是短周期看一个个体的学习成长历程,都有这样“涌现”的结构,就像当我打下这些文字的时候,我的大脑也在神奇的进行着快速的语言组织,这个边打字边思考边输出的过程,又何尝不是一场接龙游戏呢?图15文字接龙游戏预训练(Pre-trained):正如我们前面五点朴素洞察提到的,人类是不知道自己没见过/学过的知识的,大模型也是如此,大模型“脑袋”里存储的知识,都是预先学习好的,这个预先学习并把对知识理解存储记忆在“脑袋”里的过程,就称为预训练。预训练是需要花费相当多的时间和算力资源的,当你了解并意识到预训练机制的时候,你就会明白,在没有其他外部帮助(例如使用浏览器插件,RAG等)的情况下,大模型所知道的知识信息总是不完备的,滞后的(非实时)。

走入AI的世界

总结一下,以上这段讨论,你要重点记住这句话:模仿人类大脑结构的AI,也自然而然的表现出人的特征,很多我们应对大模型回答不及预期的解决之道,也和人与人交流沟通的技巧如出一辙,息息相关。关于这一点,我们会在后续各种真实案例的分析拆解中再来讨论。GPT的全称是生成式预训练转换器模型(Generative Pre-trained Transformer),他的名字里就蕴含了大量重要的信息,接下来我们来聊聊GPT这三个字母的分别含义:图14 Generative Pre-trained Transformer生成式(Generative):所谓生成式,说的是大模型是根据已有的输入为基础,不断计算生成下一个字词(token),从而逐字完成回答的过程。这一过程,像极了一个单字接龙的游戏,图15中给出了一个简单的例子做为说明:1.一开始我们给了大模型一些提示词Prompt,为了简化,在图中这个提示词只有一个单词:How;2.接下来,大模型会结合自己“大脑中存储的知识”进行计算推理,算出how后面接are这个单词的概率最大,于是输出are接在how后面;3.在已知how are的情况下,大模型再次推理计算,算出how are后面接you这个单词概率最大,于是输出you接在how are后面;4.不断重复上面步骤,每次大模型会多输出一个词(token),新的输出会和过去的输入一并成为新的输入,用来计算下一个词;5.直到计算出下一个词是[end of text]的概率最大,于是结束输出,回答结束([end of text]是一个特殊的token,用来终止对话输出)

走入AI的世界

首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行😌Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)

Others are asking
今天为止,列出你认为最好的前十个AI
以下是截至今天认为较好的前十个 AI: 1. ChatGPT:在 2022 年 9 月至 2023 年 8 月期间拥有 146 亿次访问量,在美国使用率最高,受众以男性为主,多数通过移动设备访问,每次会话平均参与时间接近 10 分钟。 2. Character AI 3. QuillBot 4. Midjourney 5. Hugging Face 6. Google Bard 7. NovelAI 8. CapCut 9. JanitorAI 10. Civitai 此外,还有一些在特定领域表现出色的 AI 应用,如: 作业帮智能辅导:提供 AI 在线教育个性化辅导,利用机器学习和自然语言处理技术,市场规模百亿美元以上。 小红书穿搭推荐:通过图像识别和数据分析为用户提供时尚穿搭建议,市场规模数十亿美元。 蚂蚁财富智能理财助手:运用数据分析和机器学习提供专业投资建议,市场规模百亿美元以上。 以上信息仅供参考,AI 领域发展迅速,排名和评价可能会随时间变化。
2024-12-28
ai知识库
以下是关于 AI 知识库的相关内容: “通往 AGI 之路「WaytoAGI」是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。它不仅是一个知识库,更是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。 我们是一个公益开源社区,坚信人工智能将重新塑造我们的思考和学习方式,激发了创建这个知识库的决心。在搭建过程中收获很多,特别感谢支持和推荐的伙伴们。 知识库就像是 AI 的“活字典”,可以随时更新。比如建立包含最新新闻、科技发展、法律法规等内容的知识库,让 AI 遇到不确定问题时能检索相关信息给出更准确回答。像很火的 AI 搜索,就是将整个互联网的实时数据作为知识库,每次被询问时通过搜索引擎获取最新信息。 无论您是 AI 初学者还是行业专家,都可以在这里发掘有价值的内容,让更多的人因 AI 而强大。我们在共创计划的道路上,不断收获,快速成长,期待在未来的旅程中,能够持续为大家带来更多、更好的内容。”
2024-12-28
生成图像的AI
以下是关于生成图像的 AI 的相关信息: 生成式 AI 对创意工作产出(如图像生成)影响巨大,在效率和成本方面带来显著改进。其工作方式是接收用户的简单文本输入(即提示),然后生成视觉输出,目前能创建多种输出格式,包括图像、视频、3D 模型和纹理。例如,可通过在少量照片上重新训练预训练的图像模型,实现特定领域的图像生成。生成图像在成本和速度上相比传统方式具有极大优势。 AI 绘图 Imagen3 具有以下功能点和优势: 功能点: 根据用户输入的 Prompt 生成图像。 Prompt 智能拆解,提供下拉框选项。 提供自动联想功能,帮助用户选择更合适词汇。 优势: 无需排队,可直接使用。 免费使用。 交互人性化,如自动联想和下拉框选项。 具有较好语义理解能力,能生成符合描述的图像。 灵活性强,用户可根据自动联想调整 Prompt 生成不同图像。 目前市场上一些受欢迎的文生图工具包括: DALL·E:OpenAI 推出,能根据文本描述生成逼真图片。 StableDiffusion:开源,可生成高质量图片,支持多种模型和算法。 MidJourney:因高质量图像生成效果和用户友好界面设计受欢迎,在创意设计人群中流行。 您还可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104)查看更多文生图工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-28
目前的AI插件产业实践有哪些,需要收费的又有哪些
目前的 AI 插件产业实践中,以开发 AI Share Card 插件为例: 技术方案:将模板生成功能设计为固定的代码组件,让大模型专注于内容总结的功能。若用户需要其他模板,可通过增加更多模板选项或自定义模板代码功能实现。 对 AI 大模型的要求:处理纯文本总结任务,仅需 13B 或更小参数的模型,加上精调的提示词就能产生很好结果。 AI API 服务的选型要求: 较长的上下文窗口,因为内容总结类任务需要较大的上下文长度。 响应速度要快、并发支持要高,以在多人使用插件时保持良好性能表现。 免费或尽量低价,以减少模型 token 费用。例如选用的 GLM4flash(截至 202412,长达 128k 的上下文窗口,完全免费的调用价格,200 RPM 高并发支持)。 需要收费的 AI 插件因具体应用和服务提供商而异,常见的收费方式包括按使用量计费、订阅制等。但像上述提到的 GLM4flash 在特定时间内是免费的。
2024-12-28
想通过PPT制作AI教学视频
以下是关于通过 PPT 制作 AI 教学视频的相关信息: 一、开箱即用的解决方案 目前体验和 AI 能力支持较好的产品有 Synthesia、HeyGen AI、DID 和 Opus Clip。前三者是 AI Avatar+语音生成快速生产视频的产品,Move AI 能轻松实现动作捕捉。 Synthesia 1. 产品特点:无需麦克风、摄像机、专业演员出镜即可制作视频,内置 100 多种人物形象和多语言配音能力,帮助企业节省制作费用和周期,能一键生成多国语言视频,便于企业本土化推广,主要服务企业客户,付费方案类似 MJ 的流量策略。 2. 功能介绍:可以通过简单的 PPT 制作生成视频 Demo,可以替换 AI 头像库中的形象、制作简单的动画等,同时支持多种视频(PPT)模板。 官网地址:https://www.synthesia.io/?via=elegantthemes 二、几款 PPT 生成工具(网站) 1. 剪映:图文成片(只需提供文案,自动配图配音) 2. BibiGPT:可以支持小红书、B站等网站视频的归纳总结,还可以提问互动,答案还会附上对应的视频节点。推荐链接:https://bibigpt.co/r/Bm63FV 、https://bibigpt.co/ 三、智慧课程培育建设相关 1. AI 助力教学设计:为新时代课程赋能,包括教学革新(AI 支持教学目标设定和教学活动设计,使教学更加个性化、精准和高效)、个性化学习(AI 能根据不同学生的学习需求,提供差异化教学内容,提高学习效果)、实用策略(提供在教学设计中整合 AI 的具体方法和步骤,如利用 AI 工具进行学情分析、智能推荐等)。 2. 其它视频工具推荐:BibiGPT 四、COZE 应用:语文教学助手 1. 访问地址:https://www.coze.cn/s/iDsBwYLF/ 2. 首页说明:启动页面说明 3. 生成教案:进入设计教案页面,等待执行完成后即可看到教案(教案是以下三个功能的基础,所有功能都以教案为中心) 4. 趣味课堂:进入趣味课堂,根据课文内容设计课堂问答卡和针对性的教学活动,采用寓教于乐的方式激发孩子学习兴趣,如通过 5 个问题贯穿全文与故事主线,还有课堂互动游戏。 5. 课后作业:基于教学大纲和课本重点内容设计题目,包括生字词运用、阅读理解、写作。 6. 教案 PPT:PPT 内容基于前面生成的教学大纲,需要手动进行少许内容修正,若对大纲内容不满意,可重新生成大纲和 PPT。 7. 作业批改:建议把上传文件的名字修改得有意义一些,所有批改记录会进行归类并保存。
2024-12-28
国内AI预测股票走势的工具
目前国内利用 AI 技术进行金融投资分析的工具,例如东方财富网的投资分析工具。它通过数据分析和机器学习等技术,分析金融市场数据,为投资者提供投资建议和决策支持。比如会根据股票的历史走势和市场趋势,预测股票的未来走势。但需要注意的是,股票走势受到多种复杂因素的影响,AI 预测结果仅供参考。
2024-12-28
ChatGPT的底层原理是什么
ChatGPT 的底层原理主要包括以下几个方面: 1. 数据获取与训练:从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本。 2. 神经网络结构:由非常简单的元素组成,尽管数量庞大。基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”(没有任何循环等)。 3. 生成文本方式:通过自回归生成,即把自己生成的下一个词和之前的上文组合成新的上文,再生成下一个词,不断重复生成任意长的下文。 4. 训练目的:不是记忆,而是学习以单字接龙的方式训练模型,学习提问和回答的通用规律,实现泛化,以便在遇到没记忆过的提问时,能利用所学规律生成用户想要的回答。 5. 与搜索引擎的区别:搜索引擎无法给出没被数据库记忆的信息,而ChatGPT作为生成模型,可以创造不存在的文本。 其结果表明人类语言(以及背后的思维模式)的结构比我们想象的要简单和更具有“法律属性”,ChatGPT已经隐含地发现了它。同时,当人类生成语言时,许多方面的工作与ChatGPT似乎相当相似。此外,GPT的核心是单字接龙,在翻译等场合应用时,先直译再改写能使Transform机制更好地起作用。
2024-12-03
ai的底层逻辑是什么
AI 的底层逻辑包括以下几个方面: 1. 决策方面:AI 在越来越多的场景落地,成为企业管理和决策的重要工具。然而,AI 的决策过程并非真正的“理解”,而是基于复杂计算和模式匹配,其本质存在局限性,是个“黑盒”,输出结果可见但决策过程难以理解,这种不透明性给企业决策带来风险。 2. 大模型方面:大模型依靠概率计算逐字接龙工作,参数规模的增加使其实现量变到质变的突破,从而“涌现”出智能。大模型的知识是通过预训练预先学习和存储的,但在没有外部帮助时,其知识信息可能不完备和滞后。 3. 神经网络方面:计算机科学家以人脑神经元细胞结构为灵感,利用概览模型在计算机上实现对人脑结构的模仿,但大模型内部如同人类大脑一样是混沌系统,即使是开发者也无法解释其微观细节。
2024-11-13
如果想学习ai,作为ai产品经理,需要ai底层的算法掌握到什么程度
作为 AI 产品经理,对 AI 底层算法的掌握程度需要达到以下几个方面: 1. 理解产品核心技术:了解基本的机器学习算法原理,以便做出更合理的产品决策。 2. 与技术团队有效沟通:掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性:在产品规划阶段,能够准确判断某些功能的技术可行性。 4. 把握产品发展方向:了解算法前沿,更好地把握产品未来的发展趋势。 5. 提升产品竞争力:发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力:掌握相关算法知识,提升数据分析能力。 同时,如果希望在 AI 领域继续精进,还需要了解以下基础内容: AI 背景知识: 基础理论:清楚人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 评估和调优: 性能评估:知道如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学会使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等的基本结构。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-05
AIGC的底层科学原理是神经网络吗?
AIGC 的底层科学原理包含神经网络。 神经网络是一种模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。它由大量的人工神经元联结进行计算,是一种自适应系统,具备学习功能。 在 AI 领域,神经网络是一种重要的技术。深度学习就是一种参照人脑结构,包含神经网络和神经元的方法(因层数较多而称为深度)。神经网络可以用于监督学习、无监督学习、强化学习等多种学习方式。 同时,Transformer 模型的出现也对 AIGC 产生了重要影响,它完全基于自注意力机制处理序列数据,比循环神经网络更适合处理文本的长距离依赖性。
2024-10-30
AI搜索的底层逻辑是怎样的
AI 搜索的底层逻辑主要是“检索增强生成(RAG)”,具体包括以下步骤: 1. 检索(Retrieve):使用用户的查询(query)调用搜索引擎 API,获取搜索结果。 2. 增强(Augmented):设置提示词,将检索结果作为挂载的上下文。 3. 生成(Generation):大模型回答问题,并标注引用来源。 在检索过程中,还涉及以下原理: 1. 信息筛选与确认:对检索器提供的信息进行评估,筛选出最相关和最可信的内容,并验证信息的来源、时效性和相关性。 2. 消除冗余:识别和去除多个文档或数据源中的重复信息,避免在生成回答时出现重复或矛盾。 3. 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建结构化的知识框架。 4. 上下文构建:将筛选和结构化的信息组织成连贯的上下文环境,包括排序、归类和整合。 5. 语义融合:必要时合并意义相近但表达不同的信息片段,减少语义重复并增强表达力。 6. 预备生成阶段:将整合好的上下文信息编码成适合生成器处理的格式,如转化为适合输入到生成模型的向量形式。 最后,全新的上下文被传递给大语言模型,大语言模型根据提供的信息生成准确和连贯的答案。影响 AI 搜索的关键因素包括挂载的上下文信息密度和基座模型的智能程度。在响应速度方面,Retrieve 要求联网检索信息的速度快,Generation 要求大模型生成内容的速度快,同时为提高准确度可能存在耗时的重排和获取内容详情步骤。
2024-10-16
模型训练的底层原理
模型训练的底层原理如下: 对于多模态模型,以生图片环节的扩散模型(如 StableDiffusion)为例,其训练过程是先对海量带有标注文字描述的图片逐渐加满噪点,模型学习并沉淀每一步图片向量值和文字向量值的数据分布演变规律。后续输入文字后,模型根据文字转化的向量指导充满噪点的图片减噪点以生成最终图片。 大语言模型在接收到请求时,会将自然语言转化为机器可理解的向量格式。其训练过程类似于通过已知的几组值计算方程式中的参数,大语言模型的参数可能多达 1750 亿个。 大型语言模型(LLMs)的参数获取是关键,训练是一个计算量极大的过程,如 Llama2 70B 模型的训练涉及约 10TB 的互联网文本抓取,需要大量互联网资源和约 6000 个 GPU 运行约 12 天,花费约 200 万美元,将文本压缩成参数文件,这是一种有损压缩,得到的是训练文本的一种格式塔。
2024-10-15
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。介绍技术点的技术逻辑以及技术细节。
目前在游戏领域应用的前沿 AI 技术点主要包括以下几个方面: 1. 利用 AIGC 技术实现游戏产业的生产力革命: 降低开发成本:借助人工智能的内容创作工具,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等,能够缩减游戏开发的成本。 缩短制作周期:例如通过程序化内容生成,包括利用人工智能生成文字、图像、音频、视频等来创作游戏剧本、人物、道具、场景、用户界面、配音、音效、配乐、动画和特效等,从而减少游戏开发时间。 提升游戏质量和带来新交互体验:AIGC 技术为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。 2. 游戏内容辅助生成: 生成文、生成图、生成 3D 以及生成音乐。应用场景包括游戏策划人和制作人、美术设计师等。 对于工业化的游戏公司,基于 Stable Difussion 的生成能够通过 2D 美术素材的辅助生成提高创业效率 50%,降低 20%80%的成本。 文生图:通过提示词加参数就可以形成 2D 的参考图,适配度高。 图生图:原画师或美术可以使用,用一个线稿或原画,在原画基础上加一些 Prompt 和参数,就可以形成一个效果图和二级的素材。 动画辅助渲染:用 Lora 对角色背景、关键帧进行风格渲染,例如将真人视频渲染成二次元风。 3. 游戏的智能运营: 智能 NPC 互动:保持长期记忆,保持人物个性和对话表现形式,同时满足成本平衡。 客服、攻略的问答、代码和脚本的生成。主要针对游戏的产品经理、运营经理和社区的运营经理。 游戏社区运营:如海外的 Discord,国内的 Fanbook,让更多玩家在游戏之外,在社群里面很好地互动,基于游戏的美术素材进行二创、查询攻略和使用智能客服。 这些技术的技术逻辑和技术细节如下: 1. AIGC 技术:基于大语言模型和扩散模型,通过机器学习、强化学习等先进技术进行训练,能够理解和生成各种游戏相关的内容。 2. 游戏内容辅助生成:利用深度学习算法对大量的游戏相关数据进行学习和分析,从而能够根据给定的提示或参数生成相应的游戏内容。 3. 智能运营方面:通过构建智能模型,对玩家的行为和需求进行分析和预测,从而提供个性化的服务和互动。
2024-12-22
如何利用GPT进行逻辑回归分析
利用 GPT 进行逻辑回归分析可以参考以下步骤: 1. 首先,在数据准备阶段,明确需要分析的数据内容,例如用户描述想分析的内容,或者上传相关文件并描述其数据、字段意义或作用等,以辅助 GPT 理解数据。 2. 对于 SQL 分析,后台连接数据库,附带表结构信息让 GPT 输出 SQL 语句,校验其是否为 SELECT 类型,其他操作如 UPDATE/DELETE 绝不能通过。校验通过后执行 SQL 返回结果数据,再将数据传给 GPT(附带上下文),让其学习并分析数据。 3. 在与 GPT 的交互过程中,不断输入真实的业务需求场景以及现存的问题,帮助 GPT 更好地理解需求,例如输入旧代码、需求和问题,让 GPT 给出针对性的优化建议。 4. 根据 GPT 给出的结果进行调试和优化,可能需要多轮的输入输出(类似讨论),不断强化 GPT 对真实需求的认知。 5. 例如在 SQL 优化方面,GPT 可能提出如每次更新 1 天而不是 30 天的数据、创建中间结果表存储非二次计算的数据、利用 CASE WHEN 合并查询约束条件基本相同的指标等建议。然后根据这些建议结合自身的能力进行代码优化和测试。 需要注意的是,整个过程可能比较繁琐,需要有一定的耐心,包括查资料、处理报错、纠正 GPT、不断补充需求细节等。
2024-12-13
当前国内逻辑推理能力最强的大模型是什么
目前国内逻辑推理能力较强的大模型有以下几种: 1. Baichuan213BChat(百川智能):是百川智能自主训练的开源大语言模型。在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名 200 亿参数量级国内模型第一,其中逻辑推理能力超过 34B 参数量级的大模型,生成与创作能力超过 72B 参数量级的模型。可应用于小说/广告/公文写作等内容创作场景、智能客服/语音助手以及任务拆解规划等场景,还能部署在教育、医疗、金融等垂直行业中应用,同时可部署在低算力终端处理基础智能任务。 2. 智谱清言(清华&智谱 AI):是智谱 AI 和清华大学推出的大模型产品,基础模型为 ChatGLM 大模型。在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。可应用于 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景,在较复杂推理应用上的效果也不错,广告文案、文学写作方面也是很好的选择。 3. 文心一言 4.0API(百度):在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一。另外在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三。能力栈较为广泛,可应用于查询搜索知识应用、任务拆解规划 Agent、文案写作以及代码编写及纠错等方面,在科学研究、教育、工业方面的落地能力也值得关注。
2024-12-08
不确定逻辑增长模型
对于逻辑增长模型的相关问题,以下是为您提供的信息: 张俊林在相关研究中指出,对于简单或中等难度的逻辑推理问题,通过 inferencetime 增加算力,比如树搜索等方式,比增强模型“预训练”阶段的逻辑推理能力效果更明显。这一结论来自于文献“Scaling LLM TestTime Compute Optimally can be More Effective than Scaling Model Parameters”及“Are More LM Calls All You Need?Towards the Scaling Properties of Compound AI Systems”。 其原因在于,对于简单或中等难度的问题,模型在 inference 时很可能给出答案中的大部分步骤是对的(或多次采样中多数是对的),只有个别步骤错误,通过如 BestofN Sampling 这种简单树搜索方法增加输出的多样性,加上靠谱的 Verifier 筛选,较容易修正小错误。但对于高难度的逻辑问题,模型输出内容中大部分步骤可能都是错的(或多次采样中大多数都是错的),此时仅靠 inferencetime 增加算力难以解决。 此外,OpenAI o1 的基座模型,在 Pretraining 还是 Posttraining 阶段,大概率极大增强了基座模型的复杂逻辑推理能力,这是它能在后续 inferencetime 增加算力解决复杂问题的根基。所以,只靠 inferencetime 增加算力,仅对容易和中等难度的逻辑问题有用,想要不断提升模型的复杂推理能力,还需要继续在 PreTrain 和 PostTraining 阶段下功夫。
2024-12-05
哪款AI工具写小说逻辑性更好
以下是一些在写小说逻辑性方面表现较好的 AI 工具: ChatGPT:擅长构思。 Claude:文笔好于 ChatGPT。 使用 AI 写小说时存在一些固有问题,如上下文长度限制、易忘记要求、文笔简略、一致性难以保证、对叙述方式敏感等。但人类可以通过一些技巧来利用 AI 辅助创作,例如让 AI 以表格形式输出细节描述等。同时要记住,AI 只是辅助创作,最后仍需人类进行加工和修改以满足读者要求。
2024-11-25
文本可视化形成各种鱼骨图,逻辑图,时序图等等
以下是关于文本可视化形成各种鱼骨图、逻辑图、时序图等的相关内容: 生成流程图、时序图的方式主要有两种: 1. 可视化拖拽: 代表产品有:(web 工具)、visio(本地软件)。 优点:直观。 缺点:需要花时间在布局上。 2. 语法渲染成图形: 代表语法:。 优点: 只用关注逻辑,文本即图形,方便直接嵌入在 markdown 文件中,比如在用 tyora、markdown 写文档时。 多样性,不同渲染引擎可渲染成多种样式。 缺点:有点抽象。 使用 ChatGPT 生成图形语法的流程如下: 1. 确定制作目标。 2. 通过自然语法描述逻辑。 3. 在线校验测试是否成功。 在软件架构设计中,以下是一些可以用于绘制逻辑视图、功能视图和部署视图的 AI 工具和传统工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可使用拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具一起使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现在称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2024-11-25