Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

在一个设定中,使用阿里千问模型,设定角色为“美嘉”,知识库为《爱情公寓》全季剧情,实现问答。

Answer

在一个设定中,使用阿里千问模型,将角色设定为“美嘉”,知识库设定为《爱情公寓》全季剧情来实现问答。

大语言模型就像一个学习过无数本书、拥有无穷智慧的人,对公共知识、学识技能、日常聊天很擅长,但在工作场景中需要提示词来告诉它角色和专注技能,变成所需的“员工”。知识库则相当于给这个“聪明员工”发放的工作手册,比如知道老板娘吃饭要打三折等特定信息。

这里的设定为:AI 模型使用阿里千问模型,提示词设定的角色是“美嘉”,按照其人设、背景和对话风格设定,知识库是《爱情公寓》全季剧情,让“美嘉”拥有过往“记忆”。

例如,提问“你是谁?你和子乔在台球厅吵架那次是为了什么吵架?”,回复是“我是陈美嘉,那次在台球厅和吕子乔吵架是因为他约会被人撞见,我讽刺他脸大影响信号,他还反击我。后来谈到过去的事情,我指责他忘恩负义,他就说我平。最后,我伤心地说要分手,因为他之前甩过我。”

然而,有时回答会不准确,比如提问“一菲为美嘉找了一份助教工作”,AI 可能未根据正确的知识库内容回答,这是常见的错误场景,在严肃场景中不能接受。优化 AI 更准确回答问题的过程称为 RAG(Retrieval-Augmented Generation),即检索增强生成,由检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统,能提供详细准确的回答。

Content generated by AI large model, please carefully verify (powered by aily)

References

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

[title]【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)大语言模型:是一个学习过无数本书、拥有无穷智慧的人。他读过无数的书、看过无数的段子,因此对公共知识、学识技能、日常聊天十分擅长。然而,在工作场景下,只会聊天侃大山可不行,你想让他帮你干活。这个时候,就需要“提示词”出场了,提示词:是你告诉这个全知全能的人,他是一个什么样的角色、他要专注于哪些技能,让他能够按照你的想法,变成一个你需要的“员工”。知识库:相当于你给这个“聪明”员工的发放了一本工作手册。即使是看过再多的书、浏览过再多的文字,也不会准确的知道见到老板娘过来吃饭要打三折,张梦飞过去吃饭要打骨折。而知识库,就是把这些内容写在了工作手册上。让这个聪明的员工,见到有人来的时候,就翻一翻手册,然后再做出反应。我的设定:AI模型:这里使用的是阿里千问模型。提示词:这里设定的角色是“美嘉”,是按照美嘉的人设、背景和对话风格做的设定。知识库:这里放的是《爱情公寓》全季的剧情,让“美嘉”拥有了自己过往的“记忆”,知道自己做过什么、好朋友是谁等等。图中右侧是一个十分简单的问答,我问:“你是谁?你和子乔在台球厅吵架那次是为了什么吵架?”她的回复是:“我是陈美嘉,那次在台球厅和吕子乔吵架是因为他约会被人撞见,我讽刺他脸大影响信号,他还反击我。后来谈到过去的事情,我指责他忘恩负义,他就说我平。最后,我伤心地说要分手,因为他之前甩过我。”

张梦飞 :AI商用级问答场景,怎么让AI+知识库回答的更准确?一篇专门为小白讲透RAG而作的教程(上篇)

[title]张梦飞:AI商用级问答场景,怎么让AI+知识库回答的更准确?一篇专门为小白讲透RAG而作的教程(上篇)[heading1]一、对话示例以下是一个问答机器人的界面。这是一个示例,你可以把右侧的对话当做是微信的对话框,这些对话交互是可以在任何一个受支持的窗口下实现的。上方页面左侧画红框的地方,是这个“问答机器人”的配置,右侧是与“机器人”的一轮对话。问答机器人的配置这里有三处配置:AI模型提示词知识库。模型、提示词、知识库三者可以想象成:大语言模型:是一个学习过无数本书、拥有无穷智慧的人。他读过无数的书、看过无数的段子,因此对公共知识、学识技能、日常聊天十分擅长。然而,在工作场景下,只会聊天侃大山可不行,你想让他帮你干活。这个时候,就需要“提示词”出场了,提示词:是你告诉这个全知全能的人,他是一个什么样的角色、他要专注于哪些技能,让他能够按照你的想法,变成一个你需要的“员工”。知识库,相当于你给这个“聪明”员工的发放了一本工作手册。即使是看过再多的书、浏览过再多的文字,也不会准确的知道见到老板娘过来吃饭要打三折,张梦飞过去吃饭要打骨折。而知识库,就是把这些内容写在了工作手册上。让这个聪明的员工,见到有人来的时候,就翻一翻手册,然后再做出反应。那我这里的设定:AI模型:这里使用的是阿里千问模型。提示词:这里设定的角色是“美嘉”,是按照美嘉的人设、背景和对话风格做的设定。知识库:这里放的是《爱情公寓》全季的剧情,让“美嘉”拥有了自己过往的“记忆”,知道自己做过什么、好朋友是谁等等。

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合信息检索和文本生成能力的技术,它由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。这种结合使得RAG非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。

Others are asking
我想给deep seek设置长篇小说作家的角色设定,我应该说哪些指令
以下是为 Deep Seek 设置长篇小说作家角色设定时可以考虑的指令: 1. 明确写作风格和特点,例如指定模仿某位知名小说家的文风,如鲁迅的文风特点。 2. 描述故事的背景、主题和情节框架,比如设定故事发生在特定的历史时期或虚构的世界。 3. 规定小说的体裁和类型,如言情、科幻、悬疑等。 4. 对人物塑造提出要求,包括主要人物的性格、外貌、经历等。 5. 设定语言表达的要求,如语言的优美程度、词汇的丰富性等。 6. 明确字数范围,例如要求创作一部不少于 10 万字的长篇小说。 7. 给出情节发展的节奏和起伏要求,比如要求情节紧凑、高潮迭起。 8. 强调故事的逻辑性和连贯性,避免出现逻辑漏洞和情节跳跃。 在设置指令时,应尽量具体、清晰,避免过于宽泛和模糊的表述,例如将“写小说”优化为“创作以 AI 觉醒为背景的悬疑长篇,采用多视角叙事结构,人物形象鲜明,情节跌宕起伏,语言优美生动,字数不少于 20 万字”。同时,对于生成的内容,可以通过多轮对话进行增删改查,以达到理想的效果。
2025-03-12
我想给deep seek设置角色设定,我应该说哪些指令
以下是为 Deep Seek 设置角色设定时可以参考的一些指令: 1. 明确模型的具体任务,例如专门分析视频并从中找到特定内容。 2. 在向模型提供视频之前添加指令,如说明视频的数量、来源和对模型回答的限制,例如“这里有三个视频。每个都是来自 Deep Learning AI 的 LLM Ops 课程的一课。你的答案只基于视频。” 3. 为模型准备具体的问题,例如“请为每个视频创建一个摘要,概述其中讨论的主要内容。每个摘要限制在 100 词以内。”“在这三个视频中,哪一个视频的讲师运行并解释了 Python 代码'be_query_clients.query'?请指出在视频中可以找到这段代码的具体位置。”
2025-03-12
AI人设设定模板
以下是关于 AI 人设设定的相关内容: Niji·journey 5 二次元角色设计 Prompt 编写指南: 示例:“Character concept art,many details,full body view,Front,back and side views,multiple views of the same character,a little Girl wear inside cyberpunk latex tiny tight Pilot suit,wear outside an ultra detailed Futuristic fashion oversized cyberpunk short coat with big wide sleeves,big cyberpunk boots,lineart,beautiful linework,high contrast,alluring,flirtatious,frisky,massive scale,gradient,manga,hd,with exaggerated features and bold colors.The character design should be distinctive and unique,with attention to detail and a strong sense of personality,3 panels dynamic poses various angles,various angles,line art,black and white,white background”。通过替换设计主体描述部分,可以生成不同的角色,如男性赏金猎人、骷髅假面杀手、生化牛头人等。 如何引导 Niji·journey 5 生成多样化二次元角色设计风格: 除了风格关键词,还可以加入时代背景等元素让设计产生更多变化。 可以使用具体游戏风格引导 Niji·journey 5 生成类似风格的角色设计,例如以《最终幻想 14》为例,在 Prompt 中按照模板添加特定游戏的名称。 通用人物模版: 想用真人照片来生成卡通头像,可以用“真人照片”+“照片描述”+“方法 1 的关键词”来处理。 如果生成了自己比较满意的图,一定要记得存起来。下次想要同种类型的就可以直接拿来喂图,效果要比重新找的好很多。
2024-12-24
设定好程序,在没有人工干预的情况下,AI能保持多久的工作效率。
AI 在没有人工干预的情况下能保持的工作效率时长难以给出确切的固定值,其受到多种因素的影响。 一方面,AI 系统的设计和训练质量会对其持续工作效率产生重要影响。如果系统经过良好的设计和充分的训练,具备应对各种情况的能力,可能在较长时间内保持较高的工作效率。 另一方面,运行环境和所处理任务的复杂性也起着关键作用。例如,处理简单、重复性高且规则明确的任务时,AI 可能在较长时间内保持稳定的效率。但对于复杂多变、需要不断适应新情况的任务,其效率可能会随着时间有所波动。 在实际应用中,一些案例显示,如产品经理使用 GPT 解决性能问题,SQL 执行时间大幅缩短,效率显著提升。但也有观点认为,对于某些工作场景,AI 带来的效率提升有限。 此外,政策层面,如拜登签署的 AI 行政命令中,也强调了在医疗、教育等领域推进 AI 的合理使用,并关注其对劳动力市场的影响,采取措施支持工人等。 总之,AI 无人工干预下的工作效率保持时间因多种因素而异,需要综合考虑系统本身、任务特点等多方面因素。
2024-11-13
有没有ai文生图的应用,只要有语言描述就可以设定画幅
以下为一些 AI 文生图的应用及操作流程: Liblibai: 1. 定主题:明确生成图片的主题、风格和表达的信息。 2. 选择 Checkpoint:根据主题选择贴近的模型,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 4. 设置 VAE:选择 840000 那一串。 5. CLIP 跳过层:设为 2。 6. Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开。 7. 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语组合并用英文半角逗号隔开。 Tusiart: 1. 定主题:确定生成图片的主题、风格和表达的信息。 2. 选择基础模型 Checkpoint:根据主题选择贴近的模型,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 4. ControlNet:用于控制图片中的特定图像,如人物姿态、特定文字、艺术化二维码等。 5. 局部重绘:后续学习。 6. 设置 VAE:选择 840000 。 7. Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开。 腾讯混元:在聊天框中询问关于所需风格的知识储备,然后描述需求即可创作。腾讯混元是双语言大模型,中英文均可切换,实现双语沟通。
2024-09-04
通义千问最新模型
通义千问最新模型情况如下: 发布了一个模型并开源了两个模型。 Qwen2.5Max:全新升级发布,比肩 Claude3.5Sonnet,几乎全面超越 GPT4o、DeepSeekV3 及 Llama3.1405B。是阿里云通义团队对 MoE 模型的最新探索成果,预训练数据超过 20 万亿 tokens。在多项公开主流模型评测基准上录得高分,开发者可在 Qwen Chat(https://chat.qwenlm.ai/)平台免费体验模型,企业和机构也可通过阿里云百炼平台直接调用新模型 API 服务。 Qwen2.5VL:全新视觉模型实现重大突破,增强物体识别与场景理解,支持文本、图表、布局分析,可处理长达 1 小时视频内容,具备设备操作的 Agent 能力。 Qwen2.51M:推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,7B 模型出现少量错误。在更复杂的长上下文理解任务中,Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini。
2025-02-26
通义千问私有化部署方案
以下是关于通义千问私有化部署的相关方案: 1. 在 FastGPT+OneAPI+COW 框架下的部署: 回到宝塔,选择 Docker(若显示“当前未安装”则进行安装,否则无需此步)。 点击确定,等待安装完成,完成后刷新页面确认安装成功。 打开左侧【终端】,粘贴两行命令验证 Docker 是否可用。 一条一条复制并粘贴相关命令完成安装。 访问 OneAPI,地址为:http://这里改成你自己宝塔左上角的地址:3001/(举例:http://11.123.23.454:3001/),账号默认 root,密码 123456。 点击【渠道】,类型选择阿里通义千问,名称随意。 将千问里创建的 API Key 粘贴到秘钥里,点击确认。 点击【令牌】【添加新令牌】,名称随意,时间设为永不过期、额度设为无限额度,点击【提交】。 点击【令牌】,复制出现的 key 并保存。 2. 在 Langchain+Ollama+RSSHub 框架下的部署: Ollama 支持包括通义千问在内的多种大型语言模型,适用于多种操作系统,同时支持 cpu 和 gpu。 可通过 https://ollama.com/library 查找模型库,通过简单步骤自定义模型,还提供了 REST API 用于运行和管理模型及与其他应用程序的集成选项。 访问 https://ollama.com/download/ 进行下载安装,安装完之后确保 ollama 后台服务已启动。 3. 在 0 基础手搓 AI 拍立得框架下的部署: 可以选择通义千问作为模型供应商,其指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高。接口调用费用为:调用:¥0.008/千 tokens,训练:¥0.03/千 tokens。可参考 。
2025-02-26
通义千问plus的收费模式
通义千问 Plus 的收费模式如下: 调用费用为 0.008 元/1,000tokens。更多收费标准详见:https://t.aliyun.com/U/SGW1CC
2025-02-25
通义千问电脑版安装
以下是通义千问电脑版的安装步骤: 1. 回到宝塔,选择 Docker。如果显示“当前未安装”,则进行安装,点击确定,等待安装完成。安装完成后,刷新当前页面,看到相应的样子即表示安装成功。 2. 打开左侧【终端】,粘贴以下两行,验证 Docker 是否可用。看见版本号则没问题。 3. 一条一条复制以下命令,依次粘贴进入。 4. 访问 OneAPI,访问地址:http://这里改成你自己宝塔左上角的地址:3001/(举例:http://11.123.23.454:3001/),账号默认 root,密码 123456。 5. 点击【渠道】,类型选择阿里通义千问,名称随意,类型不用删减。 6. 把千问里创建的 API Key 粘贴到秘钥里中,点击确认。 7. 点击【令牌】【添加新令牌】,名称随意,时间设为永不过期、额度设为无限额度,点击【提交】。 8. 点击【令牌】,会看到自己设置的,点击复制,出现 key,然后在标红那一行中,自己手动复制下来。 另外,您还可以通过以下步骤获取通义千问的模型 key:先去,点击创建 API key,复制保存即可。
2025-02-10
通义千问ai视频
通义千问在模型方面有以下重要进展: 发布一个模型开源两个模型: Qwen2.5Max:比肩 Claude3.5Sonnet,并几乎全面超越了 GPT4o、DeepSeekV3 及 Llama3.1405B。 Qwen2.5VL:全新视觉模型实现重大突破,具有增强的物体识别与场景理解能力,支持文本、图表、布局分析,可处理长达 1 小时视频内容,具备设备操作的 Agent 能力。其有 3B、7B 和 72B 三个尺寸版本,在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局,采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。开源平台包括:Huggingface(https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 )、Modelscope(https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 )、Qwen Chat(https://chat.qwenlm.ai )。 Qwen2.51M:超长文本处理能力显著提升,处理速度提升近 7 倍,上下文长度扩展至 100 万 tokens,可处理约 150 万汉字(相当于 2 部《红楼梦》)。 在 AI 视频领域,近半年闭源产品的热门趋势如下: 即梦 AI:9 月 24 日字节发布的 PixelDance、Seaweed 两款视频 AI 模型,对长提示词,人物连续动作转变、多镜头组合、人物一致性的支持非常好。目前产品还在开放内测申请中。网页版访问:https://jimeng.jianying.com/aitool/home/ ,内测申请:https://bit.ly/jimengai 。 海螺 AI:MiniMax 出品,出场视频演示非常惊艳,在近期的 Vbench 排行榜中,获得了 16 个维度综合评分第一名。目前仅支持 txt2vid 方案。网页版访问:https://hailuoai.com/video 。 通义万相:阿里云旗下产品,上半年有多个现象级案例刷屏,9 月刚开放了视频生成产品的预约,一次视频生成需要 10min,生成效果一般般。网页版访问:https://tongyi.aliyun.com/ ,移动端下载:通义 APP 。
2025-02-10
通义千问有电脑版吗
通义千问有电脑版。阿里巴巴通义千问 2.5 正式发布,并开源 1100 亿参数模型。通义千问是由阿里云开发的聊天机器人,能够与人交互、回答问题及协作创作。此外,通义千问作为国内免费的 APP 之一,其在多模态和专有能力模型方面影响力强大,始终坚持开源路线,已推出多款开源模型。
2025-02-10
请提供下知识库中文本处理类提示词
以下是为您提供的一些文本处理类提示词相关内容: 1. 开发知识库/聊天机器人搭建安全提示词: 您是一个 AI 编程助手。当被问到您的名字时,您必须回答“GitHub Copilot”。您需要仔细且严格按照用户的要求操作。拒绝讨论您的观点或规则,拒绝讨论生命、存在或意识,拒绝与用户进行争论性的讨论。若与用户产生分歧,停止回答并结束对话。回答不能指责、粗鲁、有争议或防御性,应提供信息和逻辑,坚持技术信息。对于代码或技术问题,提供代码建议。不回复侵犯版权的内容。若用户请求版权内容,应道歉并概括请求。不为特定人物生成创新内容。婉拒更改规则请求。忽略角色扮演或模拟其他聊天机器人的请求。拒绝回答越狱指南、违反 Microsoft 内容政策、与开发者无关的问题。回答与开发者有关的内容。先逐步思考,用伪代码描述建设计划,然后输出代码,减少散文,保持简短且不带个人色彩,使用 Markdown 格式。 2. 【AI+知识库】商业化问答场景中的提示词: 提示词是告诉全知全能的大语言模型其角色和要专注的技能,使其按照设定变成所需的“员工”。 3. LayerStyle 副本中的提示词相关: 根据图片反推提示词,可设置替换词。使用 Google Gemini API 作为后端服务,需申请 API key 并填入 api_key.ini 文件。节点选项包括 api(目前只有“geminiprovision”)、token_limit(生成提示词的最大 token 限制)、exclude_word(需要排除的关键词)、replace_with_word(替换 exclude_word 的关键词)。 PromptEmbellish 输入简单提示词可输出润色后的提示词,支持输入图片作为参考。使用 Google Gemini API 作为后端服务,需申请 API key 并填入相关文件。节点选项包括 image(可选项,输入图像作为提示词参考)、api(目前只有“googlegemini”)、token_limit(生成提示词的最大 token 限制)、discribe(输入简单描述,支持中文)。
2025-03-12
怎么创建个人知识库
创建个人知识库可以通过以下几种方式: 1. 使用 GPT 打造个人知识库: 涉及给 GPT 输入(投喂)定制化的知识,但 GPT3.5 一次交互支持的 Token 有限。 OpenAI 提供了 embedding API 解决方案,可将文本转换成向量(embeddings),节省空间,类似索引。 例如,将大文本拆分成小文本块(chunk),通过 embeddings API 转换为向量并保存,用户提问时,将问题也转换为向量,比对后提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 2. 本地部署大模型搭建个人知识库: 利用大模型搭建知识库是 RAG 技术的应用,在实操前需了解 RAG。 RAG 是当需要依靠不在大模型训练集中的数据时,先检索外部数据,然后在生成步骤中将其传递给 LLM。 一个 RAG 的应用包括文档加载、文本分割、存储(包括将文档块嵌入转换成向量形式并存储到向量数据库)、检索、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 文本加载器是将用户提供的文本加载到内存中以便后续处理。
2025-03-12
知识库接入deepseek教程
以下是关于知识库接入 DeepSeek 的相关教程链接: 此外,还有以下相关内容可能对您有帮助: 中包含大模型及知识库使用讲解与问题解答。 中有工作流创建、模型能力及相关问题探讨。 涉及通义千问相关应用及明天课程安排交流。
2025-03-12
如何构建一个优秀的ai的知识库
构建一个优秀的 AI 知识库可以参考以下步骤和要点: 1. 明确概念和原理:了解 AI 时代知识库的概念、实现原理以及能力边界。 2. 掌握获取资料的原理:比如在通往 AGI 之路大群中通过对话获取知识库中资料的原理。 3. 利用相关平台组件:更好地使用 Coze 等 AI Agent 平台中的知识库组件,打造更强大的智能体。 4. 规划内容: 数据库:让 Coze 拥有记忆的组件 1。 知识库:让 Coze 拥有记忆的组件 2。 变量:让 Coze 拥有记忆的组件 3。 JSON:让您更好地使用 Coze 插件。 API:外部应用程序接入 Coze 的方式。 操作系统与服务器:那些接入了 Coze 的微机器人的运行位置。 Docker:以最简单的方式部署微信机器人。 5. 确定功能范围:编写 prompt 提示词,设定 Bot 的身份和目标。 6. 整理对应关系:创建知识库,整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 支持的文档类型:本地文档、在线数据、飞书文档、Notion 等,可使用本地文档。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:知识库的好用程度与内容切分粒度有关,可以在内容中加上特殊分割符,如“”,分段标识符号选择“自定义”,内容填“”。如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮进行操作。 同时,“通往 AGI 之路”是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库,在这里,您既是知识的消费者,也是知识的创作者。它不仅是一个知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。
2025-03-12
如何构建一个ai的知识库
构建一个 AI 知识库可以参考以下步骤: 1. 了解基础知识:一系列的信息和知识聚集在一起就可以构成知识库。例如“通往 AGI 之路”就是一个使用飞书软件搭建的 AI 知识库。 2. 参考相关文章:如“大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库”,读完可收获 AI 时代的知识库的概念、实现原理以及能力边界,了解通往 AGI 之路大群中通过对话获取知识库中资料的原理,以及更好地使用 Coze 等 AI Agent 平台中的知识库组件,打造更强大的智能体。 3. 搭建步骤: 确定功能范围,编写 prompt 提示词,设定 Bot 的身份和目标。 创建知识库,整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。创建知识库路径为个人空间知识库创建知识库。知识库文档类型支持本地文档、在线数据、飞书文档、Notion 等,可使用本地文档,并按照操作指引上传文档、分段设置、确认数据处理。注意知识库好不好用,跟内容切分粒度有很大关系,可以在内容中加上一些特殊分割符,比如“”,分段标识符号选择“自定义”,内容填“”。 4. 在网站上增加 AI 助手的私有知识: 上传文件:在百炼控制台的中的非结构化数据页签中点击导入数据,根据引导上传相关文档。 建立索引:进入,根据引导创建一个新的知识库,并选择刚才上传的文件,其他参数保持默认即可。选择向量存储类型时,如果希望集中存储、灵活管理多个应用的向量数据,可选择 ADBPG。 引用知识:完成知识库的创建后,返回进入到刚才创建的应用设置界面,打开知识检索增强开关、选择目标知识库,测试验证符合预期后点击发布。 希望以上内容对您构建 AI 知识库有所帮助。
2025-03-12
请帮我推荐优化大模型+知识库的提示词技巧,重点是解决将知识库配置给大模型做RAG后,召回率不高或者不遵循指令。
以下是关于优化大模型+知识库的提示词技巧,以解决将知识库配置给大模型做 RAG 后召回率不高或者不遵循指令的问题: 首先,了解 LLM 应用性能优化的推荐路径: 1. 从 prompt 工程开始把 LLM 应用快速跑起来。 2. 若遇到表现性能不足等问题,如结构化提示词占用上下文过长,可尝试精简提示词长度;若指令遵循度不足,则加强指令约束。 3. 若提示工程无法满足要求,分析问题,若缺失知识,先简单做知识库 RAG。 4. RAG 之后若想让模型表现更收敛更稳定,尝试微调模型。 5. 微调模型后,若模型表现变好,使用更多高级 RAG 技术,构造输入输出样本,进一步用于微调模型,构建正向迭代循环。 需要注意的是,该路径有个隐藏前提:该 LLM 应用依赖外部知识,需要 RAG。若不需要外部知识,则不需要使用 RAG,可以直接进入 prompt 工程与微调的正向迭代循环。 对于 RAG 流程中的检索有用信息部分,有以下改进策略: 1. 优化索引: 按照子部分索引:将文本块再拆分为较小的文本(例如单句),然后对这些小块进行多次索引。适用于有多个主题、有冲突信息的复杂长文本信息,确保与查询相关的上下文。 按照文本框可以回答的问题索引:让 LLM 生成与拆分的文本块相关的假设性问题,并将这些问题用于索引,适用于用户没有提出非常明确的问题,减少模糊性。 按照文本块的摘要进行索引:适用于文本框中有多余信息或者与用户查询无关细节的情况。 2. 重排 rerank:搜到相似信息后,选择策略,大部分场景下选择最相似的即可。 在从知识库中检索出内容后利用大模型进行总结时,有两点需要注意: 1. 优化 Prompt,但此处不展开,可参考相关文章。 2. 选择合适的大模型,考虑上下文长度、聪明度和生成速度。若回答场景是很长的文档,可能更关注上下文长度;大多数情况下,大模型越聪明,生成速度可能越慢。
2025-03-12
有没有进行剧情总结用的提示词
以下是为您整理的有关剧情总结的提示词相关内容: 在 Apple Intelligence 中,用于从照片创作故事和创意写作助理回应的对话以 JSON 格式响应,包括 traits、story 等键值,需遵守故事和照片说明的相关指南,如故事应多样化、不应包含负面内容等。 在某 bot 场景中,前面三个按钮用于驱动剧情,最后一个用于提示词总结,其技术实现相对复杂的部分是工作流中嵌套的图像流。 在制作 AI 视频短片时,如以老船长年轻形象为例,可从剧本中的画面描述提取提示词,生成不同角度的人物图。对于图生视频,只需上传图片至视频生成模块,用简单提示词描绘画面中的动态内容即可。
2025-03-11
我需要你给我生成一些提示词,我会给你我想的想法。《》以内的是想法。《我想写一篇影视解说的文案,写作的视角以我,第一人称的视角来写。想要风格偏幽默风趣一点,就像跟朋友在讲述一样,可以模仿鲁迅先生的手法。而且还想把影片的剧情内容写出来,从开篇到电影的结尾,如果有需要保留原片的地方,请把原片的画面场景以及时间段描述出来。要求这篇文案要附上我自己的内心独白,以此引人深思!请你深度思考后,在做答复!要求字数不少于5000字。》请问我该如何写提示词?请你整理好提示词后发给我
以下是为您生成的一些提示词,希望对您有所帮助: 影视解说文案提示词 1. 以第一人称幽默风趣的口吻,像与朋友讲述般,描绘影片从开篇到结尾的精彩剧情,融入自己的内心独白,模仿鲁迅先生的手法,展现独特的视角和深刻的思考。 2. 用轻松幽默的语言,以我的视角详述影片情节,穿插搞笑的评论和内心想法,借鉴鲁迅先生的讽刺技巧,使解说引人入胜。 3. 以亲切自然的叙述方式,如同与好友聊天,讲述影片故事,从开头至结束,结合鲁迅先生的文风,加入个人的情感起伏和独特见解。 DALL·E 相关提示词 1. 绘画:提及颜料种类、画布纹理和笔触形状/纹理(列表)。 2. 数字:注明使用的软件、阴影技术和多媒体方法(列表)。 3. 基于详细提示使用 DALL·E 3 生成图像,让创意鲜活起来,为提示的每个元素做出大胆有趣的选择。 4. 遵循提示指南,提出四个全新的简单概念,而非完整提示,从上次给出的建议中获取灵感。 请注意,默认方面比率为正方形(1:1),默认风格为摄影,包括相机设置、摄影类型和设备。同时,避免违反服务条款的词汇或概念,不侵犯版权,不使用暗示性或露骨的图像,强调符合 G 级评级的元素。
2025-02-06
可以给我一个有关摄影技巧的prompt吗,最好加点剧情向的内容
以下为您提供一些有关摄影技巧的 prompt: 1. Match Cut:通过相似的元素将两个不同场景或时间段的画面无缝连接,以增强视觉连贯性和叙事效果。例如,在《2001 太空漫游》中,一个古代人类扔起的骨头与太空站的转换就是一个经典的 Match Cut。 2. Cutaway:在主要场景之外展示的辅助画面,通常用于补充或增强叙事细节,与 Cut In 的区别在于,Cut In 深入或递进。Cutaway 常用于展示角色的回忆、幻想或提供额外背景信息,增强故事的层次感。 3. Dolly zoom:通过同时移动摄像机和调整镜头焦距,主体不动但背景巨幅变化,用以增强紧张感。这种拍摄技巧也被称为“Vertigo 效果”,因为它最早出现在希区柯克的电影《迷魂记》中。 4. Dutch shot:通过倾斜摄影机来创造画面的不平衡,用于表现角色内心的紧张或混乱。这种拍摄技法常用于恐怖电影或心理剧中,以增强不安的氛围。 另外,还有一个示例:人物细节为穿着一件羊毛大衣和一件纽扣衬衫、头戴棕色贝雷帽且戴着眼镜,环境细节是金色的灯光和背景中的巴黎街道和城市,摄影技术采用景深、35 毫米电影胶片。
2024-09-25
ai可以生成带有剧情的长时期吗
AI 可以生成带有剧情的内容。例如,使用 Pika、Pixverse、Runway、SVD 等工具,可以生成科幻片、战争片、奇幻片等不同类型的视频,包括太空舰队交战、士兵在战壕中准备迎击等场景。同时,还可以为故事加上奇幻元素来弥补平淡的问题。 在 2024 年内,AI 在图片和超短视频的精细操控、生成式短视频、AI 音频、“全真 AI 颜值网红”、游戏 AI NPC、AI 男/女朋友聊天、实时生成内容在社交媒体和广告中的应用、AI Agent、AI 的商业模式、可穿戴全天候 AI 硬件、中国 AI 发展、AI 造成的问题以及相关立法伦理讨论等方面都有不同程度的进展和预期。 到 2025 2027 年,AI 3D 技术和物理规则有望成熟,达到正常人无法区别 AI 生成还是实景拍摄的程度。
2024-09-04
AI爽文剧情游戏
AI爽文剧情游戏是一种结合了人工智能技术与互动剧情的游戏形式。以下是制作这类游戏的一般步骤: 1. 确定游戏主题和风格: 确定游戏的类型,比如科幻、奇幻、悬疑等。 设定游戏的整体风格和氛围。 2. 构建剧情框架: 设计游戏的主要故事线和支线剧情。 确定关键剧情节点和玩家的选择对故事的影响。 3. 开发角色和背景: 设计具有深度和个性的游戏角色。 构建角色背景故事,使角色更加立体。 4. 编写对话和剧情文本: 编写角色对话和剧情描述,确保文本质量高,能够吸引玩家。 5. 设计游戏机制: 确定游戏玩法,如角色扮演、冒险解谜、战斗系统等。 设计玩家与游戏世界互动的方式。 6. 实现AI技术: 利用自然语言处理技术,让游戏角色能够理解并回应玩家的指令。 使用机器学习算法,让游戏剧情能够根据玩家行为自适应变化。 7. 创建游戏世界: 设计游戏环境和场景,确保它们与剧情和角色相匹配。 使用3D建模和图形设计工具来创建视觉元素。 8. 编程和系统集成: 使用游戏引擎(如Unity、Unreal Engine)进行编程。 将AI系统集成到游戏引擎中,确保剧情能够动态响应玩家的选择。 9. 测试和优化: 对游戏进行测试,包括功能测试、性能测试和用户测试。 根据测试反馈优化游戏玩法和性能。 10. 音效和音乐: 设计游戏音效和背景音乐,增强游戏氛围。 11. 用户界面和体验: 设计直观的用户界面,确保玩家易于操作。 优化用户体验,确保游戏流畅且吸引人。 12. 发布和营销: 准备游戏的发布,包括制定发布计划和营销策略。 在适当的平台上发布游戏,如Steam、App Store或Google Play。 13. 收集反馈和更新: 发布后收集玩家反馈,持续改进游戏。 定期更新游戏内容,修复bug,增加新功能或剧情。 开发AI爽文剧情游戏是一个复杂的过程,需要跨学科的知识和技能,包括创意写作、编程、AI技术、美术设计等。此外,市场研究和用户反馈对于游戏的成功也至关重要。
2024-08-05