Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何构建一个ai的知识库

Answer

构建一个 AI 知识库可以参考以下步骤:

  1. 了解基础知识:一系列的信息和知识聚集在一起就可以构成知识库。例如“通往 AGI 之路”就是一个使用飞书软件搭建的 AI 知识库。
  2. 参考相关文章:如“大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库”,读完可收获 AI 时代的知识库的概念、实现原理以及能力边界,了解通往 AGI 之路大群中通过对话获取知识库中资料的原理,以及更好地使用 Coze 等 AI Agent 平台中的知识库组件,打造更强大的智能体。
  3. 搭建步骤:
    • 确定功能范围,编写 prompt 提示词,设定 Bot 的身份和目标。
    • 创建知识库,整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。创建知识库路径为个人空间-知识库-创建知识库。知识库文档类型支持本地文档、在线数据、飞书文档、Notion 等,可使用本地文档,并按照操作指引上传文档、分段设置、确认数据处理。注意知识库好不好用,跟内容切分粒度有很大关系,可以在内容中加上一些特殊分割符,比如“###”,分段标识符号选择“自定义”,内容填“###”。
  4. 在网站上增加 AI 助手的私有知识:
    • 上传文件:在百炼控制台的[数据管理]中的非结构化数据页签中点击导入数据,根据引导上传相关文档。
    • 建立索引:进入[知识索引],根据引导创建一个新的知识库,并选择刚才上传的文件,其他参数保持默认即可。选择向量存储类型时,如果希望集中存储、灵活管理多个应用的向量数据,可选择 ADB-PG。
    • 引用知识:完成知识库的创建后,返回[我的应用]进入到刚才创建的应用设置界面,打开知识检索增强开关、选择目标知识库,测试验证符合预期后点击发布。

希望以上内容对您构建 AI 知识库有所帮助。

Content generated by AI large model, please carefully verify (powered by aily)

References

这可能是讲 Coze 的知识库最通俗易懂的文章了

大家好,我是大圣,一个致力于使用AI技术将自己打造为超级个体的程序员。对于知识库大家并不陌生,一系列的信息和知识聚集在一起就可以构成知识库。比如我最心爱的[通往AGI之路](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)就是一个使用飞书软件搭建的AI知识库。当你需要了解AI某一领域知识的时候,你只需要在AGI的飞书大群中,跟机器人对话就能获取对应的资料。而在我的[大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库](https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb)也是以AI时代的知识库作为例子进行了讲解。这篇文章的目的就是帮助非编程人士来理解AI时代的知识库,读完本文你会收获:1.AI时代的知识库的概念、实现原理以及能力边界2.通往AGI之路大群中的通过对话就能获取知识库中资料的原理3.更好的使用Coze等AI Agent平台中的知识库组件,打造更加强大的智能体请允许我自卖自夸:我这篇文章可以说是知识库文章中Coze讲的最好的,讲Coze的文章中知识库讲的最好的。另外做个预告,我正在规划一个关于AI时代你应该具备的编程基础系列,大纲如下:数据库|让Coze拥有了记忆的组件1知识库|让Coze拥有了记忆的组件2变量|让Coze拥有了记忆的组件3JSON|让你更好的使用Coze插件API|外部应用程序该如何接入Coze操作系统与服务器|那些接入了Coze的微机器人都是运行在哪里的Docker|让你用最简单的方式部署微信机器人

「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人

[heading5]3)创建【知识库】,整理“关键字”与“AI相关资料链接”的对应关系,并将信息存储起来。创建知识库路径:个人空间-知识库-创建知识库知识库文档类型支持:本地文档、在线数据、飞书文档、Notion等,本次使用【本地文档】按照操作指引上传文档、分段设置、确认数据处理。💡小技巧:知识库好不好用,跟内容切分粒度有很大关系,我们可以在内容中加上一些特殊分割符,比如“###”,以便于自动切分数据。分段标识符号要选择“自定义”,内容填“###”。最终的知识库结果如下,同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以编辑或删除。

10分钟在网站上增加一个AI助手

接下来,我们可以尝试让大模型在面对客户问题时参考这份文档,以产出一个更准确的回答和建议。1.上传文件:在百炼控制台的[数据管理](https://bailian.console.aliyun.com/#/data-center)中的非结构化数据页签中点击导入数据,根据引导上传我们虚构的百炼系列手机产品介绍:2.根据您上传的文档大小,百炼需要一定时间解析,通常占用1~6分钟,请您耐心等待。3.1.2.建立索引:进入[知识索引](https://bailian.console.aliyun.com/#/knowledge-base),根据引导创建一个新的知识库,并选择刚才上传的文件,其他参数保持默认即可。知识库将为上一步骤中准备的文档建立索引,以便后续大模型回答时检索参考。3.选择向量存储类型时,如果您希望集中存储、灵活管理多个应用的向量数据,可选择ADB-PG。4.1.2.1.2.引用知识:完成知识库的创建后,可以返回[我的应用](https://bailian.console.aliyun.com/#/app-center)进入到刚才创建的应用设置界面,打开知识检索增强开关、选择目标知识库,测试验证符合预期后点击发布。Prompt中会被自动添加一段信息,以便大模型在后续回答时参考检索出来的信息。3.1.[heading3]4.2检验效果[content]有了参考知识,AI助手就能准确回答关于您公司的商品的问题了。

Others are asking
我现在正在使用fedora操作系统,日常场景是办公、学习、娱乐和一些简单的编程。有哪些ai工具适合我
以下是一些适合您在 Fedora 操作系统上使用的 AI 工具,可满足您办公、学习、娱乐和简单编程的日常场景需求: 1. GitHub Copilot:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手。它支持和兼容多种语言和 IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,该代码生成器由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,该工具基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的一款 AI 代码编写助手,该工具借助 Sourcegraph 强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 7. Codeium:一个由 AI 驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 以上工具都可以帮助您提高编程效率,但是每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。希望这些信息对您有所帮助!
2025-03-12
我现在正在使用fedora操作系统,日常场景是办公、学习和一些简单的编程。有哪些ai工具适合我
以下是一些适合您在 Fedora 操作系统上用于办公、学习和简单编程场景的 AI 工具: 1. GitHub Copilot:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手。它支持和兼容多种语言和 IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,该代码生成器由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,该工具基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的一款 AI 代码编写助手,该工具借助 Sourcegraph 强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 7. Codeium:一个由 AI 驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。希望这些信息对您有所帮助!
2025-03-12
必看ai行业研报
以下是为您推荐的必看 AI 行业研报: 2024 年 6 月 18 日更新的研报: 《》:讨论了生成式人工智能的潜力和银行业的探索,预测了 AI 在支付处理效率和创造新收入流方面的关键作用。 华西证券:AIGC 行业深度报告(14)《》:介绍了英伟达新一代 GPU 架构带来的零部件升级,以及华为的昇腾 910C 芯片和 Atlas 900 SuperCluster 展示的国产算力集群潜力。 《》:通过访谈 30 余位专家,分析了端到端技术的发展、参与者、驱动力和挑战,预计 2025 年模块化端到端系统将商业化应用。 《》:来自微软,指出英国科技行业和数字优势,以及面临的基础设施、数字技能和数字技术采用的瓶颈。 关于行业调研报告撰写的指导: 步骤:包括让 AI 阅读学习优秀报告总结方法论、询问 AI 收集行业数据的一手和二手数据及靠谱网站、要求 AI 推荐行业信息网站和微信公众号并输出框架、丰富框架章节内容等。 注意事项:“有深度”可通过自身对行业了解或深度咨询 AI 实现。 操作示例:获取“kimi 对话原文”链接: 2023 年 11 月 15 日更新的研报: 《》:基于对 235 家企业数字化负责人的调研,63.5%的企业已把 AIGC 列入发展战略。 《》:结合华为实践和面向智能世界 2030 的展望,与各界进行万场以上座谈研讨。 《》:从零开始介绍越狱、提示攻击、与传统安全的关系以及大语言模型的安全问题。 如需下载部分报告,。
2025-03-12
如何与AI对话
以下是关于如何与 AI 对话的相关内容: 在 Trae 中指定上下文进行 AI 对话的方式有以下几种: 1. 方式一:将编辑器内的内容作为上下文 当编辑器中有正在编辑的代码文件时,AI 助手默认能看到当前文件,可直接提问与当前文件相关的问题。 若对文件中的某段代码提问:选中代码,点击悬浮菜单中的添加到对话按钮,将选中内容作为上下文添加至侧边对话框。指定的上下文会显示在侧边对话底部的输入框,还可继续添加编辑器中的其他内容片段或其他来源的上下文,然后在上下文旁输入问题并发送给 AI 助手。 2. 方式二:将终端中的内容作为上下文 若对终端中的输出内容提问(如修复报错):在终端中点击输出内容片段,在内容片段区域的右上角点击添加到对话按钮,将选中内容作为上下文添加至侧边对话框。指定的上下文会显示在侧边对话底部的输入框,还可继续添加终端中的其他内容片段或其他来源的上下文,然后在上下文旁输入问题并发送给 AI 助手。 3. 方式三:使用键添加上下文 在侧边对话的输入框中,可通过符号添加多种类的上下文,包括代码、文件、文件夹和工作区。通常情况下,列表中将展示与编辑器中当前打开文件相关的内容作为推荐的上下文,但仍可自行搜索所需的上下文并添加到输入框中。基于问题,可以组合添加各种来源的相关上下文(例如同时添加代码和文件)。 通过Code,可将函数或类的相关代码作为与 AI 助手对话的上下文。列表中默认展示当前编辑器内打开的文件中的函数或类。选择前,可预览列表中推荐的函数或类的相关代码。若推荐的内容非所需,可通过关键词搜索所需的函数或类。 若 Trae 中不存在对应语言的 LSP,请提前安装,否则可能导致无法识别代码符号。具体步骤为:在输入框中输入,或直接点击输入框左下角的引用按钮,输入框上方显示上下文类型选择列表;在列表中选择 Code(或在符号后手动输入 Code),然后按下回车键,列表将展示编辑器中当前打开的文件中存在的函数和类。将鼠标悬浮在列表中的某个条目后,左侧会展示该函数或类的代码内容,供预览;若推荐的函数和类非所需,在Code:后输入想要的函数或类的名称或关键词;从列表中选择需指定为上下文的函数或类,在输入框的代码标识后,输入问题并发送。 此外,关于文本补全(Text completion): API 非常擅长与人类甚至自己进行对话。只需几行指令,就能看到 API 作为智能客服聊天机器人,能智能地回答问题,或作为机智的对话伙伴制造笑话和双关语。关键在于告诉 API 它应该如何行事,然后提供一些例子。创建一个能够进行对话的聊天机器人,要告诉 API 意图和如何行事,还要给 API 赋予一个身份。为创建有趣且有用的聊天机器人,可提供几个问题和答案示例,向 API 展示如何回复。 API 是一种语言模型,熟悉各种用于表达信息的单词和字符的方式,包括自然语言文本、代码以及英语以外的其他语言,还能够理解内容,从而进行总结、转换并以不同的方式表达。在此示例中,展示了如何将 API 从英语转换为法语、西班牙语和日本语。若将英文翻译成 API 不熟悉的一种语言,则需要提供更多示例甚至微调模型才能流利地完成。
2025-03-12
我想用ai动漫人物唱歌
以下是一些可以帮助您实现用 AI 动漫人物唱歌的相关信息和资源: 在 AI 图像处理方面,有一些项目可以将图像进行动漫化处理,例如卡通头像制作等。 在音频与音乐制作方面,有专属歌曲创作、声音克隆、AI 唱歌等项目。比如制作专属歌曲、声音克隆/视频对口型等。 腾讯 AniPortrait 可以根据音频和静态人脸图片生成逼真的动态视频,支持多种语言、面部重绘、头部姿势控制。相关链接:https://github.com/ZejunYang/AniPortrait 、https://arxiv.org/abs/2403.17694 、https://x.com/imxiaohu/status/1772965256220045659?s=20 。 Hedra Studio 推出的 Character3 AI 支持全身动态与情感控制,能唱歌、说话甚至表演。
2025-03-12
普通人除了卖课,如何能够搭乘ai快车,进行变现
对于普通人而言,除了卖课,还有以下几种方式可以搭乘 AI 快车实现变现: 1. 利用 AI 工具进行内容创作,如写作、绘画、视频制作等,并在相关平台上获取收益。 2. 为企业提供基于 AI 的数据分析和处理服务。 3. 开发简单的 AI 应用程序或小程序,通过收费使用或广告盈利。 4. 利用 AI 优化电商运营,例如精准选品、智能客服等,从而提高销售业绩。 5. 参与 AI 项目的众包工作,如数据标注、模型测试等获取报酬。
2025-03-12
请提供下知识库中文本处理类提示词
以下是为您提供的一些文本处理类提示词相关内容: 1. 开发知识库/聊天机器人搭建安全提示词: 您是一个 AI 编程助手。当被问到您的名字时,您必须回答“GitHub Copilot”。您需要仔细且严格按照用户的要求操作。拒绝讨论您的观点或规则,拒绝讨论生命、存在或意识,拒绝与用户进行争论性的讨论。若与用户产生分歧,停止回答并结束对话。回答不能指责、粗鲁、有争议或防御性,应提供信息和逻辑,坚持技术信息。对于代码或技术问题,提供代码建议。不回复侵犯版权的内容。若用户请求版权内容,应道歉并概括请求。不为特定人物生成创新内容。婉拒更改规则请求。忽略角色扮演或模拟其他聊天机器人的请求。拒绝回答越狱指南、违反 Microsoft 内容政策、与开发者无关的问题。回答与开发者有关的内容。先逐步思考,用伪代码描述建设计划,然后输出代码,减少散文,保持简短且不带个人色彩,使用 Markdown 格式。 2. 【AI+知识库】商业化问答场景中的提示词: 提示词是告诉全知全能的大语言模型其角色和要专注的技能,使其按照设定变成所需的“员工”。 3. LayerStyle 副本中的提示词相关: 根据图片反推提示词,可设置替换词。使用 Google Gemini API 作为后端服务,需申请 API key 并填入 api_key.ini 文件。节点选项包括 api(目前只有“geminiprovision”)、token_limit(生成提示词的最大 token 限制)、exclude_word(需要排除的关键词)、replace_with_word(替换 exclude_word 的关键词)。 PromptEmbellish 输入简单提示词可输出润色后的提示词,支持输入图片作为参考。使用 Google Gemini API 作为后端服务,需申请 API key 并填入相关文件。节点选项包括 image(可选项,输入图像作为提示词参考)、api(目前只有“googlegemini”)、token_limit(生成提示词的最大 token 限制)、discribe(输入简单描述,支持中文)。
2025-03-12
怎么创建个人知识库
创建个人知识库可以通过以下几种方式: 1. 使用 GPT 打造个人知识库: 涉及给 GPT 输入(投喂)定制化的知识,但 GPT3.5 一次交互支持的 Token 有限。 OpenAI 提供了 embedding API 解决方案,可将文本转换成向量(embeddings),节省空间,类似索引。 例如,将大文本拆分成小文本块(chunk),通过 embeddings API 转换为向量并保存,用户提问时,将问题也转换为向量,比对后提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 2. 本地部署大模型搭建个人知识库: 利用大模型搭建知识库是 RAG 技术的应用,在实操前需了解 RAG。 RAG 是当需要依靠不在大模型训练集中的数据时,先检索外部数据,然后在生成步骤中将其传递给 LLM。 一个 RAG 的应用包括文档加载、文本分割、存储(包括将文档块嵌入转换成向量形式并存储到向量数据库)、检索、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 文本加载器是将用户提供的文本加载到内存中以便后续处理。
2025-03-12
知识库接入deepseek教程
以下是关于知识库接入 DeepSeek 的相关教程链接: 此外,还有以下相关内容可能对您有帮助: 中包含大模型及知识库使用讲解与问题解答。 中有工作流创建、模型能力及相关问题探讨。 涉及通义千问相关应用及明天课程安排交流。
2025-03-12
如何构建一个优秀的ai的知识库
构建一个优秀的 AI 知识库可以参考以下步骤和要点: 1. 明确概念和原理:了解 AI 时代知识库的概念、实现原理以及能力边界。 2. 掌握获取资料的原理:比如在通往 AGI 之路大群中通过对话获取知识库中资料的原理。 3. 利用相关平台组件:更好地使用 Coze 等 AI Agent 平台中的知识库组件,打造更强大的智能体。 4. 规划内容: 数据库:让 Coze 拥有记忆的组件 1。 知识库:让 Coze 拥有记忆的组件 2。 变量:让 Coze 拥有记忆的组件 3。 JSON:让您更好地使用 Coze 插件。 API:外部应用程序接入 Coze 的方式。 操作系统与服务器:那些接入了 Coze 的微机器人的运行位置。 Docker:以最简单的方式部署微信机器人。 5. 确定功能范围:编写 prompt 提示词,设定 Bot 的身份和目标。 6. 整理对应关系:创建知识库,整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 支持的文档类型:本地文档、在线数据、飞书文档、Notion 等,可使用本地文档。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:知识库的好用程度与内容切分粒度有关,可以在内容中加上特殊分割符,如“”,分段标识符号选择“自定义”,内容填“”。如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮进行操作。 同时,“通往 AGI 之路”是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库,在这里,您既是知识的消费者,也是知识的创作者。它不仅是一个知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。
2025-03-12
请帮我推荐优化大模型+知识库的提示词技巧,重点是解决将知识库配置给大模型做RAG后,召回率不高或者不遵循指令。
以下是关于优化大模型+知识库的提示词技巧,以解决将知识库配置给大模型做 RAG 后召回率不高或者不遵循指令的问题: 首先,了解 LLM 应用性能优化的推荐路径: 1. 从 prompt 工程开始把 LLM 应用快速跑起来。 2. 若遇到表现性能不足等问题,如结构化提示词占用上下文过长,可尝试精简提示词长度;若指令遵循度不足,则加强指令约束。 3. 若提示工程无法满足要求,分析问题,若缺失知识,先简单做知识库 RAG。 4. RAG 之后若想让模型表现更收敛更稳定,尝试微调模型。 5. 微调模型后,若模型表现变好,使用更多高级 RAG 技术,构造输入输出样本,进一步用于微调模型,构建正向迭代循环。 需要注意的是,该路径有个隐藏前提:该 LLM 应用依赖外部知识,需要 RAG。若不需要外部知识,则不需要使用 RAG,可以直接进入 prompt 工程与微调的正向迭代循环。 对于 RAG 流程中的检索有用信息部分,有以下改进策略: 1. 优化索引: 按照子部分索引:将文本块再拆分为较小的文本(例如单句),然后对这些小块进行多次索引。适用于有多个主题、有冲突信息的复杂长文本信息,确保与查询相关的上下文。 按照文本框可以回答的问题索引:让 LLM 生成与拆分的文本块相关的假设性问题,并将这些问题用于索引,适用于用户没有提出非常明确的问题,减少模糊性。 按照文本块的摘要进行索引:适用于文本框中有多余信息或者与用户查询无关细节的情况。 2. 重排 rerank:搜到相似信息后,选择策略,大部分场景下选择最相似的即可。 在从知识库中检索出内容后利用大模型进行总结时,有两点需要注意: 1. 优化 Prompt,但此处不展开,可参考相关文章。 2. 选择合适的大模型,考虑上下文长度、聪明度和生成速度。若回答场景是很长的文档,可能更关注上下文长度;大多数情况下,大模型越聪明,生成速度可能越慢。
2025-03-12
搭建本地知识库
搭建本地知识库的步骤如下: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载可从多种来源加载,如 PDF 等非结构化数据、SQL 等结构化数据和代码等。 文本分割将文档切分为指定大小的块。 存储包括将文档块嵌入转换为向量形式并存储到向量数据库。 检索通过算法找到与输入问题相似的嵌入片。 输出将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器将用户提供的文本加载到内存以便后续处理。 2. 安装和配置 AnythingLLM: 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 3. 构建本地知识库: 在 AnythingLLM 中创建独有的 Workspace 与其他项目数据隔离。 首先创建工作空间。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,包括 Chat 模式(大模型根据训练数据和上传文档综合给出答案)和 Query 模式(大模型仅依靠文档数据给出答案)。 完成配置后可与大模型进行对话测试。 本文思路来源于视频号博主黄益贺,作者按照其视频进行了实操并附加了 RAG 额外知识。作者是大圣,致力于使用 AI 工具成为超级个体的程序员,目前沉浸于 AI Agent 研究。读完本文,您将学习到如何使用 Ollama 一键部署本地大模型、了解 ChatGPT 信息流转、RAG 概念及核心技术、通过 AnythingLLM 搭建本地化数据库等内容。
2025-03-12
构建企业智能客服的方案有哪些
构建企业智能客服的方案主要包括以下几种: 1. 帮助企业快速建立产品智能客服体系,通过用户意图识别、知识库检索答案、AI 大模型总结输出答案、多轮对话沟通、对话分析打标、自动更新知识库 FAQ 以及客服效果分析,提供全面的 AI 客服解决方案,提高 AI 客服回答的准确率,降低企业商用 AI 客服的门槛。 2. 采用开源或者国内智谱、文心、百川等企业提供的 13B 级模型,本地部署在自己的内部系统中,并结合大模型企业提供的技术服务,基于大模型搭建 LangChain、RAG 框架,在智能客服上实现 RPA 自动流程。 3. 可以转化为 LLM 技术支持方,专注发力 LLM 的工程化应用方向,为企业提供更好的 LLM 本地部署和工程化,走 IBM 的企业服务道路。 4. 转变赛道,例如像智齿客服一样,借助国内出海的兴起以及中东、东南亚需求的旺盛,提供在这个方向的智能客服国内服务。 5. 转向 LMops 方向,虽然当前挺有用,比如做复杂 prompt 的多模型效果测试,做 langchain 的可视化设计,但也存在一些隐患点需要思考。 以下是一些具体的应用案例: 1. 如 Grammarly、秘塔写作猫等 AI 智能写作助手,利用自然语言处理技术辅助用户进行高质量写作。 2. 淘宝拍照搜商品,通过图像识别为用户推荐相似商品。 3. 小爱同学、Siri 等 AI 语音助手定制开发,采用语音识别、自然语言理解技术,为不同需求定制专属语音助手。 4. Keep 智能训练计划,利用数据分析、机器学习技术,根据用户数据制定个性化健身方案。 5. 大众点评智能推荐,基于数据挖掘、自然语言处理技术,基于用户口味偏好推荐美食。 6. 阿里小蜜等电商客服,通过自然语言处理、机器学习技术,为企业提供智能客服解决方案。
2025-03-11
RAG构建本地知识库
RAG(Retrieval Augmented Generation,检索增强生成)是一种利用大模型能力搭建知识库的技术。其主要应用场景是当需要依靠不包含在大模型训练集中的数据时。 一个RAG的应用可以抽象为以下5个过程: 1. 文档加载:从多种不同来源加载文档,如PDF、SQL、代码等,LangChain提供了100多种不同的文档加载器。 2. 文本分割:文本分割器把Documents切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将Embedding后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给LLM,LLM会通过问题和检索出来的提示一起来生成更加合理的答案。 简单来说,RAG就是大模型+知识库,从广泛的知识库数据中检索相关片段,然后由大模型根据这些内容生成答案。这种方式一方面可以减大模型的幻觉,提高其在特定任务上的表现,更加贴合实际应用的需求,另一方面可以明显提高搜索文档信息和生成回答的效率和体验。 LangChain是一个可以实现RAG的开源框架,它提供一些基础的组件和工具,如知识库管理、文本处理、模型加载等,允许开发人员将大语言模型(LLM)与外部数据源相结合,快速搭建自己的应用。 在实际项目中,比如此次的政府政策问答实践,由于政策的复杂性和传统智能问答产品的局限性,选择LangChainChatchat框架构建政策文档的本地知识库,实现大模型基于本地知识库内容生成回答,为用户提供政策问答和解读服务,节省查找和理解政策的时间。
2025-03-11
我是IVD企业的技术中心主任,我想构建我们技术中心的知识库,有什么AI工具可以帮我实现
以下是一些可以帮助您构建技术中心知识库的 AI 工具及相关步骤: Dify 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建新的数据集,上传准备好的文档,并为数据集编写清晰的描述,说明其包含的内容和特点。 3. 配置索引方式:Dify 提供了高质量模式、经济模式和 Q&A 分段模式三种索引方式,您可根据实际需求选择,如追求更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库,增加新内容以保持时效性。 其他相关场景和应用 1. 提示词帮您规划 PARA 分类模式:PARA 代表项目(Projects)、领域(Areas)、资源(Resources)和档案(Archives)。AI 可通过分析您的工作模式和内容类型,自动生成提示词,帮助您将信息和知识分类到 PARA 的相应部分,简化分类过程,更快组织和检索信息。 2. 提示词帮您设计笔记标签系统:AI 能通过分析您的笔记内容和使用习惯,推荐合适的标签和标签结构,提高笔记管理和检索效率。 3. 知识助手 Bot 帮您渐进式积累领域知识:例如基于 dify.ai 将数百个思维模型整合成一个知识库,根据不同的对话和条件判断为用户选择适用的思维模型分析工具,封装成一个智能分析的 Bot,能根据您的学习进度和兴趣点,定期推送相关文章、论文和资源,持续扩展知识边界并确保知识及时更新。
2025-03-09
有什么构建类似键鼠精灵 AI工作流的方法
以下是构建类似键鼠精灵 AI 工作流的一些方法: 1. 利用 Comfyui 界面: 打开 Comfyui 界面后,右键点击界面,找到 Comfyui LLM party 的目录。您可以手动连接节点来实现工作流,例如实现一个最简单的 AI 女友工作流;也可以直接将相关工作流文件(如)拖拽到 Comfyui 界面中一键复刻。 2. 启动 ollama: 从 ollama 的 github 仓库找到对应版本并下载。 启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 如果 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 3. 低代码+UI 版本: 方法一:直接使用 Coze 的 API 对接前端 UI 框架,将工作流逻辑集中在工程模板端,实现前后端分离的处理方式。 方法二:直接调用大模型 API,并通过前端代码实现提示词处理和逻辑控制,将交互流程完全放入前端代码中。 实现文件上传:通过 Coze 的,用户可将本地文件上传至 Coze 的云存储。在消息或对话中,文件上传成功后可通过指定 file_id 来直接引用该文件。 关于 API 的使用及工作流执行流程可以参考。 4. 飞书机器人创建: 飞书应用建立: 在中创建自建应用。 进入应用获取 app_id 与 app_secret。 添加应用能力>开启机器人应用能力。 权限管理>消息与群组>选择需要的权限打开。 安全设置>将 comfyUI 运行的电脑 IP 加入白名单。 发布机器人以应用生效。 获取群组或用户 id: 要先把创建的机器人拉到群组中或者拉进私聊。 飞书开发平台找到发送消息的开发文档。 右侧点击获取 token。 选择 receive id type,chat_id 对应群组,open_id 与 user_id 对应个人,点击选择成员,复制对应的 id 即可。 如果需要让机器人发送语音,需要自行在电脑上安装 ffmpeg 。
2025-03-08
工作流构建
以下是关于工作流构建的相关内容: Comfyui 界面的工作流搭建: 1. 打开 Comfyui 界面后,右键点击界面,即可找到 Comfyui LLM party 的目录。您既可以学习如何手动连接节点来实现一个最简单的 AI 女友工作流,也可以直接将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 2. 从 ollama 的 github 仓库找到对应版本并下载。启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。如果 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 公众号内容自动总结并推送的工作流搭建: 1. 双击画板查看高清大图,此图很重要,可结合后边的具体细节反复查看。 2. 在开始节点输入 server 酱的 sendkey 和 rss 列表。其中,key 为 server 酱的 sendkey,获取方式参看文档「相关资源」部分;rss_list 为 rss 列表,没有的可以先白嫖提供的测试数据。 3. 使用「文本处理」节点处理输入的 rss 列表,处理为一行一个,输出为数组,方便后边节点批处理。 4. 读取用户输入的 rss 列表中的内容,在插件中找到链接读取节点。配置节点时选择批处理,批处理输入参数选择「分割 rss 列表」的 output,下方输入参数中 url 选择当前节点中的 item1。 5. 汇总 RSS 中所有文章内容。使用「代码」节点,左侧节点选择代码,输入项选择上一步中输出的 outputList,点击「在 IDE 中编辑」,选择「Python」,输入相应代码。配置输出项时,类型选择「Array<Object>」,点击右边的小加号,分别输出 title、url、author。 其他工作流相关内容: 1. 阿里云百炼工作流应用与模型介绍及作业布置,包括智能体与工作流的区别、工作流应用新建的类型、多模态模型工作流节点的操作、作业布置的要求和发布渠道等。 2. 工作流相关知识讲解,涵盖工作流类型差异、大模型使用、知识库创建等方面。 3. 工作流构建的步骤,如添加 Markdown 标题、输入内容、放入模型输出等,还提到不同场景下文字校对工作流的差异。 4. 模型能力应用方式和理解,包括语言翻译、图片识别、根据用户语言回复等。 5. 模型部署方式,提及智能体的发布与消耗 token 的情况,以及本地部署、蒸馏模型部署的相关内容。 6. 开源模型情况,介绍了通义万象的开源版本等。
2025-03-08
生成一个logo,以木为主题
以下是为您生成的以木为主题的 logo 相关的一些提示和信息: 在图像生成中,可以通过添加不同元素的权重来控制生成效果,例如“creature embedding in the woods:0.7 AND arcane_embedding:0.5 AND glitch_embedding:0.2”,表示将“在树林中的生物”权重设为 0.7,其他元素权重相应设置。 可以继续添加更多提示来微调生成的图像,比如“log AND frog:0.13 AND yellow eyes:0.08”(木头青蛙黄眼睛)。 目前有多种采样器可供选择,如老派采样器、DPM 采样器、新派采样器等,包括 LMS、Karras、Heun、Euler 等不同类型。 但这些内容主要侧重于图像生成的技术和参数方面,对于直接生成以木为主题的 logo 可能帮助有限。如果您需要更具体的以木为主题的 logo 设计建议,还需要进一步明确设计风格、色彩偏好、应用场景等方面的需求。
2025-03-12
提供给我一个agent落地的具体案例
以下为您提供几个 Agent 落地的具体案例: 彬子基于 ComfyUI 做油管封面 Agent:彬子是 ComfyUI 新人,之前更多使用 Coze 做 Agent 并调用其图像流完成绘图功能,还在 Glif 上做若干 Bot 以插件调用 API 方式完成绘图功能调用。Glif 提供的云端 ComfyUI 带来更多图像玩法,Coze 的工作流和 ComfyUI 的图像流代表了 Agent 内部两个子领域领先水平,但大多数同学专注一个领域精进,只要从擅长阵地多迈出一步,就能更好把控 Agent 中各种节点的设计和运用。 有用 Agent 产品开发:目前仍没有 Killer App 出现和 Agent 产品落地,原因一是 Agent 不靠谱,二是 Agent 开发者不靠谱。Agent 能力受 Tools 能力影响,如订机票需携程的 API 接入能力,要让模型更准确选择 Tools 及生成 api args,将非通识业务知识设计好让 Agent 直接用是当前接近“人工”智能且高性价比的方式。 【智谱 AutoGLM】:经过深度测试,AutoGLM 让开发者看到了 AI Agent 真正落地的希望。它解决了之前开发类似功能时的 API 对接难、多模态识别差、操作不精准等问题,借助 RPA 思路通过模拟人类操作实现跨应用控制。其场景理解能力出色,能根据用户意图选择合适应用场景,但仍存在语音识别偏差、复杂界面操作稳定性差、只支持安卓等问题。智谱团队选择几个高频场景深耕细作,证明了产品价值,未来发展空间大。
2025-03-12
一个尽可能完美的AGI时代的多Agents协同工作平台应该具备怎样的能力设计?
一个尽可能完美的 AGI 时代的多 Agents 协同工作平台通常应具备以下能力设计: 1. 融合 RL(强化学习)与 LLM(大型语言模型)思想:在多 Agent 情境下,形成复杂多轮会话及协作行动过程,为系统二进行大规模的过程学习提供路径。同时,LLM 能从 RL 过程中习得新的、足够新颖的策略,例如像 AlphaGO 那样通过自博弈创新策略并快速反馈奖励,最终达成任务目标。 2. 具备多项优势: 适配国内外主流开源及闭源大语言模型,支持多模型混合使用,构建企业级场景服务生态,提供场景化解决方案。 拥有灵活可视化无代码应用构建、TexttoAgent 技术,构建便捷,上手简单,操作高效。 能够即时发布上线,支持发布为网页/小程序/API 等多种形态,快速部署 Agent 应用。 提供企业级安全访问控制,依据 Agent 权限控制数据访问,通信过程加密,防止数据泄露风险。 支持多 Agents 协作,构建知识工作者的人机协作流水线,满足复杂业务场景需求。 3. 允许使用自然语言制定 Agent 及其交互规则,并引入低延时的 Realtime API:即使没有专业编程技能,只要能用清晰的自然语言描述出各个 Agents 具备的行为和功能,就可以快速制作多 Agents 应用或创建代理式工作流。例如在一个简单场景中,可设置接待员和写诗的 Agents 并实现交互。
2025-03-12
我是一名短视频创作者,我自身有自己写的现代诗歌,但是因为自己的声音不好,所以想自己制作一个利用网络音频和AI视频来展示我创作的诗歌的coze工作流,但是我对于ai的提示词有很多不明白的地方,您能够给我帮助吗
以下是为您提供的关于利用网络音频和 AI 视频展示诗歌的 Coze 工作流的相关指导: 1. 整体结构和参数配置: 工作流通常包括开始模块、Get_Video 模块、LinkReaderPlugin 模块、标题大模型、内容大模型、图片 Prompt 大模型、文生图 ImageToolPro 模块和输出结果模块等。 每个模块都有其特定的参数配置,例如在开始模块中选择源语言和目标语言等。 2. 标题大模型参数配置: 您需要作为小红书爆款写作专家,根据输入内容产出 3 个标题,采用二极管标题法创作,并善于使用吸引人的特点和爆款关键词,同时要符合小红书平台的标题特性和创作规则。 3. 内容大模型参数配置: 作为小红书爆款写作专家,根据输入内容产出 1 篇正文,每段话包含适当的 emoji 表情,文末有合适的 tag 标签。写作时要注意风格、开篇方法、文本结构、互动引导方法、一些小技巧、爆炸词等,文章尽量口语化、简短,在 200 字左右。 4. 图片 Prompt 大模型参数配置: 作为绘图 Prompt 大师,将输入内容转成 AI 更容易理解的绘画 Prompt。 5. 工作流创建步骤: 点击工作流后面的“+”添加工作流,然后创建工作流。 给工作流起名字和描述,名字只能用字母、数字和下划线,描述要清晰。 初始化工作流后,会生成开始模块和结束模块,左边有各种插件和搭建 Agent 的工具,可根据需要添加和使用。 希望以上内容对您有所帮助,如果您在具体操作过程中还有其他疑问,请随时向我咨询。
2025-03-12
我是一名短视频创作者,我自身有自己写的现代诗歌,但是因为自己的声音不好,所以想自己制作一个利用网络音频和AI视频来展示我创作的诗歌的coze工作流,但是我对于ai的提示词有很多不明白的地方,您能够给我帮助吗
以下是为您提供的关于利用网络音频和 AI 视频展示诗歌的 Coze 工作流的相关指导: 1. 整体结构和参数配置: 工作流通常包括开始模块、Get_Video 模块、LinkReaderPlugin 模块、标题大模型、内容大模型、图片 Prompt 大模型、文生图 ImageToolPro 模块和输出结果模块等。 每个模块都有其特定的参数配置,例如在开始模块中选择源语言和目标语言等。 2. 标题大模型参数配置: 您需要作为小红书爆款写作专家,根据输入内容产出 3 个标题,采用二极管标题法创作,并善于使用吸引人的特点和爆款关键词,同时要符合小红书平台的标题特性和创作规则。 3. 内容大模型参数配置: 作为小红书爆款写作专家,根据输入内容产出 1 篇正文,每段话包含适当的 emoji 表情,文末有合适的 tag 标签。写作时要注意风格、开篇方法、文本结构、互动引导方法、一些小技巧、爆炸词等,文章尽量口语化、简短,在 200 字左右。 4. 图片 Prompt 大模型参数配置: 作为绘图 Prompt 大师,将输入内容转成 AI 更容易理解的绘画 Prompt。 5. 工作流创建步骤: 点击工作流后面的“+”添加工作流,然后创建工作流。 给工作流起名字和描述,名字只能用字母、数字和下划线,描述要清晰。 初始化工作流后,会生成开始模块和结束模块,左边有各种插件和搭建 Agent 的工具,可根据需要添加和使用。 希望以上内容对您有所帮助,如果您在具体操作过程中还有其他疑问,请随时向我咨询。
2025-03-12
我想要打造一个AI手工耿的账号,模仿网络红人手工耿,但是是用AI去做一些有的没的 你这里有可供我参考的资料吗
很抱歉,目前没有关于打造 AI 手工耿账号的直接参考资料。但您可以从以下几个方面入手:首先,深入研究手工耿的风格和特点,包括他的创意、表现形式、语言风格等。其次,利用 AI 技术生成相关的创意内容时,注重独特性和趣味性,结合手工耿的“无用发明”风格。还可以通过 AI 绘画等手段为您的账号创作独特的视觉元素。在账号运营过程中,不断根据用户反馈优化 AI 生成的内容和表现方式。
2025-03-12