Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

通义千问电脑版安装

Answer

以下是通义千问电脑版的安装步骤:

  1. 回到宝塔,选择 Docker。如果显示“当前未安装”,则进行安装,点击确定,等待安装完成。安装完成后,刷新当前页面,看到相应的样子即表示安装成功。
  2. 打开左侧【终端】,粘贴以下两行,验证 Docker 是否可用。看见版本号则没问题。
  3. 一条一条复制以下命令,依次粘贴进入。
  4. 访问 OneAPI,访问地址:http://这里改成你自己宝塔左上角的地址:3001/(举例:http://11.123.23.454:3001/),账号默认 root,密码 123456。
  5. 点击【渠道】,类型选择阿里通义千问,名称随意,类型不用删减。
  6. 把千问里创建的 API Key 粘贴到秘钥里中,点击确认。
  7. 点击【令牌】-【添加新令牌】,名称随意,时间设为永不过期、额度设为无限额度,点击【提交】。
  8. 点击【令牌】,会看到自己设置的,点击复制,出现 key,然后在标红那一行中,自己手动复制下来。

另外,您还可以通过以下步骤获取通义千问的模型 key:先去通义千问大模型注册并登录,再进入灵积控制台,点击创建 API key,复制保存即可。

Content generated by AI large model, please carefully verify (powered by aily)

References

张梦飞:【知识库】FastGPT+OneAPI+COW带有知识库的机器人完整教程

1、回到宝塔,选择Docker(如果如图显示,就跟着我安装。如果没显示“当前未安装”,就不需要这一步)2、选择,点击确定。比较慢,等待安装完成。3、安装完成后,刷新当前页面。看到下图的样子,则表示安装成功。4、打开左侧【终端】,粘贴以下两行,再验证下Docker是否可用。看见版本号,就是没问题了。5、一条一条复制以下命令,依次粘贴进入6、一条一条复制以下命令,依次粘贴进入7、完成安装。[heading1]四、配置OneAPI[content]1、访问OneAPI。访问地址:http://这里改成你自己宝塔左上角的地址:3001/(举例:http://11.123.23.454:3001/)账号默认root,密码1234562、点击【渠道】2、类型选择阿里通义千问,名称随意,类型不用删减。3、把千问里创建的API Key粘贴到秘钥里中。点击确认4、点击【令牌】-【添加新令牌】6、名称随意,时间设为永不过期、额度设为无限额度。点击【提交】7、点击【令牌】,会看到自己设置的。点击复制,出现key,然后在标红那一行中,自己手动复制下来。8、OneAPI完成。保存好这个KEY

【共学最全版本】微信机器人共学教程

①、先去[通义千问大模型](https://dashscope.console.aliyun.com/)注册并登录-再进入[灵积控制台](https://dashscope.console.aliyun.com/apiKey)-点击创建API key。复制保存即可。[heading2]二、安装FastGPT、OneAPI[content]1、回到宝塔,选择Docker(如果如图显示,就跟着我安装。如果没显示“当前未安装”,就不需要这一步)2、选择,点击确定。比较慢,等待安装完成。3、安装完成后,刷新当前页面。看到下图的样子,则表示安装成功。4、打开左侧【终端】,粘贴以下两行,再验证下Docker是否可用。看见版本号,就是没问题了。5、一条一条复制以下命令,依次粘贴进入Yml更换镜像后文件:6、一条一条复制以下命令,依次粘贴进入配置端口:3001和3000(如果发现进不去OneAPI和FastGPT可以去腾讯云控制台配置:“防火墙”)

最近招聘信息-持续更新中

阿里云智能-客户端(Android)研发专家/高级工程师-通义大模型工作地点:杭州业务介绍:通义千问是阿里推出的一款超大规模预训练语言模型,它基于先进的深度学习技术进行研发,能够理解和生成自然语言文本,并通过不断的迭代和优化,实现精准的智能问答、多轮对话、内容创作、逻辑推理等;同时也可以通过通义生成自己的agent,实现各种辅助你工作、生活、娱乐的“智能体”;另外通义APP上还有舞蹈生产、智能作画等等有趣的大模型应用;欢迎在各大应用使用下载“通义千问”了解我们。岗位职责:1.负责通义大模型客户端研发,包括文生文、文生图、图生图、语音对话等多模态交互功能研发;2.负责各种C端用户玩法的产品功能研发;3.负责产品架构的改进和性能、以及稳定性优化;4.了解和引入各种阿里客户端中间件;5.学习通义大模型各种能力,参与产品设计和体验改进;职位描述1.熟练使用Java或Kotlin语言,具有良好的面向对象编程思想,对设计模式有一定理解;2.熟悉Android开发平台框架,有App或SDK的设计、开发经验,熟练使用Android各种控件和特性,掌握Android应用的编译、运行原理;3.掌握TCP/IP、HTTP、HTTPS、WebSocket等基础网络协议,熟悉多线程编程;4.熟练使用git、adb、linux的常用命令;5.对技术有激情,喜欢钻研,主动性高,具有良好的沟通能力以及较强的独立工作能力和解决问题的能力。加分项:

Others are asking
通义千问发展历程
通义千问是阿里云推出的大语言模型。于 2023 年 4 月 11 日在阿里云峰会上正式发布 1.0 版本。9 月 13 日,通义千问大模型首批通过备案。10 月 31 日,阿里云正式发布千亿级参数大模型通义千问 2.0,8 大行业模型同步上线。9 月,通义千问 2.5 系列全家桶开源。
2025-03-20
阿里的千问大模型在行业内处于一个什么样的水平
阿里的通义千问大模型在行业内处于领先水平。 通义千问 2.5 正式发布并开源 1100 亿参数模型,在多模态和专有能力模型方面影响力强大,始终坚持开源路线,已推出多款开源模型,受到开发者和生态伙伴的热情支持。百炼平台也升级支持企业 RAG 链路,提供更灵活的企业级检索增强服务。通义灵码推出企业版,满足企业定制化需求,已在多个领域落地应用。 Qwen2.5Max 基于 SFT 和 RLHF 策略训练,在多项基准如 Arena Hard、LiveBench、LiveCodeBench、GPQADiamond 上超越 DeepSeek V3,引发社区关注。支持官方 Chat、API 接口、Hugging Face Demo 等多种方式,展示其顶尖性能与灵活应用场景。 Qwen2.5VL 是新一代视觉语言模型,可解析 1 小时以上视频内容并秒级定位事件,识别从金融文档到通用物体,动态适配高分辨率图像。具备复杂任务执行能力,覆盖更多实际场景如票据解析、商业分析等。 10 月 31 日,阿里云正式发布千亿级参数大模型通义千问 2.0,8 大行业模型同步上线。
2025-03-14
通义千问最新模型
通义千问最新模型情况如下: 发布了一个模型并开源了两个模型。 Qwen2.5Max:全新升级发布,比肩 Claude3.5Sonnet,几乎全面超越 GPT4o、DeepSeekV3 及 Llama3.1405B。是阿里云通义团队对 MoE 模型的最新探索成果,预训练数据超过 20 万亿 tokens。在多项公开主流模型评测基准上录得高分,开发者可在 Qwen Chat(https://chat.qwenlm.ai/)平台免费体验模型,企业和机构也可通过阿里云百炼平台直接调用新模型 API 服务。 Qwen2.5VL:全新视觉模型实现重大突破,增强物体识别与场景理解,支持文本、图表、布局分析,可处理长达 1 小时视频内容,具备设备操作的 Agent 能力。 Qwen2.51M:推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,7B 模型出现少量错误。在更复杂的长上下文理解任务中,Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini。
2025-02-26
通义千问私有化部署方案
以下是关于通义千问私有化部署的相关方案: 1. 在 FastGPT+OneAPI+COW 框架下的部署: 回到宝塔,选择 Docker(若显示“当前未安装”则进行安装,否则无需此步)。 点击确定,等待安装完成,完成后刷新页面确认安装成功。 打开左侧【终端】,粘贴两行命令验证 Docker 是否可用。 一条一条复制并粘贴相关命令完成安装。 访问 OneAPI,地址为:http://这里改成你自己宝塔左上角的地址:3001/(举例:http://11.123.23.454:3001/),账号默认 root,密码 123456。 点击【渠道】,类型选择阿里通义千问,名称随意。 将千问里创建的 API Key 粘贴到秘钥里,点击确认。 点击【令牌】【添加新令牌】,名称随意,时间设为永不过期、额度设为无限额度,点击【提交】。 点击【令牌】,复制出现的 key 并保存。 2. 在 Langchain+Ollama+RSSHub 框架下的部署: Ollama 支持包括通义千问在内的多种大型语言模型,适用于多种操作系统,同时支持 cpu 和 gpu。 可通过 https://ollama.com/library 查找模型库,通过简单步骤自定义模型,还提供了 REST API 用于运行和管理模型及与其他应用程序的集成选项。 访问 https://ollama.com/download/ 进行下载安装,安装完之后确保 ollama 后台服务已启动。 3. 在 0 基础手搓 AI 拍立得框架下的部署: 可以选择通义千问作为模型供应商,其指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高。接口调用费用为:调用:¥0.008/千 tokens,训练:¥0.03/千 tokens。可参考 。
2025-02-26
通义千问plus的收费模式
通义千问 Plus 的收费模式如下: 调用费用为 0.008 元/1,000tokens。更多收费标准详见:https://t.aliyun.com/U/SGW1CC
2025-02-25
通义千问ai视频
通义千问在模型方面有以下重要进展: 发布一个模型开源两个模型: Qwen2.5Max:比肩 Claude3.5Sonnet,并几乎全面超越了 GPT4o、DeepSeekV3 及 Llama3.1405B。 Qwen2.5VL:全新视觉模型实现重大突破,具有增强的物体识别与场景理解能力,支持文本、图表、布局分析,可处理长达 1 小时视频内容,具备设备操作的 Agent 能力。其有 3B、7B 和 72B 三个尺寸版本,在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局,采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。开源平台包括:Huggingface(https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 )、Modelscope(https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 )、Qwen Chat(https://chat.qwenlm.ai )。 Qwen2.51M:超长文本处理能力显著提升,处理速度提升近 7 倍,上下文长度扩展至 100 万 tokens,可处理约 150 万汉字(相当于 2 部《红楼梦》)。 在 AI 视频领域,近半年闭源产品的热门趋势如下: 即梦 AI:9 月 24 日字节发布的 PixelDance、Seaweed 两款视频 AI 模型,对长提示词,人物连续动作转变、多镜头组合、人物一致性的支持非常好。目前产品还在开放内测申请中。网页版访问:https://jimeng.jianying.com/aitool/home/ ,内测申请:https://bit.ly/jimengai 。 海螺 AI:MiniMax 出品,出场视频演示非常惊艳,在近期的 Vbench 排行榜中,获得了 16 个维度综合评分第一名。目前仅支持 txt2vid 方案。网页版访问:https://hailuoai.com/video 。 通义万相:阿里云旗下产品,上半年有多个现象级案例刷屏,9 月刚开放了视频生成产品的预约,一次视频生成需要 10min,生成效果一般般。网页版访问:https://tongyi.aliyun.com/ ,移动端下载:通义 APP 。
2025-02-10
通义的日活是多少?
根据提供的信息,阿里通义在 11 月的活跃用户为 147 万人,WEB 月活为 141 万人,APP 月活为 355 万人,全网月活为 496 万人。在 9 月的活跃用户为 529 万人。
2025-03-28
以DeepSeek R1为代表的推理模型,与此前模型(如 ChatGPT-4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于
以 DeepSeek R1 为代表的推理模型与此前模型(如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,属于基于强化学习 RL 的推理模型。 2. 思考方式:在回答用户问题前,R1 会先进行“自问自答”式的推理思考,模拟人类的深度思考,从用户初始问题出发,唤醒所需的推理逻辑与知识,进行多步推导,提升最终回答的质量。 3. 训练方式:在其他模型还在接受“填鸭式教育”时,DeepSeek R1 已率先进入“自学成才”的新阶段。 4. 模型制作:R1 是原生通过强化学习训练出的模型,而蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。此外,DeepSeek R1 还能反过来蒸馏数据微调其他模型,形成互相帮助的局面。 5. 与 Claude 3.7 Sonnet 相比,Claude 3.7 Sonnet 在任务指令跟随、通用推理、多模态能力和自主编程方面表现出色,扩展思考模式在数学和科学领域带来显著提升,在某些方面与 DeepSeek R1 各有优劣。
2025-03-19
通义灵码
通义灵码是阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具。它具有以下能力和特点: 提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 是基于通义大模型的 AI 研发辅助工具,提供代码智能生成、研发智能问答、多文件代码修改、自主执行等能力,为开发者带来智能化研发体验,引领 AI 原生研发新范式。 具备多文件代码修改和工具使用的能力,可以与开发者协同完成编码任务,如需求实现、问题解决、单元测试用例生成、批量代码修改等。 核心能力包括:从片段级到多文件级的 AI 编码,可完成涉及工程内多文件级的编码任务;新增多种上下文感知、意图理解、反思迭代、工具使用等能力,开发者可与 AI 协同完成更复杂的编码任务;自动完成工程内多个文件的代码修改的 Diff 生成,并提供多文件的变更审查视图,高效完成 AI 生成代码的确认;构建人机协同工作流,通过多轮对话逐步完成编码任务,产生多个快照版本,可任意切换、回退。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。
2025-03-15
通义灵码搭建微信小程序
以下是关于通义灵码搭建微信小程序的相关内容: 1. 项目流程 先形成项目需求文档,与 composer 沟通确认需求细节并查看对应文档。 根据需求文档整理对应模块,进行功能设计模块文档设计,包括明确需求、UI 和技术(前后端实现途径)、测试用例等,观看确认和完善,以了解项目技术实现和执行方式。 按照模块任务写代码,并将代码文件和更改记录写在对应代码说明文档中,同时做好代码注解。在功能设计技术文档时要仔细,及时更改 cursor 写得不明确的地方,每个功能块开发完用测试用例跑一遍。 2. 前端开发 一开始用 cursor 生成的小程序简陋,添加背景元素(天使恶魔图片)和画框时,需考虑自适应、字体清晰等问题,由于大模型的限制,在理解和实现某些需求上存在困难,如镶在画里滑动、自定义滑动感觉等。 意图分析页面要注重信息展示,包括排版和整体风格,大模型在理解白色遮罩对文字展现的影响、更好的视觉呈现方案等方面存在不足。 生成海报时,要处理意图分析字数过长的显示和行数限制,以及加上小程序码便于用户分享,大模型在理解这些需求上也有困难。 3. 注册与开发 登录微信公众号首页,选取小程序,用新邮箱绑定注册。 注册验证通过后,填写小程序信息和类目,小程序名称可填写功能名称,头像可网上找或用 midjourney 生成。 回到发布流程页面,点击“普通小程序开发者工具”,在新页面中点击“微信开发者工具”,选择 windows 64 位下载。 相关参考文章:https://mp.weixin.qq.com/s/WkFxMMrlMqv52ce2n0xX6A
2025-03-12
通义灵码
通义灵码是阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具。 它具有以下能力和特点: 1. 提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 2. 是基于通义大模型的 AI 研发辅助工具,提供代码智能生成、研发智能问答、多文件代码修改、自主执行等能力,为开发者带来智能化研发体验,引领 AI 原生研发新范式。 3. 具备多文件代码修改和工具使用的能力,可以与开发者协同完成编码任务,如需求实现、问题解决、单元测试用例生成、批量代码修改等。 4. 核心能力包括:从片段级到多文件级的 AI 编码,可完成涉及工程内多文件级的编码任务;新增多种上下文感知、意图理解、反思迭代、工具使用等能力,开发者可与 AI 协同完成更复杂的编码任务;自动完成工程内多个文件的代码修改的 Diff 生成,并提供多文件的变更审查视图,高效完成 AI 生成代码的确认;构建人机协同工作流,通过多轮对话逐步完成编码任务,产生多个快照版本,可任意切换、回退。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。
2025-03-12
我是一位程序开发小白,不会用代码开发程序。我现在有一台安装Window 11操作系统的笔记本电脑,配置为14代i7CPU、32G内存、1TB硬盘、1张RTX4070显卡。我想部署一套本地的大模型+智能体+知识库。我要怎么样才能实现无代码部署,请列出详细的安装步骤。
以下是为您提供的无代码部署本地大模型、智能体和知识库的详细安装步骤: 1. 硬件评估:您的笔记本电脑配置为 14 代 i7 CPU、32G 内存、1TB 硬盘、1 张 RTX4070 显卡,基本满足部署要求。但需要注意,运行内存最低 32GB,越高越好,最低配可能会经常爆显存。建议将软件和模型部署在 SSD(固态硬盘)上,以提高加载模型的速度。 2. 选择合适的部署工具:ComfyUI 是一个相对配置要求较低、系统资源占用少、出图速度快的工具。它最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 3. 安装准备:如果您的电脑能顺畅清晰地玩 3A 游戏,那么运行相关部署工具一般也没问题。 4. 预算和需求:根据您的需求和预算来选择合适的配置。例如,如果有做 AIGC 视频、建模渲染和炼丹(lora)的需求,可能需要更高的配置。 请注意,以上步骤仅为参考,实际部署过程可能会因具体情况而有所不同。
2025-03-26
如何在电脑上安装DEEPSEEK
以下是在电脑上安装 DeepSeek 的步骤: 1. 访问网址:https://www.deepseek.com/zh 。 2. 点击开始对话,左边选择代码助手。 3. 对于 DeepSeek R1 的申请: 申请链接:https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 。 4. 环境安装(如需要): 若涉及相关开发,可能需要提前安装 Node.JS。 下载地址:https://nodejs.org/zhcn 。 Mac 安装包: 。 Windows 安装包: 。安装时可能需要管理员权限。安装完成后,可打开终端面板输入相关指令查看是否安装成功。 此外,还可以通过以下方式使用 DeepSeek: 1. 使用网页聊天: 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接安装浏览器插件并添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。 打开聊天页面,点击右上角的插件列表,找到 Page Assist 插件并点击打开。 配置“DeepSeekR1”模型的 API key 。 基础 URL:https://ark.cnbeijing.volces.com/api/v3 。填好后点击保存,关掉提醒弹窗。 添加“DeepSeekR1”模型,即可愉快使用。
2025-03-26
ten可以安装在电脑里,然后电脑上可以看视频进行实时翻译吗?这个功能可以怎么去实现?
目前 Ten 不太明确是指何种具体的软件或工具。一般来说,如果您想在电脑上实现观看视频实时翻译的功能,可以考虑使用以下几种常见的方法: 1. 利用浏览器插件:例如谷歌浏览器的某些翻译插件,能够在您观看在线视频时提供翻译服务。 2. 专业的翻译软件:部分专业的翻译软件具备屏幕取词和实时翻译视频的功能。 3. 操作系统自带的功能:某些操作系统可能提供了相关的辅助功能来实现类似的效果。 但需要注意的是,不同的方法可能在翻译的准确性、支持的语言种类以及适用的视频平台等方面存在差异。
2025-03-25
如何让AI全自动操控电脑完成我的工作
目前,AI 在操控电脑方面已经有了一些进展。例如,OpenAI 发布了 Responses API 和一整套 Agent 创建工具,其中包括模拟人类操作电脑的 ComputerUsing Agent ,支持跨平台和本地部署。同时,OpenAI 还推出了实时监控功能,能够记录 AI 的完整操作路径,跟踪决策依据、使用工具与执行步骤,有助于调试与优化 AI 流程。 在实际应用中,普通人可以利用 AI 生成个人艺术照、证件照、绘本图像、视频,甚至创作音乐和歌曲。比如在快手的可灵 AI 网站上能看到大量视频生成的效果和相关命令词。此外,AI 数字人技术在直播和视频平台中已被大量使用,8 岁小女孩能在 AI 编程助手帮助下独立完成网站程序开发。 然而,要实现 AI 全自动操控电脑完成您的工作,还面临一些挑战和限制。一方面,AI 技术仍在不断发展和完善中,其能力和准确性可能存在一定的局限性。另一方面,法律法规对于 AI 的应用也有一定的规范和约束。 但随着技术的进步,未来 AI 在操控电脑完成工作方面有望取得更大的突破。
2025-03-24
一个从来没有接触过AI技术的、电脑方面就会打字的人怎么学习AI及应用
对于从未接触过 AI 技术但会打字的新手,以下是学习 AI 及应用的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,如果您想深入了解 AI 的技术历史和发展方向,以及目前最前沿的技术点,有以下学习路径: 1. 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-03-22
我想学AI编程,用的电脑系统是WIN7,好多编程软件装不了吧,给我个建议
如果您使用的是 WIN7 系统且想学习 AI 编程,由于很多编程软件可能不支持该系统,以下是一些建议: 1. 考虑升级您的操作系统至 Windows7 以上版本,如 Windows10 或 Windows11,以获得更好的兼容性和支持。 2. 对于电脑硬件,系统要求 Windows7 以上,显卡要求为 NVDIA 独立显卡且显存至少 4G 起步,硬盘需留有足够的空间,最低 100G 起步(包括模型)。 3. 下载并更新 Nvidia 显卡驱动,下载地址:https://www.nvidia.cn/ geforce/drivers/ 4. 下载并安装所需环境,包括 Python、Git、VSCode: 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 安装 Git:https://gitscm.com/download/win 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 请注意,Mac 系统、AMD 显卡、低显卡的情况也可以安装使用,但可能功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。
2025-03-20
linux下安装 anythingLLM
以下是在 Linux 下安装 AnythingLLM 的相关指导: 1. 安装地址:https://useanything.com/download 。 2. 安装完成后会进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 3. AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。 4. 完成上述配置后,即可与大模型进行对话。 此外,在 GitHubDaily 开源项目列表 2023 年复盘的 AIGC 部分中,也有关于 AnythingLLM 的介绍: 是一个可打造成企业内部知识库的私人专属 GPT!可以将任何文档、资源或内容转换为大语言模型(LLM)知识库,使得在对话过程中可引用到里面的内容。 本文的思路来源于视频号博主黄益贺,作者按照他的视频进行了实操,并附加了一些关于 RAG 的额外知识。
2025-03-27
怎么安装ChatGPT
以下是安装 ChatGPT 的详细步骤: 安卓系统 1. 打开系统自带的谷歌服务框架 打开系统设置 拉到最底下,点击更多设置 点击账号与同步 点击谷歌基础服务 打开基础服务按钮 2. 安装 Google Play 到小米自带的应用商店搜索 Google Play 进行安装 安装好后打开谷歌商店,点击右上角登录谷歌账号 3. 安装 ChatGPT 到谷歌商店搜索 ChatGPT 进行下载安装,建议把谷歌邮箱也安装上,平时接收验证码那些比较方便。 如果您只想体验 ChatGPT 3.5 版本,不升级 GPT4,可跳转到第 4 步第 6 小步进行登录使用,如果想直接订阅 GPT4 Plus 版本,请接着往下看: 4. 订阅 GPT4 Plus 版本 先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡 然后在 ChatGPT 里订阅 Plus 苹果系统 1. 在 Apple Store 下载 ChatGPT 中国区正常下载不了,需要切换到美区才可以下载,美区 Apple ID 注册教程参考如下知乎链接:【账号指南】美区 Apple ID 注册教程(保姆教程)https://zhuanlan.zhihu.com/p/696727277 。最终在 Apple Store 搜到 ChatGPT 结果如下,下载安装即可,注意别下错啦。 2. 支付宝 购买苹果礼品卡 充值 订阅付费 App 打开支付,地区切换到【美区任意区】,往下滑,找到【品牌精选 折扣礼品卡】,点击进去,可以看到【大牌礼品卡】,往下滑找到【App Store&iTunes US】礼品卡,按需要的金额购买即可,建议先买 20 刀就行。 支付宝购买礼品卡 在 apple store 中兑换礼品卡 在 chatgpt 中购买订阅 gpt plus,如果中途不想继续订阅了,可到订阅列表中取消订阅即可。 完成上述步骤后,就可以开始使用 ChatGPT 4o 了!
2025-03-19
stable diffusion安装教程
以下是超详细的 Stable Diffusion 安装教程: 一、查看电脑配置是否支持 如果您的电脑是 AMD 或者 Intel,可能不太支持 SD,网上的安装教程也较麻烦。您可以查看专用 GPU 内存: 1. 4GB:说明电脑勉强可以跑动 SD,出图时间较长。 2. 6GB:出一张图的时间是 20 50 秒,SD 的大部分功能都可以使用。 3. 8GB:5 20 秒可以出一张图,基本上 SD 的所有功能都对您开放。 以上操作是用于查看 Windows 系统的,至于 Mac 系统,可以查看以下视频并按照视频一键安装:https://www.bilibili.com/video/BV1Kh4y1W7Vg/?spm_id_from=333.788&vd_source=6f836e2ab17b1bdb4fc5ea98f38df761 二、安装 SD 本地部署 1. 电脑配置能支持 SD 运行的情况下,我们使用 B 站秋叶分享的整合包。整合包链接:https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru ,提取码:caru 。 2. 具体安装方法: 打开链接,下载《1.整合包安装》,存放到电脑本地。 打开保存到电脑里的文件夹。 打开文件夹《1.秋叶整合包主包》,鼠标右击文件,点击“解压文件”。 选择解压到 D 盘或者 E 盘,避免 C 盘被占满,点击确定。 解压完成后,来到第二个文件夹,双击里面的文件,点击安装。 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器,点击“发送到”,选择桌面快捷方式,方便下次直接在桌面双击进入。 双击启动器,等待更新,接着点击左边第二个“高级选项”,在显存优化里,根据自己电脑的显存选择(即上面查看的专用 GPU 内存)。 回到第一个一键启动,点击右下角的一键启动。如果出现报错,可以回到最开始的界面,在左边点击“疑难解答”,再点击右边的“开始扫描”,最后点击“修复”按钮。 三、安装超清无损放大器 StableSR 安装方式有两种: 1. 在扩展面板中搜索 StableSR,可以直接安装。 2. 将下载好的插件,放在路径文件夹“……\\sdwebuiakiv4\\extensions”下。安装完成后,重启 webUI,就可以在脚本里面找到这个放大器。
2025-03-11