Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

用AI解决复杂的教育领域的问题

Answer

以下是关于用 AI 解决复杂的教育领域问题的相关内容:

  1. Character.ai :每个人都可定制自己的个性化 AI

    • 愿景是让每个人都能获得深度个性化超级智能,帮助完成各种任务。
    • 授课教师、游戏玩家、情感伴侣等服务都可被 AI 重构。
    • 借助大型语言模型,人工智能生成的角色可作为数字教师,如牛顿授课《牛顿运动定律》,白居易讲述《长恨歌》背后的故事,实现知识获取不受时空限制,提高教育效率和质量,增强学生学习兴趣。
    • 个性化的数字教师能根据学生情况提供定制化学习计划和资源,实现因材施教,缓解教育资源不平等问题。
    • 人工智能生成的虚拟角色也可作为数字陪伴,促进儿童成长和提高学习成绩。
  2. 生成式 AI :下一个消费者平台

    • 教育科技长期在有效性和规模间权衡,AI 改变了这种状况,可大规模部署个性化学习计划,提供“口袋里的老师”。
    • 已有如 Speak、Quazel、Lingostar 等产品提供语言教学和反馈,Photomath、Mathly 等应用指导数学问题,PeopleAI、Historical Figures 模拟杰出人物聊天教授历史。
    • 学生在作业中利用如 Grammarly、Orchard、Lex 等工具克服写作难题,提升写作水平,处理其他形式内容的产品如 Tome、Beautiful.ai 协助创建演示文稿。
  3. 北京大学教育学院教授汪琼观点

    • 教育领域数字化转型不能只是将传统教育方式搬到线上,需要新解决方案,综合运用数据来设计新教学流程,技术创新应用和数据整合挖掘是关键。
    • AI 正成为教与学的伙伴,2023 年申请到相关重大研究课题,未来三年将研究其对教育的影响,探索人机协同的新学习方式和数字化教学新理论。
    • 迎接 AI 发展挑战时要注意“信息茧房”危害,平衡其潜力与局限,注意技术引入的全局影响。
Content generated by AI large model, please carefully verify (powered by aily)

References

Character.ai:每个人都可定制自己的个性化AI

古时候的苏格拉底、孔子等传道授业解惑,采用的是对话式、讨论式、启发式的教育方法。他们通过向学生提问,引导学生思考和总结出一般性的结论,从而培养学生的批判性思维和创造性思维。如今,借助大型语言模型,人工智能生成的角色可以作为数字教师。例如,让牛顿亲自授课《牛顿运动定律》,让白居易为你讲述《长恨歌》背后的故事。你可以与任何历史人物进行对话交流,知识的获取不再受时空限制。这些人工智能生成的角色博学多能、善解人意,不受情绪左右,基本上可以实现一对一的辅导,让学生的参与感更高。这种技术的发展不仅可以提高教育的效率和质量,还可以让学生更加生动地了解历史和文化,拓宽视野,增强学习兴趣。个性化的数字教师可以根据学生的学习情况、学习兴趣和学习偏好提供定制化的学习计划和学习资源,真正实现因材施教,更好地满足学生的学习需求,提高学习效率和学习成果。数字教师的个性化教育也有望缓解教育资源不平等的问题,让更多的学生有机会接触到优质的教育资源。人工智能生成的虚拟角色也可以是数字陪伴,作为孩子的玩伴,来自他人的赞美这样的社会奖励,可以促进儿童成长,提高学习成绩。

生成式 AI:下一个消费者平台

教育科技长期以来一直在有效性和规模之间做权衡。为大众打造有效的解决方案,就会失去吸引个体的个性化。为满足个体的需求而打造完美的解决方案,却又难以扩展。有了AI,这种状况不再存在。我们现在可以大规模部署个性化的学习计划,为每个用户提供一个“口袋里的老师”,这个老师理解他们独特的需求,并可以回答问题或测试他们的技能。想象一个由AI驱动的语言老师,能够实时交流,并对发音或措辞给予反馈。[Speak](https://www.speak.com/)、[Quazel](https://www.quazel.com/)和[Lingostar](https://www.lingostar.ai/)已经在做这样的事情!我们已经看到了教授新概念或帮助学习者在几乎所有学科中“摆脱困境”的产品。像[Photomath](https://photomath.com/en)和[Mathly](https://mathly.webflow.io/)这样的应用指导学生解决数学问题,而[PeopleAI](https://chatbotkit.com/apps/peopleai?ref=theresanaiforthat)和[Historical Figures](https://twitter.com/scottbelsky/status/1611244139764649991)通过模拟与杰出人物的聊天来教授历史。除了学习特定的科目,学生们还在他们的作业中利用AI助手。像Grammarly、[Orchard](https://orchard.ink/)和[Lex](https://lex.page/~)这样的工具帮助学生克服写作难题,并提升他们的写作水平。处理其他形式内容的产品也在全国各地的中学和大学中越来越受欢迎——例如,[Tome](https://beta.tome.app/)和[Beautiful.ai](https://www.beautiful.ai/)协助创建演示文稿。了解更多关于[AI时代学习的未来](https://a16z.com/2023/02/08/the-future-of-learning-education-knowledge-in-the-age-of-ai/)。

北京大学教育学院教授汪琼:数字化转型建设要从问题出发

汪琼:以数字化转型推动高等教育的高质量发展是新时代赋予大学的历史机遇,也是大学贯彻国家战略的应有之义。教育领域的数字化转型,不能只是将传统教育方式搬到线上,还需要新的解决方案,包括如何综合运用当下和历史的数据、个人和群体的数据,来设计传统环境下无法做到的、信息技术优势得以充分发挥的教学流程。技术创新应用和数据整合挖掘是数字化转型方案落地的关键。越是简洁、直接的方案,往往越能高效地实现人机协同的目标。我们正在进入一个新时代,AI正在成为教与学的伙伴,而不只是效率工具。2023年,我们申请到了国家社会科学基金教育学重大研究课题“关于新一代人工智能对教育的影响”,未来三年将主要研究人工智能对于教育领域方方面面带来的机遇和挑战,探索人机协同的新学习方式和数字化教学新理论。必须强调的是,在迎接新一代人工智能发展带来的挑战时,我们还必须注意“信息茧房”的危害。这意味着我们需要在参照新技术给出的答案时,也需要防止“回音壁”效应,要保持宽广的视野,避免陷入观点单一的局限。总体而言,人工智能技术在高等教育领域的应用前景广阔,但需要平衡其潜力与局限,同时注意技术引入的全局影响。来源丨《在线学习》杂志2024年1-2月刊(总第100期)

Others are asking
AI在教育领域的结合场景
AI 在教育领域有以下结合场景: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过分析数百万学生行为模式,精准预测学习难点并提前给出解决方案,提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机和知识掌握程度。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟化学实验室进行安全实验操作并得到 AI 系统反馈。如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程。 5. 提前收集教育领域需求:包括办公提效、家校沟通、个性化教育、心理疏导、备课体系、作业批改、出题建议、建立孩子成长体系记录、孩子成长的游戏、朗读评判、文生图和视频在备课中的应用、学科教育辅助、分析学生行为并给出策略、教师模拟培训和公开课备课辅助等。 6. 相关企业和产品:具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书多维表格、蚂蚁智能体、Coze 智能体、Zeabur 云平台、0 编码平台、大模型(通义、智谱、kimi、deepseek 等)、编程辅助、文生图(可灵、即梦等)。
2025-02-25
ai快速发展在教育领域的应用
AI 在教育领域的应用十分广泛,主要包括以下几个方面: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 然而,AI 技术在教育领域的广泛应用也对传统教育体系带来冲击,教育体系内部的惯性、教师技能更新、课程内容调整、评估和认证机制改革等问题成为 AI 教育创新面临的重要挑战。
2025-01-22
ai在教育领域的应用
AI 在教育领域有以下应用: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 然而,AI 技术在教育领域的广泛应用也带来了一些挑战,如教育体系内部的惯性、教师技能更新、课程内容适时调整、评估和认证机制改革等。
2025-01-21
人工智能教育领域的应用
人工智能在教育领域的应用广泛且具有颠覆性,主要体现在以下几个方面: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师能引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 同时,北京大学教育学院教授汪琼指出,教育领域的数字化转型不能只是将传统教育方式搬到线上,还需新解决方案,技术创新应用和数据整合挖掘是关键。我们正进入新时代,AI 成为教与学的伙伴,但在迎接新一代人工智能发展带来的挑战时,必须注意“信息茧房”的危害,平衡其潜力与局限,注意技术引入的全局影响。 然而,AI 技术对传统教育体系的冲击也带来诸多挑战,如教育体系内部惯性、教师技能更新、课程内容适时调整、评估和认证机制改革等。
2024-12-26
AI 在教育领域的落地场景
以下是 AI 在教育领域的落地场景: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生的行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生的作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:如 AI 教师能够引导学生通过对话学习,解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室进行安全实验操作,并立即得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。
2024-11-23
AI在性教育领域可以怎么应用呢
以下是关于 AI 在性教育领域应用的相关信息: 拜登签署的行政命令中提到,AI 可以通过创造资源来支持教育工作者部署启用 AI 的教育工具,例如在学校提供个性化辅导,这可能对性教育产生影响。 目前的资料中未直接提及 AI 在性教育领域的具体应用方式,但在其他领域,如医疗保健、打击犯罪等,AI 展现出了一定的作用和潜力。例如在医疗保健中,AI 可能通过元学习更快地获得知识并促进进步;在打击儿童性虐待犯罪方面,AI 可用于识别受害者和犯罪者。 需要注意的是,目前关于 AI 在性教育领域的明确和具体应用的相关内容较少。
2024-10-14
AI生成PPT
以下是关于 AI 生成 PPT 的相关内容: 卓 sir 的制作流程:先让 GPT4 生成 PPT 大纲,然后将大纲导入 WPS 启用 WPS AI 一键生成 PPT,再让 chatPPT 添加动画,最后手动修改细节。其中,生成符合要求的大纲最费时间。 市面上大多数 AI 生成 PPT 的思路:AI 生成 PPT 大纲、手动优化大纲、导入工具生成 PPT、优化整体结构。 相关推荐:gamma、AIPPT、islide AI 等产品,其中 gamma 被认为在审美方面表现较好。 扩展阅读:《AI 生成 PPT 工具红黑榜,这三款千万别用》《AI+PPT 等效率工具的研报》 您可以根据自己的需求和喜好选择合适的方法和工具来生成 PPT。
2025-02-26
文生营销图AI
以下是关于文生营销图 AI 的相关教程: Liblibai 简易上手教程: 1. 定主题:确定您需要生成的图片的主题、风格和要表达的信息。 2. 选择 Checkpoint:根据主题选择内容贴近的 Checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. 设置 VAE:选择 840000 那一串。 5. CLIP 跳过层:设为 2。 6. Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开,无需语法和长句。 7. 负向提示词 Negative Prompt:用英文写要避免的内容,同样是单词和短语组合,用英文半角逗号隔开。 8. 采样方法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 9. 迭代步数:选 DPM++2M Karras 时,在 30 40 之间,多了意义不大且慢,少了效果差。 10. 尺寸:根据喜好和需求选择。 11. 生成批次:默认 1 批。 Tusiart 简易上手教程: 1. 定主题:确定图片的主题、风格和要表达的信息。 2. 选择基础模型 Checkpoint:根据主题选择贴近的 Checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. ControlNet:用于控制图片中特定的图像,如人物姿态等,属于高阶技能。 5. 局部重绘:下篇再教。 6. 设置 VAE:选择 840000 那一串。 7. Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开,无需语法和长句。 8. 负向提示词 Negative Prompt:用英文写要避免的内容,同样是单词和短语组合,用英文半角逗号隔开。 9. 采样算法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 10. 采样次数:选 DPM++2M Karras 时,在 30 40 之间,多了意义不大且慢,少了效果差。 11. 尺寸:根据喜好和需求选择。 关于【SD】文生图提示词: 1. 避免使用太大的数值,如 1920x1080,可能导致奇怪构图,可使用高清修复放大图像倍率,记住高宽比主要控制画面比例。 2. 调整好参数后生成图片,若质感不足,可添加标准化提示词,如:,绘图,画笔等,让画面更趋近于固定标准。
2025-02-26
AI LOGO工具
以下是一些生成 Logo 的 AI 产品: 1. Looka:这是一个在线 Logo 设计平台,使用 AI 理解用户的品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器利用 AI 技术创建个性化设计,用户可选择元素和风格。 4. LogoMakr:提供简单易用的设计工具,用户能拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 这些 AI 产品让无设计背景的用户也能轻松创建专业 Logo。使用时,用户可根据品牌理念和视觉偏好,通过简单交互获得系列方案,并进一步定制优化至满意。 此外,您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。 在第六期“一起做个 LOGO 吧”活动中,活动时间为 2024 年 6 月 9 日至 2024 年 6 月 16 日。活动目标包括探索制作 LOGO 方法、创造独特生成技巧、制作代表学习成果的作品。参与方式为使用 SD 等 AI 工具出图并将作品发送至 SD 学社微信群。会创建在线文档收集作品,6 月 16 日举行群内投票选出前三名,注意事项包括确保设计原创、允许作品公开展示以及在截止日期前提交。 在 AI 制作游戏 PV《追光者》中,故事背景创作阶段结合 chatGPT 发散制作游戏世界观,引导 ChatGPT 用分镜形式描述,使用 new bing 共创细致的故事分镜。生图阶段利用 ChatGPt 制作 midjourney 提示词工具,进入 midjourney 绘图包括制作 logo。还统一了 MJ 风格描述词,建立 AI 描述词模板,运用 midjourney 尝试制作不同风格 logo,最后用 PS 合成。
2025-02-26
我想知道ai学习路径
以下是为您提供的 AI 学习路径: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。您可以根据自身兴趣选择特定模块深入学习,比如掌握提示词的技巧,这上手容易且实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。您可以尝试使用各种产品进行创作,知识库中也有很多实践后的作品和文章分享,欢迎您在实践后进行分享。 五、体验 AI 产品 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验。 六、技术研究方向 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 七、应用方向 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 希望以上内容对您有所帮助。
2025-02-26
AI 自动化和工作流编排有什么好的工具和方案
以下是一些关于 AI 自动化和工作流编排的工具和方案: 1. RPA 软件:很早就出现在工作流编排领域,目标是使基于桌面的业务流程和工作流程实现自动化,现在越来越多的 RPA 软件带上了 LLM。 2. ComfyUI:将开源绘画模型 Stable Diffusion 进行工作流化操作模式,用户在流程编辑器中配置 pipeline,通过不同节点和连线完成模型操作和图片生成,其 DSL 配置文件支持导出导入,提高了流程的可复用性,降低了时间成本。 3. Dify.AI:工作流设计语言与 ComfyUI 有相似之处,定义了一套标准化的 DSL 语言,方便使用导入导出功能进行工作流复用。 4. Large Action Model:采用“通过演示进行模仿”的技术,检查人们与界面的互动并模仿操作,从用户提供的示例中学习。 5. Auto GPT/Agent/Baby AGI:基于 GPT4 语言模型的开源应用程序,用户输入目标后可自主执行任务、递归地开发和调试代码。能用于自动化任务、创建自主的 AI 代理、完成各种任务等,访问地址为: 。 此外,在工作流编排中还涉及到一些概念和技术: 1. 短期记忆和长期记忆:短期记忆将所有的上下文学习看成是利用模型的短期记忆来学习;长期记忆通过外部的向量存储和快速检索来存储和召回信息。 2. 工具:学会调用外部不同类型 API 来获取模型缺少的额外信息、代码执行能力、访问专有信息源等。 3. 动作:大模型结合问句、上下文的规划、各类工具,最终决策出需要执行的动作。 4. Agentic Workflow 可以从提升效率、提高质量、节省时间的角度思考,通过将复杂任务分解成较小步骤,融入更多人类参与到流程中的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 但需要注意的是,Agentic Workflow 虽然美好,但使用的用户目前较少,可能是出现周期、工作流使用的上手难度等因素导致,并且在复杂流程上的开发并不是那么稳定可靠。
2025-02-26
AI教程
以下为为您提供的 AI 教程相关内容: 1. 五步学会用 AI 制作动画视频播客:五个步骤教您从零到一制作动画版视频播客,适合有一定技术基础的朋友,轻松上手创作动画视频!相关链接: 2. Poe AI 平台:这是一个支持与多个智能 AI 机器人(如 GPT4 等)进行实时在线交流的聊天网站。注册账号后可免费使用,部分功能需付费订阅。不同 AI 机器人有不同特点,可按需选择。官网地址是:https://poe.com/ ,可在官网帮助中心找到具体教程。
2025-02-26
复杂推理的产品,给模型灌什么能够更好训练推理能力?以及怎么优化模型的推理准确度?
以下是一些能够更好训练模型推理能力以及优化推理准确度的方法: 1. OpenAI 的推理模型通过强化学习进行训练,在训练过程中,模型学会在回答前思考,产生长链的思维过程,并不断尝试不同策略,识别错误,从而能够遵循特定的指导方针和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。 2. 蒙特卡洛树搜索(MCTS)对推理模型有积极影响,例如在数学定理证明中,能探索非确定性证明路径,将解决 IMO 几何题的耗时从传统方法的 30 分钟降至 90 秒;在多跳问答系统中,结合 MCTS 的模型在 HotpotQA 数据集上准确率提升 12%,因其能回溯验证中间推理步骤。 3. 动态知识融合机制方面,传统基于规则的推理无法处理模糊知识,而 MCTS 增强方案在医疗诊断中可将误诊率从纯规则引擎的 23%降至 9%。 4. 资源分配优化方面,在逻辑谜题求解任务中,MCTS + Transformer 能达到 85%准确率且耗时 3 秒,而纯 Transformer 为 62%准确率且耗时 8 秒;在法律条文推导任务中,MCTS + Transformer 有 92%合规性且耗时 5 秒,纯 Transformer 为 88%合规性且耗时 2 秒。 OpenAI 于 9 月 12 日发布的新模型 o1 旨在实现通用复杂推理,通过强化学习和思维链的方式提升推理能力,尤其在数学和编程领域表现出色,但用户反馈显示其实际表现与宣传存在差距,成本高于 GPT4o,且在某些任务上优势不明显,OpenAI 仍在探索如何优化模型的推理性能。
2025-02-21
我在一周前的文章[1]里说对 DeepSeek-R1 只需要说大白话,但在三天前的文章[2]里又用了看起来还挺复杂的结构化提示词。有伙伴问我到底咋回事。这就来解释下喽。
以下是关于 DeepSeekR1 提示词的相关信息: 历史更新: 字节跳动推出新技术 OmniHuman,利用单张图片和音频生成生动视频。 DeepSeek 的出现标志着算力效率拐点显现,其优化算法架构提升算力利用效率,AI 基础大模型参数量迎来拐点,2025 年是算法变革元年,其训练过程聚焦强化学习提升推理能力。 提示词方法论: 核心原理认知:包括多模态理解、动态上下文、任务适应性等 AI 特性定位,以及采用意图识别+内容生成双通道处理等系统响应机制。 基础指令框架:包括四要素模板、格式控制语法等。 进阶控制技巧:如思维链引导、知识库调用、多模态输出。 高级调试策略:包括模糊指令优化、迭代优化法。 行业应用案例:涵盖技术开发场景、商业分析场景。 异常处理方案:如处理信息幻觉、格式偏离、深度不足等情况。 效能监测指标:包括首次响应准确率、多轮对话效率、复杂任务分解等。 在 R1 时代,使用 AI 提示词关键在于提供足够背景信息,简单大白话有效但信息量不足难达理想结果,示例和框架可助理清思路,最终影响在于思考和表达,利用乔哈里视窗分析信息需求,避免过度指令化,让 AI 自由思考以激发更高创意和效果。
2025-02-07
找一个可以设计复杂代码的AI
以下是一些可以设计复杂代码的 AI 工具及相关信息: 1. 在独立游戏开发中,如果让 AI 写小功能,可把不方便配表而又需要撰写的简单、模板化、多是调用 API 且只牵涉小部分特殊逻辑的代码交给 AI。以 Buff 系统为例,用 Cursor 让它仿照代码写一些 Buff,生成结果有时可以直接用,但目前 Cursor 生成复杂代码还需要复杂的前期调教,用多了之后 ChatGPT 会更方便。教 AI 时要像哄小孩,有正确的需要及时肯定,指出错误时要克制。 2. OpenAI o1:推理能力强,适合作为架构师或算法顾问,用于复杂算法与架构设计。 3. Claude 3.5/Cursor:Claude 擅长长上下文任务,Cursor 适合上下文控制较好的 IDE 开发,可快速生成代码与网页设计。 4. v0.dev:是网页设计的利器,支持设计稿生成网页。 5. Gemini:长上下文支持(2M Tokens),适合代码反编译与混淆代码分析。 同时需要注意,AI 目前在完成复杂项目方面存在一些限制,如上下文窗口限制、自然语言描述不精确、无法感知环境和直接执行、幻觉问题等。复杂项目需要全局理解,AI 难以设计架构和模块化,项目需求常需反复讨论才能明确,AI 难以完全掌握,编译、部署、调试等复杂任务 AI 难以独立完成,且 AI 可能编造不存在的 API 或错误代码,需人工严格审查。
2025-01-20
时间复杂度如何计算’
时间复杂度是计算机科学中用于描述运行算法所需计算机时间量的计算复杂度。通常通过计算算法执行的基本操作数来估计,假定每个基本操作的执行时间固定。时间复杂度常表示为输入大小的函数,最常见的度量值是最差情况的时间复杂度,即给定大小输入所需的最大时间量。 在一些应用中,如 Claude 官方提示词中的效率估算器任务,需要分析提供的函数或算法,并使用大 O 符号计算其时间复杂度,同时逐步解释推理过程,考虑最坏情况。 此外,还有如 TimeComplexity 这样的工具,可利用人工智能分析代码的运行时复杂度,适用于多种语言,但结果可能不准确,使用需自行承担风险。
2024-11-21
可将复杂任务分解为简单子任务的ai工具是什么
以下是一些可将复杂任务分解为简单子任务的 AI 工具和相关策略: OpenAI 官方指南中提到,对于需要大量独立指令集来处理不同情况的任务,可以首先对查询类型进行分类,并使用该分类来确定需要的指令。例如,在客户服务应用程序中,将查询分类为计费、技术支持、账户管理或一般查询等主要类别,并进一步细分次要类别。 如同软件工程中将复杂系统分解为模块化组件,对 GPT 提交的任务也可如此。复杂任务往往可被重新定义为一系列简单任务的工作流程,早期任务的输出用于构造后续任务的输入。 在 AIAgent 系列中,基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力以及对工具的理解。
2024-11-05
将复杂任务分解为简单子任务以简化问题,这样的ai工具都有什么
以下是一些可将复杂任务分解为简单子任务以简化问题的 AI 工具和相关策略: 1. OpenAI 官方指南中提到的策略: 使用意图分类来识别与用户查询最相关的指令。 对于需要很长对话的对话应用程序,总结或过滤之前的对话。 分段总结长文档,并递归构建完整总结。 指示模型在急于得出结论之前先自己找出解决方案。 使用内心独白或一系列查询来隐藏模型的推理过程。 询问模型在之前的回答中是否遗漏了什么。 使用基于嵌入的搜索来实现高效的知识检索。 使用代码执行来进行更准确的计算或调用外部 API。 2. 在 AIAgent 系列中: 基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力,当然也包括对工具的理解。
2024-11-05
大模型输出和节点输出配置不匹配怎么解决
当大模型输出和节点输出配置不匹配时,您可以参考以下要点来解决: 1. 输入与输出的变量名称可自定义,按照自身习惯设定,以便识别字段含义。 2. 输入方面,因为取得的是开始节点中用户输入的{{BOT_USER_INPUT}},所以可直接选择引用。 3. 在提示词区域,由于需要 LLM 根据输入信息处理,所以需要两个双花括号,写明使用的输入项参数名,如{{input}}。 4. 输出方面,有几项子内容需要生成,就设置几项: 为了让大模型理解最终输出的形式要求,需要在用户提示词最后,添加输出格式段落,描述每个变量名称、输出内容、输出格式。 务必注意,变量名称、对应的输出内容、输出格式一定要前后完全一致,否则会输出失败,这一点很容易踩坑。 另外,虽然可以用大模型来实现变量类型的转换,比如选择“豆包·工具调用”,在大模型的高级设置中尽量把随机性调到最低,使其更严格遵循提示词。匹配好输入输出的名称与类型,提示词中注意用{{}}引用输入变量。但大模型节点效果不稳定,运行速度相对较慢,还可能带来额外花费。尤其当输出类型为 String 时,大模型容易画蛇添足地加上一些说明性文字,即使优化提示词去限制,也不一定每次都能限制住。一旦出现偏差,哪怕只是多一个字符,下游节点就可能无法正常运行,且对此调整手段有限。所以如果没有“代码恐惧症”,建议使用代码节点来实现。
2025-02-26
我想通过在sciencedirect上输入关键词后,让AI帮助我整理该词条下文献的内容,输出当今的研究现状、现存问题、解决方法
目前在 ScienceDirect 上,还没有直接通过输入关键词让 AI 为您整理文献内容并输出研究现状、现存问题及解决方法的成熟功能。但您可以利用一些 AI 工具,如文献分析类的软件,先将从 ScienceDirect 下载的文献导入其中,然后让其协助您进行分析和总结。不过,在使用任何工具时,都需要您自己对结果进行评估和筛选,以确保准确性和可靠性。
2025-02-25
产品经理想进入AI行业,成为AI产品经理,应该怎么准备,能够快速应付面试拿到offer?我的背景是过去3年集中在用户功能产品,有过1份AI多轮对话解决用户求职问题的AI项目经历
如果产品经理想进入 AI 行业成为 AI 产品经理并快速应付面试拿到 offer,可以从以下几个方面准备: 1. 了解 AI 市场: 鱼龙混杂,求职者要做好信息甄别。即使面试通过拿到 offer,除了看 boss 直聘的招聘评价,一定要提前收集其他信息,如在脉脉上搜一下这家公司靠不靠谱。 一些公司实际上没搞懂用 AI 能为自己企业带来什么价值,只是处于焦虑或跟风心态要做 AI,这部分企业可以聊,但要求求职者要有咨询和商业化的思维,能帮公司厘清业务增长机会。 不同公司对 AI 产品经理的定位不同,所以招聘市场上对 AI 产品经理的岗位职责和任职要求也不同,慢慢会统一标准,这也是产品经理转型的机会。 有行业沉淀和认知的产品经理转型会更有机会,类似之前的“互联网+”,目前应用层的机会在“AI+行业”,只懂 AI 或只懂行业是不够的。还有就是业务创新,找到细分的场景痛点并完成 PMF 验证,海外有很多优秀案例。 2. 掌握岗位技能: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 需要注意的是,观察上面的岗位需求,其实公司并不是需要一个 prompt 工程师,而是一个 AI 互联网产品经理。
2025-02-25
我想我的ai深度思考,他现在给我都太浅显,输出字符也有限制,给我推荐一个解决办法
以下是一些可能有助于解决您的 AI 深度思考和输出字符限制问题的办法: 1. 对于输出字符限制,如果使用的是 GPT3.5 等模型,可以将汉字数大致换算成 token 数,比如简单算法是一个 token 大概是 0.5 个汉字,或者每个汉字耗费 2 2.5 个 token。例如 1000 字大约是 2000 2500 个 token 左右。 2. 可以使用 OpenAI 的 Tokenizer 工具来计算 token 数,以便更准确地控制输出长度。 3. 在编写用户提示词时,注重写法。例如最简单的方法是模仿特定风格输出标题内容,要用特殊字符区分相关内容,包含示例、凝视者等内容,输出包含标题和正文。还可以用少量样本提示(两个样本),并试运行看结果。 4. 对于提高 AI 深度思考能力,可以参考一些相关的最佳实践资料,深入了解模型处理文本的原理和机制,例如 GPT 系列模型通过使用 tokens 来处理文本,模型能理解这些 tokens 之间的统计关系。
2025-02-25
waytoAGI解决的核心场景是什么,有哪些应用案例
WaytoAGI 是一个 AI 开源社区,其核心场景包括: 1. 提供 AI 领域的最新进展、教程、工具和一线实战案例,引领并推广开放共享的知识体系。 2. 倡导共学共创等形式,孵化了如 AI 春晚、离谱村等大型共创项目。 3. 作为思想交流平台,汇聚行业顶尖创作者和 KOL。 应用案例方面: 1. 在上海国际 AIGC 大赛中,如《嘉定汇龙》项目中,利用多种 AI 技术如 stable diffusion 艺术字生成、comfyui 转绘、steerablemotion、runway 文生视频、图生视频等,并通过合成剪辑完成作品。 2. 社区内有像三思这样的高手分享具体教程。
2025-02-21
deepseek经常服务器繁忙的解决方案?
以下是一些解决 DeepSeek 服务器繁忙的方案: 1. 尝试以下搜索网站: 秘塔搜索:https://metaso.cn 360 纳米 AI 搜索:https://www.n.cn/ 硅基流动:https://siliconflow.cn/zhcn/ 字节跳动火山擎:https://console.partner.volcengine.com/auth/login?redirectURI=%2Fpartner%2F 百度云千帆:https://login.bce.baidu.com/ 英伟达:https://build.nvidia.com/deepseekai/deepseekr1 Groq:https://groq.com/ Chutes:https://chutes.ai/app 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 Github:https://github.com/marketplace/models/azuremldeepseek/DeepSeekR1/playground POE:https://poe.com/DeepSeekR1 Cursor:https://cursor.sh/ Monica:https://monica.im/invitation?c=ACZ7WJJ9 Lambda:https://lambdalabscom/6 Cerebras:https://cerebras.ai Perplexity:https://www.perplexity.ai 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 2. 可以通过以下步骤使用网页聊天解决: 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 打开聊天页面:点击右上角的插件列表,找到 Page Assist 插件,点击打开。 配置“DeepSeekR1”模型的 API key:基础 URL:https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。 添加“DeepSeekR1”模型。 3. 还可以使用以下网站(部分需要魔法,不做教学支持): 秘塔搜索:https://metaso.cn 360 纳米 AI 搜索:https://www.n.cn/(bot.n.cn) 硅基流动:https://cloud.siliconflow.cn/i/RjJgQqae AskManyAI:https://dazi.co/login?i=7db38e6e 字节跳动火山引擎:https://console.volcengine.com/ark/region:ark+cnbeijing/experience 百度云千帆:https://console.bce.baidu.com/qian3an/modelcenter/model/buildIn/list 英伟达 NIM Groq:https://groq.com/ Fireworks:https://fireworks.ai/models/fireworks/deepseekr1 Chutes:https://chutes.ai/app/chute/ Github:https://github.com/marketplace/models/azuremldeepseek/DeepSeekR1/playground POE:https://poe.com/DeepSeekR1 Cursor:https://cursor.sh/ Monica:https://monica.im/invitation?c=ACZ7WJJ9 Lambda:https://lambdalabs.com/ Cerebras:https://cerebras.ai Perplexity:https://www.perplexity.ai 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1
2025-02-20