Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

用AI解决复杂的教育领域的问题

Answer

以下是关于用 AI 解决复杂的教育领域问题的相关内容:

  1. Character.ai :每个人都可定制自己的个性化 AI

    • 愿景是让每个人都能获得深度个性化超级智能,帮助完成各种任务。
    • 授课教师、游戏玩家、情感伴侣等服务都可被 AI 重构。
    • 借助大型语言模型,人工智能生成的角色可作为数字教师,如牛顿授课《牛顿运动定律》,白居易讲述《长恨歌》背后的故事,实现知识获取不受时空限制,提高教育效率和质量,增强学生学习兴趣。
    • 个性化的数字教师能根据学生情况提供定制化学习计划和资源,实现因材施教,缓解教育资源不平等问题。
    • 人工智能生成的虚拟角色也可作为数字陪伴,促进儿童成长和提高学习成绩。
  2. 生成式 AI :下一个消费者平台

    • 教育科技长期在有效性和规模间权衡,AI 改变了这种状况,可大规模部署个性化学习计划,提供“口袋里的老师”。
    • 已有如 Speak、Quazel、Lingostar 等产品提供语言教学和反馈,Photomath、Mathly 等应用指导数学问题,PeopleAI、Historical Figures 模拟杰出人物聊天教授历史。
    • 学生在作业中利用如 Grammarly、Orchard、Lex 等工具克服写作难题,提升写作水平,处理其他形式内容的产品如 Tome、Beautiful.ai 协助创建演示文稿。
  3. 北京大学教育学院教授汪琼观点

    • 教育领域数字化转型不能只是将传统教育方式搬到线上,需要新解决方案,综合运用数据来设计新教学流程,技术创新应用和数据整合挖掘是关键。
    • AI 正成为教与学的伙伴,2023 年申请到相关重大研究课题,未来三年将研究其对教育的影响,探索人机协同的新学习方式和数字化教学新理论。
    • 迎接 AI 发展挑战时要注意“信息茧房”危害,平衡其潜力与局限,注意技术引入的全局影响。
Content generated by AI large model, please carefully verify (powered by aily)

References

Character.ai:每个人都可定制自己的个性化AI

古时候的苏格拉底、孔子等传道授业解惑,采用的是对话式、讨论式、启发式的教育方法。他们通过向学生提问,引导学生思考和总结出一般性的结论,从而培养学生的批判性思维和创造性思维。如今,借助大型语言模型,人工智能生成的角色可以作为数字教师。例如,让牛顿亲自授课《牛顿运动定律》,让白居易为你讲述《长恨歌》背后的故事。你可以与任何历史人物进行对话交流,知识的获取不再受时空限制。这些人工智能生成的角色博学多能、善解人意,不受情绪左右,基本上可以实现一对一的辅导,让学生的参与感更高。这种技术的发展不仅可以提高教育的效率和质量,还可以让学生更加生动地了解历史和文化,拓宽视野,增强学习兴趣。个性化的数字教师可以根据学生的学习情况、学习兴趣和学习偏好提供定制化的学习计划和学习资源,真正实现因材施教,更好地满足学生的学习需求,提高学习效率和学习成果。数字教师的个性化教育也有望缓解教育资源不平等的问题,让更多的学生有机会接触到优质的教育资源。人工智能生成的虚拟角色也可以是数字陪伴,作为孩子的玩伴,来自他人的赞美这样的社会奖励,可以促进儿童成长,提高学习成绩。

生成式 AI:下一个消费者平台

教育科技长期以来一直在有效性和规模之间做权衡。为大众打造有效的解决方案,就会失去吸引个体的个性化。为满足个体的需求而打造完美的解决方案,却又难以扩展。有了AI,这种状况不再存在。我们现在可以大规模部署个性化的学习计划,为每个用户提供一个“口袋里的老师”,这个老师理解他们独特的需求,并可以回答问题或测试他们的技能。想象一个由AI驱动的语言老师,能够实时交流,并对发音或措辞给予反馈。[Speak](https://www.speak.com/)、[Quazel](https://www.quazel.com/)和[Lingostar](https://www.lingostar.ai/)已经在做这样的事情!我们已经看到了教授新概念或帮助学习者在几乎所有学科中“摆脱困境”的产品。像[Photomath](https://photomath.com/en)和[Mathly](https://mathly.webflow.io/)这样的应用指导学生解决数学问题,而[PeopleAI](https://chatbotkit.com/apps/peopleai?ref=theresanaiforthat)和[Historical Figures](https://twitter.com/scottbelsky/status/1611244139764649991)通过模拟与杰出人物的聊天来教授历史。除了学习特定的科目,学生们还在他们的作业中利用AI助手。像Grammarly、[Orchard](https://orchard.ink/)和[Lex](https://lex.page/~)这样的工具帮助学生克服写作难题,并提升他们的写作水平。处理其他形式内容的产品也在全国各地的中学和大学中越来越受欢迎——例如,[Tome](https://beta.tome.app/)和[Beautiful.ai](https://www.beautiful.ai/)协助创建演示文稿。了解更多关于[AI时代学习的未来](https://a16z.com/2023/02/08/the-future-of-learning-education-knowledge-in-the-age-of-ai/)。

北京大学教育学院教授汪琼:数字化转型建设要从问题出发

汪琼:以数字化转型推动高等教育的高质量发展是新时代赋予大学的历史机遇,也是大学贯彻国家战略的应有之义。教育领域的数字化转型,不能只是将传统教育方式搬到线上,还需要新的解决方案,包括如何综合运用当下和历史的数据、个人和群体的数据,来设计传统环境下无法做到的、信息技术优势得以充分发挥的教学流程。技术创新应用和数据整合挖掘是数字化转型方案落地的关键。越是简洁、直接的方案,往往越能高效地实现人机协同的目标。我们正在进入一个新时代,AI正在成为教与学的伙伴,而不只是效率工具。2023年,我们申请到了国家社会科学基金教育学重大研究课题“关于新一代人工智能对教育的影响”,未来三年将主要研究人工智能对于教育领域方方面面带来的机遇和挑战,探索人机协同的新学习方式和数字化教学新理论。必须强调的是,在迎接新一代人工智能发展带来的挑战时,我们还必须注意“信息茧房”的危害。这意味着我们需要在参照新技术给出的答案时,也需要防止“回音壁”效应,要保持宽广的视野,避免陷入观点单一的局限。总体而言,人工智能技术在高等教育领域的应用前景广阔,但需要平衡其潜力与局限,同时注意技术引入的全局影响。来源丨《在线学习》杂志2024年1-2月刊(总第100期)

Others are asking
AI在教育领域的结合场景
AI 在教育领域有以下结合场景: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过分析数百万学生行为模式,精准预测学习难点并提前给出解决方案,提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机和知识掌握程度。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟化学实验室进行安全实验操作并得到 AI 系统反馈。如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程。 5. 提前收集教育领域需求:包括办公提效、家校沟通、个性化教育、心理疏导、备课体系、作业批改、出题建议、建立孩子成长体系记录、孩子成长的游戏、朗读评判、文生图和视频在备课中的应用、学科教育辅助、分析学生行为并给出策略、教师模拟培训和公开课备课辅助等。 6. 相关企业和产品:具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书多维表格、蚂蚁智能体、Coze 智能体、Zeabur 云平台、0 编码平台、大模型(通义、智谱、kimi、deepseek 等)、编程辅助、文生图(可灵、即梦等)。
2025-02-25
ai快速发展在教育领域的应用
AI 在教育领域的应用十分广泛,主要包括以下几个方面: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 然而,AI 技术在教育领域的广泛应用也对传统教育体系带来冲击,教育体系内部的惯性、教师技能更新、课程内容调整、评估和认证机制改革等问题成为 AI 教育创新面临的重要挑战。
2025-01-22
ai在教育领域的应用
AI 在教育领域有以下应用: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 然而,AI 技术在教育领域的广泛应用也带来了一些挑战,如教育体系内部的惯性、教师技能更新、课程内容适时调整、评估和认证机制改革等。
2025-01-21
人工智能教育领域的应用
人工智能在教育领域的应用广泛且具有颠覆性,主要体现在以下几个方面: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师能引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 同时,北京大学教育学院教授汪琼指出,教育领域的数字化转型不能只是将传统教育方式搬到线上,还需新解决方案,技术创新应用和数据整合挖掘是关键。我们正进入新时代,AI 成为教与学的伙伴,但在迎接新一代人工智能发展带来的挑战时,必须注意“信息茧房”的危害,平衡其潜力与局限,注意技术引入的全局影响。 然而,AI 技术对传统教育体系的冲击也带来诸多挑战,如教育体系内部惯性、教师技能更新、课程内容适时调整、评估和认证机制改革等。
2024-12-26
AI 在教育领域的落地场景
以下是 AI 在教育领域的落地场景: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生的行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生的作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:如 AI 教师能够引导学生通过对话学习,解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室进行安全实验操作,并立即得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。
2024-11-23
AI在性教育领域可以怎么应用呢
以下是关于 AI 在性教育领域应用的相关信息: 拜登签署的行政命令中提到,AI 可以通过创造资源来支持教育工作者部署启用 AI 的教育工具,例如在学校提供个性化辅导,这可能对性教育产生影响。 目前的资料中未直接提及 AI 在性教育领域的具体应用方式,但在其他领域,如医疗保健、打击犯罪等,AI 展现出了一定的作用和潜力。例如在医疗保健中,AI 可能通过元学习更快地获得知识并促进进步;在打击儿童性虐待犯罪方面,AI 可用于识别受害者和犯罪者。 需要注意的是,目前关于 AI 在性教育领域的明确和具体应用的相关内容较少。
2024-10-14
哪个AI生成思维导图
以下是一些可以生成思维导图的 AI 工具: 1. GitMind:免费的跨平台 AI 思维导图软件,支持多种模式,如提问、回答、自动生成等。 2. ProcessOn:国内思维导图与 AIGC 结合的工具,可利用 AI 生成思维导图。 3. AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路,生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求即可由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,帮助提升生产力。 此外,还有 ChatMind 也是利用 AI 自动生成思维导图的在线工具,只需要输入问题、文章、数据就可以,并且对于问题,还能自己获取答案,可导出图片与 Markdown 文档两种格式。在使用某些工具时,如配置插件节点生成思维导图,需要确定处理方式、输入和输出等相关设置。
2025-03-06
用ai作为自己的教练agent如何实现
要将 AI 作为自己的教练 Agent 实现,需要考虑以下几个方面: 1. 构建数字人灵魂: AI Agent:需要编写像人一样的 Agent,工程实现所需的记忆模块、工作流模块、各种工具调用模块的构建具有挑战性。 驱动躯壳的实现:定义灵魂部分的接口,躯壳部分通过 API 调用,如 HTTP、WebSocket 等,但要处理好包含情绪的语音表达以及躯壳的口型、表情、动作和语音的同步及匹配。 实时性:由于算法部分组成庞大,几乎不能单机部署,需解决网络耗时和模型推理耗时导致的响应慢问题。 多元跨模态:不仅要有语音交互,还可根据实际需求加入其他感官,如通过添加摄像头数据获取视觉信息。 拟人化场景:处理好插话、转移话题等非线性对话情景。 2. 借助开源社区力量: 推荐使用像 dify、fastgpt 等成熟的高质量 AI 编排框架,可快速编排出自己的 AI Agent。 例如在开源项目中使用 dify 框架,能利用其编排和可视化交互修改流程,构造不同的 AI Agent,实现复杂功能,如知识库搭建、工具使用等,无需编码和重新部署。 Dify 的 API 暴露了 audiototext 和 texttoaudio 接口,可用于数字人的语音识别和生成控制。 对于高度定制的模型,可在 Dify 中接入 XInference 等模型管理平台并部署自己的模型,同时数字人 GUI 工程保留多个模块以保持扩展。 然而,在实际操作中也存在一些问题,如沉淀领域知识喂给 AI 并不断调教并非能保持愉悦,可能会从兴奋转为嫌弃,且国产大模型存在一些桎梏,调优反复,多数人尝试后又回到舒适模式。但仍可通过不断探索和尝试来实现将 AI 作为教练 Agent 的目标。
2025-03-06
AI绘画
AI 绘画对艺术界具有复杂且双面的影响: 积极方面: 改变传统艺术面貌,从生成艺术作品到辅助艺术创作。 为艺术家提供新工具和可能性,如探索新的创意表达方式、提高制作效率、降低制作成本。 推动传统艺术的数字化和普及化。 促进艺术与观众之间的互动,提供更加个性化和互动的艺术体验。 引发的讨论和争议: 人们对 AI 驱动的机器人创作的艺术品和人类创作的艺术品接受程度大致相同,但不太愿意将机器人视为艺术家,表明其在表达情感和创造性意图方面存在局限性。 艺术家对 AI 生成艺术态度复杂,有对创新潜力的期待,也有对版权、原创性和伦理问题的担忧。 带来对文化创意领域从业者职业安全的焦虑,以及对其“侵权”嫌疑的反对之声,反映了新技术发展带来的行业生态变化和对现有法律和伦理框架的挑战。 AI 绘画的关键词指南: 公式:主题+环境(背景、周围)+气氛(烈日下、雾蒙蒙、恐怖的、风暴席卷的)+灯光(顶光、雾气光、漫反射的、强对比的)+色彩(低饱和度、颜色鲜艳的、花里胡哨的、强反射的主色调、某种颜色是 accent color)+构图(黄金分割、三分法的、电影镜头、广角、鸟瞰图)+风格参考(超清细节的、照片级别的、写实的、抽象的、2D/3D、4k8k、数字雕刻、概念艺术、水墨、水彩、海报、某个软件、某个游戏、艺术家、艺术平台) 比如:找自己喜欢的艺术家风格放到风格参考的关键词里;找自己喜欢的灯光风格放到灯光的关键词里;找自己喜欢的颜色和调色板风格放到色彩的关键词里。 艺术与科技的融合: 呈现前所未有的奇妙景象,AI 绘画将艺术与先进技术完美结合,引领艺术界走向未来。 利用机器学习和深度学习等技术模拟人类创作过程,生成令人惊叹的作品,为艺术家提供全新创作工具和观众带来新体验。 打破传统手工绘画技巧的局限,通过编程、算法和数据分析等开拓全新创作领域,为缺乏绘画技巧的人提供参与艺术创作的机会,使艺术更民主化和包容。
2025-03-06
可以帮我分析数据写结论的ai
以下是一些可以帮助您分析数据写结论的 AI 应用和相关流程: ChatGPT 助力数据分析: 逻辑流程:用户描述想分析的内容,后台连接数据库,让 AI 输出 SQL 语句(需校验为 SELECT 类型),执行后将结果数据传给 GPT(附带上下文),让其学习并分析,最后输出分析结论和建议,与结果数据一起返回前端页面渲染图表、展示结论。目前已实现两张表关联查询。 个性化分析:用户上传文件,前端解析后传给 GPT 分析数据,后续步骤与上述一致。 用 AI 撰写专业区域经济报告: 信息收集:利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。 内容拆分:针对报告需求将内容拆分,避免 AI 单次处理任务过长。 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。但需注意 AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。 其他相关: Mistral 发布全新聊天应用,基于 Pixtral Large 124B 多模态模型,支持网络搜索、写作画布与 Flux Pro 图像生成功能,亮点包括网络搜索工具获取最新信息、写作画布功能适合文档创作与协作、高质量图像生成工具 Flux Pro 支持免费使用。可通过在线体验。 Istra 发布 Pixtral Large 124B 聊天应用,特点为免费使用的大型多模态模型,支持网络搜索、写作画布、Flux Pro 画图,网络搜索和画图功能实用且强大,适合多场景需求。可通过了解。
2025-03-06
怎样设置一个AI自动识别车辆的仪器
目前知识库中没有关于如何设置 AI 自动识别车辆仪器的相关内容。但一般来说,设置这样的仪器可能需要以下步骤: 1. 确定识别需求和目标:明确要识别的车辆特征,如车型、颜色、车牌等。 2. 选择合适的传感器:例如摄像头、激光雷达等,以获取车辆的图像或数据。 3. 数据采集和标注:收集大量的车辆图像或数据,并进行准确的标注,以供 AI 模型学习。 4. 选择合适的 AI 算法和模型:根据需求和数据特点,选择适合的深度学习算法和模型,如卷积神经网络等。 5. 训练模型:使用标注好的数据对模型进行训练,不断优化模型的性能。 6. 模型评估和优化:通过测试数据评估模型的准确性和性能,对模型进行进一步的优化和调整。 7. 硬件集成和部署:将训练好的模型集成到相应的硬件设备中,并进行实际场景的部署和测试。 请注意,这只是一个大致的步骤框架,实际的设置过程可能会因具体的应用场景和技术要求而有所不同。
2025-03-06
AI提示词解释
以下是关于 AI 提示词的详细解释: 提示词用于描绘您想要生成的画面。在星流一站式 AI 设计工具中,不同的基础模型对输入语言有不同要求。通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),且支持中英文输入。 写好提示词要注意以下几点: 1. 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 2. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如不好的质量、低像素、模糊、水印。 3. 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可以对已有的提示词权重进行编辑。 4. 辅助功能:包括翻译功能,可一键将提示词翻译成英文;删除所有提示词,可清空提示词框;会员加速,能加速图像生图速度,提升效率。 在【SD】文生图中,括号和冒号加数字(如:1.2)都是用来增加权重的,权重越高在画面中体现越充分,提示词的先后顺序也会影响权重。同时,还可以增加反向提示词,告诉 AI 我们不要什么。 在 AI 领域中,Prompt 中文译作提示词,就是我们输入给大模型的文本内容,可以理解为您和大模型说的话、下达的指令。提示词的质量好坏会显著影响大模型回答的质量。Token 是大模型语言体系中的最小单元,不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字,大模型的收费计算方法及对输入输出长度的限制通常以 token 为单位计量。上下文(context)指对话聊天内容前、后的内容信息,其长度和窗口都会影响 AI 大模型回答的质量。
2025-03-06
复杂推理的产品,给模型灌什么能够更好训练推理能力?以及怎么优化模型的推理准确度?
以下是一些能够更好训练模型推理能力以及优化推理准确度的方法: 1. OpenAI 的推理模型通过强化学习进行训练,在训练过程中,模型学会在回答前思考,产生长链的思维过程,并不断尝试不同策略,识别错误,从而能够遵循特定的指导方针和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。 2. 蒙特卡洛树搜索(MCTS)对推理模型有积极影响,例如在数学定理证明中,能探索非确定性证明路径,将解决 IMO 几何题的耗时从传统方法的 30 分钟降至 90 秒;在多跳问答系统中,结合 MCTS 的模型在 HotpotQA 数据集上准确率提升 12%,因其能回溯验证中间推理步骤。 3. 动态知识融合机制方面,传统基于规则的推理无法处理模糊知识,而 MCTS 增强方案在医疗诊断中可将误诊率从纯规则引擎的 23%降至 9%。 4. 资源分配优化方面,在逻辑谜题求解任务中,MCTS + Transformer 能达到 85%准确率且耗时 3 秒,而纯 Transformer 为 62%准确率且耗时 8 秒;在法律条文推导任务中,MCTS + Transformer 有 92%合规性且耗时 5 秒,纯 Transformer 为 88%合规性且耗时 2 秒。 OpenAI 于 9 月 12 日发布的新模型 o1 旨在实现通用复杂推理,通过强化学习和思维链的方式提升推理能力,尤其在数学和编程领域表现出色,但用户反馈显示其实际表现与宣传存在差距,成本高于 GPT4o,且在某些任务上优势不明显,OpenAI 仍在探索如何优化模型的推理性能。
2025-02-21
我在一周前的文章[1]里说对 DeepSeek-R1 只需要说大白话,但在三天前的文章[2]里又用了看起来还挺复杂的结构化提示词。有伙伴问我到底咋回事。这就来解释下喽。
以下是关于 DeepSeekR1 提示词的相关信息: 历史更新: 字节跳动推出新技术 OmniHuman,利用单张图片和音频生成生动视频。 DeepSeek 的出现标志着算力效率拐点显现,其优化算法架构提升算力利用效率,AI 基础大模型参数量迎来拐点,2025 年是算法变革元年,其训练过程聚焦强化学习提升推理能力。 提示词方法论: 核心原理认知:包括多模态理解、动态上下文、任务适应性等 AI 特性定位,以及采用意图识别+内容生成双通道处理等系统响应机制。 基础指令框架:包括四要素模板、格式控制语法等。 进阶控制技巧:如思维链引导、知识库调用、多模态输出。 高级调试策略:包括模糊指令优化、迭代优化法。 行业应用案例:涵盖技术开发场景、商业分析场景。 异常处理方案:如处理信息幻觉、格式偏离、深度不足等情况。 效能监测指标:包括首次响应准确率、多轮对话效率、复杂任务分解等。 在 R1 时代,使用 AI 提示词关键在于提供足够背景信息,简单大白话有效但信息量不足难达理想结果,示例和框架可助理清思路,最终影响在于思考和表达,利用乔哈里视窗分析信息需求,避免过度指令化,让 AI 自由思考以激发更高创意和效果。
2025-02-07
找一个可以设计复杂代码的AI
以下是一些可以设计复杂代码的 AI 工具及相关信息: 1. 在独立游戏开发中,如果让 AI 写小功能,可把不方便配表而又需要撰写的简单、模板化、多是调用 API 且只牵涉小部分特殊逻辑的代码交给 AI。以 Buff 系统为例,用 Cursor 让它仿照代码写一些 Buff,生成结果有时可以直接用,但目前 Cursor 生成复杂代码还需要复杂的前期调教,用多了之后 ChatGPT 会更方便。教 AI 时要像哄小孩,有正确的需要及时肯定,指出错误时要克制。 2. OpenAI o1:推理能力强,适合作为架构师或算法顾问,用于复杂算法与架构设计。 3. Claude 3.5/Cursor:Claude 擅长长上下文任务,Cursor 适合上下文控制较好的 IDE 开发,可快速生成代码与网页设计。 4. v0.dev:是网页设计的利器,支持设计稿生成网页。 5. Gemini:长上下文支持(2M Tokens),适合代码反编译与混淆代码分析。 同时需要注意,AI 目前在完成复杂项目方面存在一些限制,如上下文窗口限制、自然语言描述不精确、无法感知环境和直接执行、幻觉问题等。复杂项目需要全局理解,AI 难以设计架构和模块化,项目需求常需反复讨论才能明确,AI 难以完全掌握,编译、部署、调试等复杂任务 AI 难以独立完成,且 AI 可能编造不存在的 API 或错误代码,需人工严格审查。
2025-01-20
时间复杂度如何计算’
时间复杂度是计算机科学中用于描述运行算法所需计算机时间量的计算复杂度。通常通过计算算法执行的基本操作数来估计,假定每个基本操作的执行时间固定。时间复杂度常表示为输入大小的函数,最常见的度量值是最差情况的时间复杂度,即给定大小输入所需的最大时间量。 在一些应用中,如 Claude 官方提示词中的效率估算器任务,需要分析提供的函数或算法,并使用大 O 符号计算其时间复杂度,同时逐步解释推理过程,考虑最坏情况。 此外,还有如 TimeComplexity 这样的工具,可利用人工智能分析代码的运行时复杂度,适用于多种语言,但结果可能不准确,使用需自行承担风险。
2024-11-21
可将复杂任务分解为简单子任务的ai工具是什么
以下是一些可将复杂任务分解为简单子任务的 AI 工具和相关策略: OpenAI 官方指南中提到,对于需要大量独立指令集来处理不同情况的任务,可以首先对查询类型进行分类,并使用该分类来确定需要的指令。例如,在客户服务应用程序中,将查询分类为计费、技术支持、账户管理或一般查询等主要类别,并进一步细分次要类别。 如同软件工程中将复杂系统分解为模块化组件,对 GPT 提交的任务也可如此。复杂任务往往可被重新定义为一系列简单任务的工作流程,早期任务的输出用于构造后续任务的输入。 在 AIAgent 系列中,基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力以及对工具的理解。
2024-11-05
将复杂任务分解为简单子任务以简化问题,这样的ai工具都有什么
以下是一些可将复杂任务分解为简单子任务以简化问题的 AI 工具和相关策略: 1. OpenAI 官方指南中提到的策略: 使用意图分类来识别与用户查询最相关的指令。 对于需要很长对话的对话应用程序,总结或过滤之前的对话。 分段总结长文档,并递归构建完整总结。 指示模型在急于得出结论之前先自己找出解决方案。 使用内心独白或一系列查询来隐藏模型的推理过程。 询问模型在之前的回答中是否遗漏了什么。 使用基于嵌入的搜索来实现高效的知识检索。 使用代码执行来进行更准确的计算或调用外部 API。 2. 在 AIAgent 系列中: 基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力,当然也包括对工具的理解。
2024-11-05
我想要获得短视频脚本创作到视频剪辑的解决方案
以下是从短视频脚本创作到视频剪辑的全面解决方案: 制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 根据视频脚本生成短视频的工具: 1. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映自动分析出视频中需要的场景、角色、镜头等要素,并生成对应的素材和文本框架。 2. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. Pictory:AI 视频生成器,允许用户轻松创建和编辑高质量视频,无需视频编辑或设计经验。用户提供文本描述,Pictory 将帮助生成相应的视频内容。 4. VEED.IO:提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划从开场到结尾的内容。 5. Runway:AI 视频创作工具,能够将文本转化为风格化的视频内容,适用于多种应用场景。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。 案例参考: 桂大羊提供了保姆级教程,基于大语言模型和绘图模型,探索了文生图到图生视频的创作实践。例如,在一带一路背景下丝绸之路这个角度的创作中,选择了大语言模型 chatgpt、kimi 进行剧本分镜设定,文生图 midjourney 生成视觉画面,图生视频选择即梦 dreamina 制作动态画面,suno 音乐编曲,ondoku 主角台词配音,视频剪辑使用剪映,部分音效在网上无版权下载或使用剪映自带音效。同时确立了时长(1 分钟左右的 AI 生成画面,加上闭幕不超过 2 分钟)和风格(大致定义为中国风)。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-03-04
解决AI 问题的工具
以下是一些解决 AI 问题的工具: Agentic AI:它具有使用工具和多步决策的核心特质。使用工具方面,例如通过调用计算器来解决数学计算不精确的问题,调用互联网搜索工具、公司内部数据库查询工具等改善 AI 能力短板。多步决策方面,如 Agentic Cursor 或 Devin 会根据命令执行结果进行修改与调试,一个回合中可包含多个指令,数量根据工具调用结果动态决定。 Google DeepMind 发布的可视化工具:可用于了解语言模型的内部工作原理,能提取有意义的特征,揭示语言模型内部的激活状态。详细原理解释:https://xiaohu.ai/p/12186 链接:https://x.com/imxiaohu/status/1818825233778061560 Runway 推出的 Gen3 Alpha Turbo 版本:新版视频生成速度比原版快 7 倍,效果相当,即将推出图像到视频模型,并大幅降价,向免费用户开放。链接:https://x.com/imxiaohu/status/1818839942010913182 Google 推出的 Gemma 2 2B 模型:能在手机、笔记本电脑、台式机等边缘设备上运行,在 LMSYS Chatbot Arena 排行榜上超越所有 GPT3.5 模型,甚至超越 Mixtral8x7b,可处理多种文本生成任务,如问答、摘要和推理。详细:https://xiaohu.ai/p/12197 链接:https://x.com/imxiaohu/status/1818882249263398927 MathGPTPro:专门用于解决数学问题的 AI 工具。
2025-03-01
大模型输出和节点输出配置不匹配怎么解决
当大模型输出和节点输出配置不匹配时,您可以参考以下要点来解决: 1. 输入与输出的变量名称可自定义,按照自身习惯设定,以便识别字段含义。 2. 输入方面,因为取得的是开始节点中用户输入的{{BOT_USER_INPUT}},所以可直接选择引用。 3. 在提示词区域,由于需要 LLM 根据输入信息处理,所以需要两个双花括号,写明使用的输入项参数名,如{{input}}。 4. 输出方面,有几项子内容需要生成,就设置几项: 为了让大模型理解最终输出的形式要求,需要在用户提示词最后,添加输出格式段落,描述每个变量名称、输出内容、输出格式。 务必注意,变量名称、对应的输出内容、输出格式一定要前后完全一致,否则会输出失败,这一点很容易踩坑。 另外,虽然可以用大模型来实现变量类型的转换,比如选择“豆包·工具调用”,在大模型的高级设置中尽量把随机性调到最低,使其更严格遵循提示词。匹配好输入输出的名称与类型,提示词中注意用{{}}引用输入变量。但大模型节点效果不稳定,运行速度相对较慢,还可能带来额外花费。尤其当输出类型为 String 时,大模型容易画蛇添足地加上一些说明性文字,即使优化提示词去限制,也不一定每次都能限制住。一旦出现偏差,哪怕只是多一个字符,下游节点就可能无法正常运行,且对此调整手段有限。所以如果没有“代码恐惧症”,建议使用代码节点来实现。
2025-02-26
我想通过在sciencedirect上输入关键词后,让AI帮助我整理该词条下文献的内容,输出当今的研究现状、现存问题、解决方法
目前在 ScienceDirect 上,还没有直接通过输入关键词让 AI 为您整理文献内容并输出研究现状、现存问题及解决方法的成熟功能。但您可以利用一些 AI 工具,如文献分析类的软件,先将从 ScienceDirect 下载的文献导入其中,然后让其协助您进行分析和总结。不过,在使用任何工具时,都需要您自己对结果进行评估和筛选,以确保准确性和可靠性。
2025-02-25
产品经理想进入AI行业,成为AI产品经理,应该怎么准备,能够快速应付面试拿到offer?我的背景是过去3年集中在用户功能产品,有过1份AI多轮对话解决用户求职问题的AI项目经历
如果产品经理想进入 AI 行业成为 AI 产品经理并快速应付面试拿到 offer,可以从以下几个方面准备: 1. 了解 AI 市场: 鱼龙混杂,求职者要做好信息甄别。即使面试通过拿到 offer,除了看 boss 直聘的招聘评价,一定要提前收集其他信息,如在脉脉上搜一下这家公司靠不靠谱。 一些公司实际上没搞懂用 AI 能为自己企业带来什么价值,只是处于焦虑或跟风心态要做 AI,这部分企业可以聊,但要求求职者要有咨询和商业化的思维,能帮公司厘清业务增长机会。 不同公司对 AI 产品经理的定位不同,所以招聘市场上对 AI 产品经理的岗位职责和任职要求也不同,慢慢会统一标准,这也是产品经理转型的机会。 有行业沉淀和认知的产品经理转型会更有机会,类似之前的“互联网+”,目前应用层的机会在“AI+行业”,只懂 AI 或只懂行业是不够的。还有就是业务创新,找到细分的场景痛点并完成 PMF 验证,海外有很多优秀案例。 2. 掌握岗位技能: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 需要注意的是,观察上面的岗位需求,其实公司并不是需要一个 prompt 工程师,而是一个 AI 互联网产品经理。
2025-02-25
我想我的ai深度思考,他现在给我都太浅显,输出字符也有限制,给我推荐一个解决办法
以下是一些可能有助于解决您的 AI 深度思考和输出字符限制问题的办法: 1. 对于输出字符限制,如果使用的是 GPT3.5 等模型,可以将汉字数大致换算成 token 数,比如简单算法是一个 token 大概是 0.5 个汉字,或者每个汉字耗费 2 2.5 个 token。例如 1000 字大约是 2000 2500 个 token 左右。 2. 可以使用 OpenAI 的 Tokenizer 工具来计算 token 数,以便更准确地控制输出长度。 3. 在编写用户提示词时,注重写法。例如最简单的方法是模仿特定风格输出标题内容,要用特殊字符区分相关内容,包含示例、凝视者等内容,输出包含标题和正文。还可以用少量样本提示(两个样本),并试运行看结果。 4. 对于提高 AI 深度思考能力,可以参考一些相关的最佳实践资料,深入了解模型处理文本的原理和机制,例如 GPT 系列模型通过使用 tokens 来处理文本,模型能理解这些 tokens 之间的统计关系。
2025-02-25