以下是关于 AI 提示词的详细解释:
提示词用于描绘您想要生成的画面。在星流一站式 AI 设计工具中,不同的基础模型对输入语言有不同要求。通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),且支持中英文输入。
写好提示词要注意以下几点:
在【SD】文生图中,括号和冒号加数字(如:1.2)都是用来增加权重的,权重越高在画面中体现越充分,提示词的先后顺序也会影响权重。同时,还可以增加反向提示词,告诉 AI 我们不要什么。
在 AI 领域中,Prompt 中文译作提示词,就是我们输入给大模型的文本内容,可以理解为您和大模型说的话、下达的指令。提示词的质量好坏会显著影响大模型回答的质量。Token 是大模型语言体系中的最小单元,不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 - 2 个汉字,大模型的收费计算方法及对输入输出长度的限制通常以 token 为单位计量。上下文(context)指对话聊天内容前、后的内容信息,其长度和窗口都会影响 AI 大模型回答的质量。
prompt输入框中你可以输入提示词、使用图生图功能辅助创作。[heading4]提示词[content]1.什么是提示词?1.1.内容1.1.1.提示词用于你想描绘的画面。1.2.输入语言1.2.1.星流通用大模型与基础模型F.1、基础模型XL使用自然语言(一个长头发的金发女孩),基础模型1.5使用单个词组(女孩、金发、长头发),1.2.2.支持中英文输入。1.3.提示词优化1.3.1.启用提示词优化后,帮你扩展提示词,更生动的描述画面内容。2.如何写好提示词?2.1.预设词组2.1.1.小白用户可以点击提示词上方官方预设词组,进行生图2.1.提示词内容准确2.1.1.包含人物主体、风格、场景特点、环境光照、画面构图、画质,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。2.2.调整负面提示词2.2.1.点击提示框下方的齿轮按钮,弹出负面提示词框2.2.2.负面提示词可以帮助AI理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印2.3.利用“加权重”功能,让AI明白重点内容2.3.1.可在功能框增加提示词,并进行加权重调节,权重数值越大,更优先。2.3.1.对已有的提示词权重进行编辑2.4.辅助功能2.4.1.翻译功能:一键将提示词翻译成英文2.4.2.删除所有提示词:清空提示词框2.4.3.会员加速:加速图像生图速度,提升效率
英文为:(masterpiece:1.2),best quality,masterpiece,highres,original,extremelydetailed wallpaper,perfect,lighting,(extremely detailed CG:1.2),drawing,paintbrush在这组提示词中,括号和:1.2,都是用来增加权重的,权重越高在画面中体现越充分,同样提示词的先后顺序也会影响权重。接下来我们再增加一组反向提示词,可以告诉AI我们不要什么,在这里也是一组标准化提示词:NSFw,(最差质量:2),(低质量:2),(正常质量:2),(低质量:2),((单色)),((灰度)),皮肤斑点,痤疮,皮肤瑕疵,老年斑,(丑陋:1.331),(重复:1.331),(病态:1.21),(残缺:1.21),(变形:1.331),变异的手,(画得不好的手:1.5),模糊,(解剖不良:1.21),(比例不良:1.331),多余的四肢,(毁容:1.331),(缺胳膊:1.331),(多余的腿:1.331),(融合的手指:1.61051),(过多的手指:1.61051),(不清晰的眼睛:1.331),低质量,坏的手,缺手指,多余的手指,受伤的手,缺失的手指,(((多余的胳膊和腿))英文为:NSFw,(worst quality:2),(low quality:2),(normal quality:2),lowres,normal quality,((monochrome)),((grayscale)),skin spots,acnes,skin blemishes,age spot,(ugly:1.331),(duplicate:1.331),(morbid:1.21),(mutilated:1.21),(tranny:1.331),mutated hands,(poorly drawn hands:1.5),blurry,(bad anatomy:1.21),(badproportions:1.331),extra limbs,(disfigured:1.331),(missingarms:1.331),(extra legs:1.331),(fused fingers:1.61051),(toomany finger
首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行?Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)