Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我在一周前的文章[1]里说对 DeepSeek-R1 只需要说大白话,但在三天前的文章[2]里又用了看起来还挺复杂的结构化提示词。有伙伴问我到底咋回事。这就来解释下喽。

Answer

以下是关于 DeepSeek-R1 提示词的相关信息:

  • 历史更新:
    • 字节跳动推出新技术 OmniHuman,利用单张图片和音频生成生动视频。
    • DeepSeek 的出现标志着算力效率拐点显现,其优化算法架构提升算力利用效率,AI 基础大模型参数量迎来拐点,2025 年是算法变革元年,其训练过程聚焦强化学习提升推理能力。
  • 提示词方法论:
    • 核心原理认知:包括多模态理解、动态上下文、任务适应性等 AI 特性定位,以及采用意图识别+内容生成双通道处理等系统响应机制。
    • 基础指令框架:包括四要素模板、格式控制语法等。
    • 进阶控制技巧:如思维链引导、知识库调用、多模态输出。
    • 高级调试策略:包括模糊指令优化、迭代优化法。
    • 行业应用案例:涵盖技术开发场景、商业分析场景。
    • 异常处理方案:如处理信息幻觉、格式偏离、深度不足等情况。
    • 效能监测指标:包括首次响应准确率、多轮对话效率、复杂任务分解等。

在 R1 时代,使用 AI 提示词关键在于提供足够背景信息,简单大白话有效但信息量不足难达理想结果,示例和框架可助理清思路,最终影响在于思考和表达,利用乔哈里视窗分析信息需求,避免过度指令化,让 AI 自由思考以激发更高创意和效果。

Content generated by AI large model, please carefully verify (powered by aily)

References

4.4 历史更新

《[AI「视觉图灵」时代来了!字节OmniHuman,一张图配上音频,就能直接生成视频](https://mp.weixin.qq.com/s/0OYlkcxoFvx6Z9IN-aq90w)》字节跳动推出的新技术OmniHuman,利用单张图片和音频生成生动的视频,突破了传统技术的局限。它通过多模态混合训练,解决了高质量数据稀缺的问题,实现了对任意尺寸图像的支持,生成自然的人物运动。《[甲子光年:2025 DeepSeek开启AI算法变革元年](https://waytoagi.feishu.cn/record/S5Jtrlw9neyXMccQ6CAcZsxHnXu)》DeepSeek的出现标志着算力效率拐点显现,其通过优化算法架构,显著提升了算力利用效率,打破了算力至上的传统认知。同时,AI基础大模型的参数量迎来拐点,2025年发布的大模型呈现低参数量特征,为本地化部署到AI终端运行提供了可能。此外,报告强调2025年是算法变革的元年,DeepSeek的推理模型开启了算法变革,其训练过程聚焦于强化学习,提升了模型的推理能力。《[R1之后,提示词技巧的变与不变](https://mp.weixin.qq.com/s/-51tjTWRdi19sEBCQMe1sw)》在R1时代,使用AI提示词的关键在于提供足够的背景信息,而非复杂的结构。简单大白话仍然有效,但信息量不足则难以得到理想结果。示例和框架可帮助理清思路,但最终影响在于你的思考和表达。利用乔哈里视窗分析信息需求,避免过度指令化,让AI自由思考,从而激发更高的创意和效果。“有用的不是技巧,而是你的思考!”

DeepSeek 提示词方法论

1.AI特性定位多模态理解:支持文本/代码/数学公式混合输入动态上下文:对话式连续记忆(约4K tokens上下文窗口)任务适应性:可切换创意生成/逻辑推理/数据分析模式1.系统响应机制采用意图识别+内容生成双通道处理自动检测prompt中的:任务类型/输出格式/知识范围反馈敏感度:对位置权重(开头/结尾)、符号强调敏感[heading2]二、基础指令框架[content]如果不知道如何表达,还是可以套用框架指令[heading3]1.四要素模板[content]示例:[heading3]2.格式控制语法[content]强制结构:使用```包裹格式要求占位符标记:用{{}}标注需填充内容xq优先级符号:>表示关键要求,!表示禁止项示例:[heading2]三、进阶控制技巧[heading3]1.思维链引导[content]分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差[heading3]2.知识库调用[content]领域限定指令:基于2023版中国药典,说明头孢类药物的配伍禁忌文献引用模式:以Nature 2022年发表的论文为参考,解释CRISPR-Cas9最新突破[heading3]3.多模态输出

DeepSeek 提示词方法论

虽然R1推理能力比较强,有些你想表达的不一定完全与模型吻合,因此建议可以多加清晰指令[heading3]1.模糊指令优化[content]|问题类型|修正方案|示例对比||-|-|-||宽泛需求|添加维度约束|原句:"写小说"→修正:"创作以AI觉醒为背景的悬疑短篇,采用多视角叙事结构"||主观表述|量化标准|原句:"写得专业些"→修正:"符合IEEE论文格式,包含5项以上行业数据引用"|[heading3]2.迭代优化法[content]1.首轮生成:获取基础内容2.特征强化:请加强第三段的技术细节描述3.风格调整:改用学术会议报告语气,添加结论部分4.最终校验:检查时间逻辑一致性,列出可能的事实性错误[heading2]五、行业应用案例[heading3]1.技术开发场景[heading3]2.商业分析场景[heading2]六、异常处理方案[content]信息幻觉:追加请标注所有不确定陈述,并提供验证方法格式偏离:使用严格遵循以下模板:第一行...第二行...深度不足:触发请继续扩展第三章节内容,添加案例佐证[heading2]七、效能监测指标[content]1.首次响应准确率:目标>75%2.多轮对话效率:问题解决平均轮次<33.复杂任务分解:支持5级子任务嵌套

Others are asking
新手入门该看这个知识库里的哪些文章/视频,给我列一个学习 路径
以下是为新手入门提供的学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,进行实践巩固知识,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于 WayToAGI 知识库的使用: 1. 如果觉得视频太多很晕,可以从 Agent 板块开始,比如链接: ,从下往上看,一个一个点进去,都有视频。共学都有视频,都是手把手从注册开始的教学,不会就多看几遍,基本保障一个工具能调通、一个 Agent 能搭好。如果觉得内容多,可以先挑听过的工具开始。 2. 看了一些视频之后,如果想看理论或应用,可以找到导航,想看哪里点哪里。比如链接: 。 3. 还可以从常见工具开始体验,比如: 工具入门篇(AI Tools):数据工具多维表格小白之旅,文章链接: ,适用人群为 Excel 重度使用者、手动数据处理使用者、文件工作者,可满足 80%数据处理需求。 工具入门篇(AI Code):编程工具Cursor 的小白试用反馈,文章链接: ,适用人群为 0 编程经验、觉得编程离我们很遥远的小白,可降低技术壁垒。 工具入门篇(AI Music):音乐工具Suno 的小白探索笔记,文章链接: ,适用人群为 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白,可参与音乐制作。
2025-02-07
我需要仿写 AI工具的教程文章,应该怎么写提示词
以下是关于如何仿写 AI 工具教程文章中提示词的相关内容: 样例驱动的渐进式引导法就像让 AI 主动读懂您的想法。它以 1 2 个正向样例为起点,通过与 AI 的多轮对话,引导其从样例中提炼隐含的生成要求,逐步完善提示词。 例如,教 AI 仿写爆文时,只需提供优秀样例,AI 会自动分析理解精髓并生成符合自身运作的指令。这种方法无需用户具备专业的 Prompt 工程知识,也不用费力提炼“Know How”,利用 AI 就能自动生成精彩的 Prompt。 其核心步骤包括: 1. 构建初始样例:创建符合期望输出的具体例子。 2. 评估样例,尝试提炼模板:让 AI 分析理解样例结构和关键元素,并以专家视角优化。 3. 固定模板,强化要求说明:基于对初始样例的理解,让 AI 提出通用模板,通过测试 Prompt 验证可靠性。 4. 生成结构化提示词:将优化后的模板转化为结构化提示词,用户适当调整确认后即可使用。 在这个过程中,用户的角色主要是: 1. 提供尽可能与自己预期一致的初始样例。 2. 判断 AI 的输出质量。 3. 反馈改进建议,提供行动引导。 这种方法的优势在于简化了提示词设计过程,让非专业用户也能创建高质量的 Prompt。用户可专注于判断输出质量和提供反馈,无需深入理解复杂的 Prompt 工程技巧。 此外,编写提示词(prompt)还有一些通用建议: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:任务需要背景知识时,在 prompt 中提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言描述任务,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在 prompt 中明确指出。 5. 使用示例:有特定期望结果时,在 prompt 中提供示例。 6. 保持简洁:尽量简洁明了,过多信息可能使 AI 模型困惑。 7. 使用关键词和标签:帮助 AI 模型更好理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整 prompt,可能需要多次迭代达到满意结果。
2025-02-06
文章仿写提示词
以下是为您整理的关于文章仿写提示词的相关内容: 一、商业类文章风格的提示词逆向工程 作为专业的文本分析师,您需要对给定的文章进行逆向提示词工程,提取主要写作元素并生成模仿写作风格的提示词,以便让 AI 模型(如 ChatGPT)写出类似风格的文章。您具备理解和分析不同写作风格、提取关键写作元素、生成有效提示词以及对文本进行逆向工程以理解写作技巧的能力。 二、DeepSeek 提示词方法论案例 DeepSeek 输出结果有诸多亮点,如在独白文本中加入括号中的场景描述,增强画面感;能预判用户需求,在简洁的输入下给出具有文学性的输出。但也存在值得商榷的点,如根据史实的准确性。 三、拘灵遣将——律师写好提示词用好 AI (1)第一部分:说明要解决的问题、问题背景及可能导致的损失。 (2)第二部分:以案例引入,包括案号、案件事实经过、法院裁判结果等要点。 (3)第三部分:对案例进一步分析,写明注意关键点。 (4)第四部分:给出具体操作建议,分事前、事中、事后三个部分,各三条。 (5)第五部分:结语及作者宣传。 文章结构是精华部分,需对最终输出成果有结构化理解,包括定义身份、描述流程和所需资源、对资源使用及最终输出结果进行描述。同时,所有结论要有案例基础,不能违反法律规定,文字要简练精准,给出的建议要具体细致且易于操作。
2025-02-06
用cursor做网页采集文章插件总是报错怎么办
当使用 Cursor 做网页采集文章插件总是报错时,您可以参考以下内容: 1. 技术架构方面: 采用前后端分离架构,后端基于 Coze 工作流构建业务逻辑,前端为 Chrome 浏览器插件,提供轻量级交互界面。 2. 工作流搭建方面: 配置核心组件,包括插件大模型、工作流总览、大模型节点提示词、输出节点 markdown 排版(注意 markdown 里图片的渲染格式),注意输出图片的变量用的是 contentUrl。 3. 可视化界面和 chrome 插件开发方面: 使用 Cursor 开发时,要有架构思维,懂得如何向 AI 描述想要的东西,在实践中学习。 对于 Coze 关键数据,要获取授权令牌(Token),掌握工作流调用方法。查看 Coze 的 api 开发文档,查看执行工作流的实例,需要两个关键参数,即令牌密钥和工作流开发代码。在工作流界面获取工作流 id,让 Cursor 根据相关内容写一个调用 Coze 工作流的服务,注意声明入参为 article_url 以及让 Cursor 注意中文编码。 4. 报错处理方面: 如果报错、解析结果不对,可以点击 Raw Response,查看报错或者返回值,再根据返回值调整配置输出参数。 希望以上内容对您有所帮助。
2025-02-06
提供几篇讲解AI 相关的基本概念、知识框架的文章
以下是为您提供的讲解 AI 相关的基本概念、知识框架的文章: 1. 新手学习 AI 方面: 建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,并获得证书。 2. 书籍推荐方面: 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让您系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。 3. 相关文章方面: 《》:这是公众号琢磨事翻译的领英工程师的一篇文章,分享了在领英开发 AI 驱动产品的经验,重点探讨了生成式 AI 的相关内容。 《麻省理工科技评论》发布的《》:万字长文探讨了人工智能的定义和发展,详细阐述了人工智能的基本概念、技术背景及其在各个领域的应用,分析了当前的技术挑战和未来的发展方向,还讨论了人工智能对社会、经济和伦理的影响。
2025-02-06
写商业文章最好的工具是谁
以下是一些常用于写商业文章的工具: 1. Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频。提供多种定价计划,从免费到商业级不等,可用于制作营销视频、产品演示等。 2. HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频。适合制作营销视频和虚拟主持人等。 3. Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等。提供多种语气和风格选择,写作质量较高。 4. Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容。有免费和付费两种计划。 5. Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等。提供多种语气和行业定制选项。 更多的相关工具可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。总的来说,这些 AI 工具能够帮助您高效创作各种营销内容,提高工作效率。您可根据实际需求选择合适的工具。 此外,还有一些与商业相关的提示词资源,如李继刚等的 prompt 最佳实践:https://waytoagi.feishu.cn/wiki/JTjPweIUWiXjppkKGBwcu6QsnGdKF9rdC4fxo4ttzx3Xk8cStjWnDj 。
2025-02-06
deepseek R1部署
以下是关于 DeepSeek R1 部署的相关信息: DeepSeek R1 大模型成为国民刚需,但官网卡顿且存在不能联网等问题。 实现联网版 R1 大模型的核心路径是通过工作流+DeepSeek R1 大模型。 部署步骤包括: 拥有扣子专业版账号,若为普通账号需自行升级或注册专业号。 开通 DeepSeek R1 大模型,访问地址:https://console.volcengine.com/cozepro/overview?scenario=coze ,在火山方舟中找到开通管理,开通服务并添加在线推理模型,添加后在扣子开发平台才能使用。 创建智能体,点击创建完成智能体的创建。
2025-02-06
deepseekR1解析
DeepSeek R1 相关的内容主要包括以下方面: 1. 1 月 27 日: 拾象的闭门学习讨论,涉及 DeepSeek 在全球 AI 社区的意义,包括技术突破与资源分配策略,突出了其长上下文能力、量化商业模式以及对 AI 生态系统的深远影响,重点分析了创新路径及中国在 AI 追赶中的潜力与挑战。 关于 DeepSeek 的研究和思考,深入解析其在架构和工程上的创新,如 MoE、MLA、MTP 和 FP8 混合精度训练,强调不是简单模仿,而是在工程和应用平衡中达成高效优化,对开源与闭源竞争进行深刻反思,并指出 AI 生态未来发展方向。 7B Model and 8K Examples: 如何用 8000 个示例炼出自我反思 AI。 2. 1 月 28 日: 拾象的讨论,包括 DeepSeek 对全球 AI 社区的影响,如技术突破、资源分配及其长上下文能力与商业模式,分析了中国在 AI 追赶过程中的潜力与挑战,探讨了创新路径及深远生态影响。 关于 DeepSeek 的研究与思考,重点解析在 MoE、MLA、MTP、FP8 混合精度训练等方面的创新,指出并非简单模仿,而是通过工程与应用的平衡实现高效优化,对开源与闭源的竞争作了深入反思,并展望了 AI 生态未来发展方向。 小模型、大数据:7B Model+8K 示例的自我反思 AI。 3. 1 月 26 日: DeepSeek R1 System Prompt,介绍了其身份、操作指南及能力范围,突出在中英双语处理上的专业性和对中国法律的合规性,强调 AI 辅助输出需以人类主导为前提,并通过特定标签实现逻辑清晰的响应。 公众号文章通过虚构故事结合真实案例,讲述 AI 在日常工作中的效率提升作用,描述 AI 如何分析意图、生成任务说明,并拆分复杂任务成结构化内容,强调最终成果需人工审核、拼接,并以人类主导全流程。
2025-02-06
你能调用deepseekR1的API吗?
DeepSeekR1 的 API 调用步骤如下: 1. 首先到 DeepSeek 的官网(https://www.deepseek.com/),进入右上角的 API 开放平台。 2. 早期 DeepSeek 有赠送额度,如果没有赠送的余额,可以选择去充值。支持美元和人民币两种结算方式,以及各种个性化的充值方式。 3. 创建一个 API key,注意,API key 只会出现一次,请及时保存下来。 4. 接下来,下载 Cursor(https://www.cursor.com/),或者 VSCode(https://code.visualstudio.com/),只要代码编辑器可以下载插件即可。 5. 以 Cursor 作为代码编辑器为例,下载安装后,在插件页面搜索并安装 Roocline。 6. 安装完后,打开三角箭头,就可以看到 RooCline,选中并点击齿轮,进入设置,依次设置: API Provider:选择 DeepSeek。 API Key:填入已创建的 key。 模型:选择 DeepSeekreasoner。 语言偏好设置。 小贴士:记得把 HighRisk 选项都打开,这样 AI 才能帮您自动生成文件。 7. 最后做完所有不要忘记点击 Done 保存修改。 8. 在聊天框输入产品需求,输入需求后点击星星优化提示词,最终得到想要的结果。
2025-02-05
如何在服务器上部署deepseek r1
以下是在服务器上部署 DeepSeek R1 的步骤: 1. 环境配置: 访问 DeepSeek 的官网(https://www.deepseek.com/)。 进入右上角的 API 开放平台。 若没有赠送的余额,可以选择充值,支持美元和人民币两种结算方式以及各种个性化的充值方式。 创建一个 API key,注意 API key 只会出现一次,请及时保存下来。 2. 设置代码编辑器: 下载 Cursor(https://www.cursor.com/)或 VSCode(https://code.visualstudio.com/),只要代码编辑器可以下载插件即可。 以 Cursor 作为代码编辑器为例,下载安装后,在插件页面搜索并安装 Roocline。 安装完后,打开三角箭头,就可以看到 RooCline。 选中 RooCline,并点击齿轮,进入设置,依次设置: API Provider:选择 DeepSeek。 API Key:填入已创建的 key。 模型:选择 DeepSeekreasoner。 语言偏好设置。 记得把 HighRisk 选项都打开,这样 AI 才能帮你自动生成文件。最后做完所有不要忘记点击 Done 保存修改。 3. 在聊天框输入产品需求,输入需求后点击星星优化提示词,最终得到想要的结果。
2025-02-05
哪些ai软件能制作r18图片
制作 R18 图片是不符合道德和法律规范的行为,因此没有合法的 AI 软件可以用于此目的。AI 技术应当被用于有益和合法的用途。
2025-01-27
如何在手机上部署deepseek R1
以下是在手机上部署 deepseek R1 的步骤: 1. 访问 deepseek 的官网(https://www.deepseek.com/)。 进入右上角的 API 开放平台。 早期 deepseek 有赠送额度,若没有赠送余额,可选择充值,支持美元和人民币两种结算方式以及各种个性化充值方式。 创建一个 API key,注意 API key 只会出现一次,请及时保存。 2. 设置代码编辑器: 下载 cursor(https://www.cursor.com/)或 vscode(https://code.visualstudio.com/),只要代码编辑器可以下载插件即可。 以 cursor 作为代码编辑器为例,下载安装后,在插件页面搜索并安装 Roocline。 安装完后,打开三角箭头,可看到 RooCline。 选中 RooCline,并点击齿轮,进入设置,依次设置: 配置基本参数: API Provider:选择 DeepSeek。 API Key:填入已创建的 key。 模型:选择 DeepSeekreasoner。 语言偏好设置。 小贴士:记得把 HighRisk 选项都打开,这样 AI 才能帮您自动生成文件。 最后做完所有不要忘记点击 Done 保存修改。 3. 在聊天框输入产品需求,输入需求后点击这个 blingbling 的星星,优化提示词,最终得到想要的结果,在 deepseekr1 的加持下基本上是一遍过,各种特效效果交互逻辑也都正确。画面也算优雅,交互效果也不错。
2025-01-26
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 秘方特点:DeepSeek 不是“中国式创新”的产物,其秘方是硅谷味儿的。早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动。同时,它在国内舆论场被描摹成“大模型价格战的发起者”,形成了一种平行时空的感觉。 2. V3 时刻:如果 V3 是 DeepSeek 的 GPT3 时刻,接下来的发展充满未知,但 DeepSeek 作为中国最全球化的 AI 公司之一,赢得全球同行尊重的秘方也是硅谷味儿的。 3. 提示词提升:一个提示词“HiDeepSeek”能让 DeepSeek 的能力更上一层楼。通过 Coze 做了效果对比测试,使用方法包括搜索 www.deepseek.com 点击“开始对话”,将装有提示词的代码发给 DeepSeek 等步骤。其设计思路包括将 Agent 封装成 Prompt 并储存、实现联网和深度思考功能、优化输出质量等。完整提示词版本为 v1.3,特别鸣谢了李继刚和 Thinking Claude 等。
2025-02-07
本地 部署deepseek
DeepSeek 相关信息如下: DeepSeek 有多种含义,包括公司、网站、手机应用和大模型,尤其是具有推理功能的 DeepSeek R1 大模型,其权重文件开源,可本地部署。 模型方面,JanusPro 是一种新型自回归框架,将图像理解和生成统一在一个模型中,模型(7B):https://huggingface.co/deepseekai/JanusPro7B ,模型(1B):https://huggingface.co/deepseekai/JanusPro1B 。 联网版的实现方式:通过工作流+DeepSeek R1 大模型,需要拥有扣子专业版账号,开通 DeepSeek R1 大模型的访问地址为:https://console.volcengine.com/cozepro/overview?scenario=coze ,添加在线推理模型,添加后在扣子开发平台才能使用,还需创建智能体。 相关新闻: 《》提到 DeepSeek 最新模型 V3 与 R1 采用混合专家(MoE)架构,显著提升计算效率,挑战 OpenAI 的闭源模型。V3 引入多头潜注意力(MLA),将 KV 缓存压缩至新低,提升计算性能。R1 则通过强化学习激活推理能力,首次验证无需监督微调即可实现推理。 《》介绍了字节跳动推出的新技术 OmniHuman,利用单张图片和音频生成生动的视频,突破了传统技术的局限。 《》指出 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构,显著提升了算力利用效率,打破了算力至上的传统认知。同时,AI 基础大模型的参数量迎来拐点,2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能。此外,报告强调 2025 年是算法变革的元年,DeepSeek 的推理模型开启了算法变革,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-02-07
deepseek的使用方法
以下是 DeepSeek 的使用方法: 1. 访问网址:搜索 www.deepseek.com,点击“开始对话”。 2. 操作步骤: 将装有提示词的代码发给 DeepSeek。 认真阅读开场白之后,正式开始对话。 3. 特点与优势: 核心是推理型大模型,不需要用户提供详细的步骤指令,而是通过理解用户的真实需求和场景来提供答案。 能够理解用户用“人话”表达的需求,不需要用户学习和使用特定的提示词模板。 在回答问题时能够进行深度思考,不是简单地罗列信息。 可以模仿不同作家的文风进行写作,适用于多种文体和场景。 4. 更多提示词技巧请查看
2025-02-07
deepseek与其他大模型有什么区别
DeepSeek 与其他大模型的区别主要体现在以下几个方面: 1. 模型类型:DeepSeek 是推理型大模型,与指令型大模型不同,不需要用户提供详细步骤指令,而是通过理解用户真实需求和场景提供答案。 2. 语言理解:能够理解用户用“人话”表达的需求,不需要用户学习和使用特定提示词模板。 3. 思考深度:在回答问题时能够进行深度思考,而非简单罗列信息。 4. 文风转换:可以模仿不同作家的文风进行写作,适用于多种文体和场景。 5. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 同属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升最终回答质量。 6. 发展路径:从一开始,DeepSeek 与国内诸多大模型新秀选择的不是同一个战场。它不拿融资,不抢座次,不比国内舆论声势,不搞产品投放投流,而是选择走全球开源社区,分享直接的模型、研究方法和成果,吸引反馈,再迭代优化。开源彻底,包括模型权重、数据集、预训练方法和高质量论文。
2025-02-07
deepseek学习资料
以下是关于 DeepSeek 的学习资料: 2025 年 2 月 6 日的智能纪要中,分享了 DP 模型的使用,其功能包括自然语言理解与分析、编程、绘图等。使用优势是能用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容,但存在思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本的问题。审核方法可以用其他大模型来解读其给出的内容。使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。使用场景包括阅读、育儿、写作、随意交流等方面,还有案例展示,如与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互。此外,还分享了音系学和与大模型互动的内容,如通过对比不同模型的回答来深入理解音系学,与大模型进行多轮对话来取队名。DeepSeek 的相关文档在 3 群和 4 群有分享,也可在 v to a gi 的飞书知识库中搜索获取,介绍了 DeepSeek 的模型、收录内容、提示词使用技巧和好玩的案例等,未来活动预告有明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 DeepSeek。 1 月 27 日的宝玉日报中,包括拾象关于 DeepSeek r1 闭门学习讨论,讨论了其在全球 AI 社区的意义,如技术突破与资源分配策略,突出了长上下文能力、量化商业模式及对 AI 生态系统的影响,分析了创新路径及中国在 AI 追赶中的潜力与挑战。还有转关于 DeepSeek 的研究和思考,深入解析其在架构和工程上的创新,如 MoE、MLA、MTP 和 FP8 混合精度训练,强调不是简单模仿,对开源与闭源竞争进行了反思,并指出 AI 生态未来发展方向。 非技术人角度的研究总结,主要围绕天才养成记、“填鸭”之困、自学成才、纯强化学习等话题,力求帮助非技术读者深度理解 Deepseek R1,更好开展工作与生活。
2025-02-07
未来类似deepseek这种推理大模型普及,结构化提示词是不是会成为过时的知识
未来类似 DeepSeek 这种推理大模型普及,结构化提示词不会成为过时的知识。 虽然未来模型可能在某些情况下无需提示词,仅通过简单对话就能理解用户意图,但基础的如何与模型对话的认知仍需具备,这就涉及提示词。例如李继刚老师的结构化提示词能让模型给出更优质、完整的答案。操作过程中有很多有意思的提示词,如“酷老师”“抬杠高手”等,近期提示词有升级,李继刚老师将其玩到新高度,cloud 等大语言模型可直接显示编译结果内容。输入特定提示词可生成卡片,小创业项目可利用并改变提示词形成独到见解或小应用。 从工程视角看,AI 提示词在游戏创作及优化中也有应用。此外,提示工程的本质是提供足够的信息来明确指定要求,即使模型在理解上下文方面变得更好,能够清晰地陈述目标始终很重要,仍需要明确预期结果的能力和技巧。未来可能会更多地利用提示工程来让模型为我们生成、调整提示词,对于没有太多提示工程经验的人来说,提示词生成器可以帮助他们。未来的提示可能更像是一种自省,模型会尝试理解用户真正在思考什么、需要什么。 在 R1 时代,使用 AI 提示词的关键在于提供足够的背景信息,而非复杂的结构。简单大白话仍然有效,但信息量不足则难以得到理想结果。示例和框架可帮助理清思路,但最终影响在于用户的思考和表达。利用乔哈里视窗分析信息需求,避免过度指令化,让 AI 自由思考,从而激发更高的创意和效果。“有用的不是技巧,而是你的思考!”
2025-02-07