直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface

回答

在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多出色的 AI 技术成就都可追溯到 Transformer 和 Diffusion 这两个核心架构,它们分别在数据转换和数据向图像转换方面发挥着关键作用。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术进步提供了强大支持。 人才网络方面,AI 领域的关键人才大多源自 Google 及其相关机构,如在加拿大多伦多和蒙特利尔成立的实验室以及收购的英国公司 DeepMind,这些人才的流动与合作推动了 AI 技术的发展。

关于这三个基石的资源,目前没有明确提及具体的获取渠道。但您可以通过以下途径寻找相关资源:

  1. 学术研究网站和数据库,获取关于架构、算力和人才网络的最新研究成果和报告。
  2. 科技公司的官方网站和技术文档,了解其在相关领域的创新和实践。
  3. 专业的 AI 技术论坛和社区,与同行交流和分享资源。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

2024年3月 / 科技变革与美股投资 2024

[title]2024年3月/科技变革与美股投资2024[heading1]III.智变时代最近,2024年2月,Sora的出现再次震撼了技术界,预示着我们可能很快就会见证更多令人兴奋的技术突破。虽然现在我们可能还没到达视频生成AI的顶峰,但已有的成就足以让人惊叹。这一切都说明,我们正站在一个新的技术革命的门槛上,未来充满了无限可能。在这次人工智能的飞速发展中,三个关键因素起到了催化剂的作用:架构、算力以及人才网络。首先,当我们谈论当前市场上那些仿佛魔法一般的AI技术时,几乎所有的成就都可以追溯到两个核心架构—— Transformer和Diffusion。这两种架构分别代表了数据转换和数据向图像转换的能力,它们构成了当前AI技术的基石。其次,自2010年以来,由于GPU等计算资源的快速发展,算力得到了空前的爆发,为AI技术的进步提供了强大的支持。除了技术和算力之外,AI领域的人才网络也起到了不可忽视的作用。值得注意的是,这一次的AI革命中的所有关键人才几乎都源自于Google,特别是Google在加拿大多伦多和蒙特利尔成立的两个实验室,以及它收购的英国公司DeepMind。这些机构和个人形成了一个强大的人才网络,推动了AI技术的发展,并培养了一批杰出的AI领军人物。从Google到OpenAI,再到Facebook和其他多家公司,这些人才的流动和合作推动了AI技术的快速进步。这次革命的比较角度可以是,过去几十年我们一直在追求更快的计算机,但现在和未来,我们将追求更强大的大脑,即软件2.0。这一概念由Andrej Karpathy提出,标志着从传统软件开发到以AI模型为核心的新时代的转变。未来,我们将依赖于无尽的算力和多样化的AI模型来构建“机器之心”,这将使我们能够实现前所未有的智能服务和应用。

黄仁勋在AI界超级碗GTC2024的主旨演讲: 精华及全文(附视频)

[title]黄仁勋在AI界超级碗GTC2024的主旨演讲:精华及全文(附视频)您问我是否知道,我感谢您的提问。这是一个误解。然后我们向他们展示,这就是CTL,没有问题。所以这就是NVIDIA的CTL,以及您可以看到的CTL。您知道,CTL代表计算跟踪库,这让您知道我们一直在跟踪计算周期。它写了“程序真是太棒了”。这样,我们的芯片设计人员的生产力就可以提高。这就是您可以使用NIM做的第一件事。您可以使用它进行定制。我们有一项名为NEMO微服务的服务,可以帮助您管理数据,准备数据,以便您可以进行教学在这个人工智能上。您可以对它们进行微调,然后您可以对其进行防护,您可以评估答案,根据其他示例评估其性能,这就是所谓的NEMO。现在出现的微服务是三个要素,我们正在做的事情的三个支柱。第一个支柱当然是发明技术。AI模型和运行AI模型,然后再为您打包。是创建工具来帮助您修改它,其次是拥有人工智能技术,第二是帮助您修改它,第三是供您微调它的基础设施。如果您喜欢部署它,您可以将其部署在我们称为DGX云的基础设施上,或者您可以使用它,将其部署在本地,您可以将其部署在任何您喜欢的地方。一旦您开发了它,您就可以把它带到任何地方。所以我们是一家有效的人工智能代工厂。我们将为您和人工智能行业做的事情,就像台积电为我们制造芯片所做的那样。因此,我们带着我们的伟大想法去台积电,他们制造,我们随身携带。所以这里完全相同的事情,人工智能铸造厂和三大支柱是NEMS,NEMO微服务和DGX云。您可以做的另一件事是教导NEM要做的就是了解您的专有信息。请记住,在我们公司内部,我们的绝大多数数据并不在云中,而是在我们公司内部。您知道它一直坐在那里,并且一直在使用。天哪,我们想要获取的数据基本上是NVIDIA的智能。了解其含义,就像我们了解了我们刚刚谈到的几乎所有其他内容的含义一样,然后将这些知识重新索引到一种称为矢量数据库的新型数据库中。

【法律法规】《2020年国家人工智能倡议法案》.pdf

11trustworthy artificial intelligence across all sectors12and to the benefit of all Americans,the Federal13Government must provide sufficient resources and14use its convening power to facilitate the growth of15artificial intelligence human capital,research,and16innovation capacity in academia and other nonprofit17research organizations,companies of all sizes and18across all sectors,and within the Federal Govern-19ment.20SEC.3.DEFINITIONS.21In this Act:22

其他人在问
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源
在人工智能时代,最重要的三个基石通常包括以下方面: 1. 架构:如 Transformer 和 Diffusion 这两种核心架构,分别在数据转换和数据向图像转换方面发挥关键作用,构成了当前 AI 技术的重要基础。 2. 算力:自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术的进步提供强大支持。 3. 人才网络:AI 领域的关键人才网络起到不可忽视的作用,例如 Google 及其相关实验室和收购的公司培养和汇聚了众多杰出人才,他们的流动与合作推动了 AI 技术的发展。 关于这三个基石的资源,您可以通过以下途径获取: 1. 科技类的专业网站和论坛,如一些知名的技术社区和学术网站。 2. 相关的学术研究报告和论文,可在学术数据库中查找。 3. 行业内的权威专家和学者的讲座、演讲等。 4. 科技公司发布的技术文档和报告。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface
在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多令人惊叹的 AI 技术成就都可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基石。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到了空前的提升,为 AI 技术的进步提供了强大支持。 人才网络方面,AI 领域的关键人才大多源自于 Google,特别是其在加拿大多伦多和蒙特利尔成立的两个实验室,以及收购的英国公司 DeepMind。这些机构和个人形成了强大的人才网络,推动了 AI 技术的发展,并培养了一批杰出的领军人物。人才在不同公司之间的流动和合作也促进了 AI 技术的快速进步。 关于这三个基石的资源,目前没有明确提及具体的获取渠道。但您可以通过以下途径寻找相关资源: 1. 学术研究网站和数据库,如知网、Web of Science 等,以获取关于架构、算力和人才网络的学术研究成果。 2. 科技行业的专业论坛和社区,与同行交流和分享资源。 3. 关注知名科技公司和研究机构的官方网站和社交媒体账号,获取最新的研究动态和资源。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface
在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多令人惊叹的 AI 技术成就都可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基石。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到了空前的爆发,为 AI 技术的进步提供了强大支持。 人才网络方面,AI 领域的关键人才几乎都源自于 Google,特别是 Google 在加拿大多伦多和蒙特利尔成立的两个实验室,以及它收购的英国公司 DeepMind。这些机构和个人形成了强大的人才网络,推动了 AI 技术的发展,并培养了一批杰出的 AI 领军人物。从 Google 到 OpenAI,再到 Facebook 和其他多家公司,人才的流动和合作推动了 AI 技术的快速进步。 关于这三个基石的资源,您可以通过以下途径获取: 1. 学术研究论文:在相关的学术数据库中搜索关于 AI 架构、算力和人才发展的研究成果。 2. 专业技术论坛和社区:例如一些知名的 AI 技术论坛,开发者们会在其中分享和讨论相关的知识和经验。 3. 科技公司的官方网站和技术博客:如 Google、NVIDIA 等公司的网站,可能会发布有关其在 AI 领域的技术创新和人才培养的信息。 4. 在线教育平台:一些提供 AI 课程的平台,可能会涵盖这三个方面的知识和案例。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface ​
在人工智能时代,以下是被认为最重要的三个基石: 1. 架构:当前市场上许多出色的 AI 技术成就可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基础。 2. 算力:自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术的进步提供了强大支持。 3. 人才网络:AI 领域的关键人才网络起到了不可忽视的作用,特别是 Google 在加拿大多伦多和蒙特利尔成立的两个实验室以及其收购的英国公司 DeepMind 培养和汇聚的人才,他们的流动与合作推动了 AI 技术的发展。 关于这三个基石的资源,您可以通过以下途径获取: 1. 学术研究网站和数据库,例如一些知名的科技学术数据库。 2. 专业的 AI 技术论坛和社区,与同行交流获取相关信息。 3. 大型科技公司的官方网站和技术文档,如 Google 等。 4. 相关的学术会议和研讨会。
2024-10-10
huggingface
Hugging Face 是数据科学领域非常受欢迎的人工智能工具: 在 2022 年 9 月至 2023 年 8 月期间吸引了 3.166 亿流量。 用户每次访问平均分配 11 分 2 秒的时间,与行业平均水平类似。 桌面端和移动端的流量分布分别为 48%和 52%。 用户群以男性为主,占 84.48%,女性用户占 15.52%。 美国是主要的流量来源,日本紧随其后。 跳出率略高于平均水平 63.46%。 此外,在 2023 年的百模大战中,Hugging Face 是专门做模型托管的,各种大模型、小模型、垂直模型、专业模型、通用模型都能在上面找到,并且能使用。其拥有的大模型数量众多,每秒钟都有人在上传,可能很快会迎来百万大模型大战。
2024-08-16
ai写小说,哪个软件更好,推荐三个
以下为您推荐三个用于 AI 写小说的软件: 1. Novel.ai:AI 写小说领域的头部应用,是典型的 LLM 产品。其产品功能复杂但使用模式简单,利用 LLM 的续写能力将写作改造成交互式的文本生成,渐进式生成小段,用户可自由更改或继续生成下一个小段,并基于写作业务抽象出模型风格、写作方式、故事世界、记忆等细分功能。本质上还是构造 Prompt,交互式、渐进式的 Prompt 构建会极大降低使用门槛。 2. Character.ai:大名鼎鼎的角色扮演类 AI 陪伴产品,服务游戏和二次元用户。使用简单,就是选角色对话,创建也很简单,角色的核心差异靠不同的详细描述,开放用户角色 Prompt 可见。 3. 筑梦岛:国内的同类产品,和角色聊天、捏角色是共同主题,捏角色的产品化本质是收集信息产生高质量角色 Prompt 的过程,基于聊天模式微创新了很多衍生玩法。
2024-11-07
如果你是一位负责销售业务的一线人员,请你提出三个遇到的问题并提出解决建议,你会怎么说
以下是作为负责销售业务的一线人员可能遇到的三个问题及解决建议: 问题一:如何从不同来源的复杂数据中准确提炼关键信息生成详细报告? 解决建议: 1. 明确进行数据分析的目标,确定是理解业务、优化业务还是预测未来。 2. 全面收集整理与清洗相关数据,包括销售数据、客户反馈、财务报告等,通过公司的数据库、营销工具、调查问卷等方式收集,并做简单的数据清洗。 3. 让 ChatGPT 学习相关数据的含义和用法,输入不同来源的数据,如销售额、销售量、客户满意度、市场份额、竞争情况、营销费用等。 问题二:怎样根据数据分析得出能有效指导业务的重要结论? 解决建议: 1. 借助 ChatGPT 生成的结果,深入分析不同来源的数据。 2. 从提高销售额和市场份额的营销策略和活动方面,如考虑降低产品价格、提供更好服务、优化产品设计和功能、加大市场推广力度等。 3. 关注影响客户满意度和忠诚度的因素,如产品质量、服务质量、品牌形象、价格竞争力等。 4. 重视影响财务报告的因素,如销售额、毛利率、净利润、营销费用占比等。 问题三:如何根据汇报对象的身份对营销报告进行恰当的可视化调整? 解决建议: 1. 报告内容可涵盖销售趋势、客户分析、竞争分析、市场细分、营销效果评估等方面的信息。 2. 针对下属,报告重点可放在具体业务执行和改进措施上。 3. 对于跨部门平级,强调合作与资源协调方面的内容。 4. 向领导汇报时,突出关键指标和整体战略方向的成果与问题。
2024-11-01
你觉得人工智能带给人类的到底是提升还是毁灭呢?
人工智能带给人类的影响既有提升也有潜在的挑战,但并非必然导致毁灭。 从提升的方面来看: 技术上可以解决类似于社会歧视等问题,如通过 RLHF 等方法。 优化工作效率,虽然可能导致某些岗位的调整,但实际每个工作的组成部分不是单一的,人可以和人工智能更好地协同。例如放射科医生的案例,解读 X 光照片只是其工作的一部分,实际并未失业。 可以成为解决气候变化和大流行病等问题的关键。 作为自主的个人助理,代表人们执行特定任务,如协调医疗护理。帮助构建更好的下一代系统,并在各个领域推动科学进展。 潜在的挑战和担忧包括: 可能放大人类的负面影响,需要在技术层级加以解决。 导致失业,但能掌握人工智能的人会取代不会的人。 存在人类毁灭的担忧,不过目前此类观点缺乏具体的说明和论证。 对于强人工智能,目前 ChatGPT 的崛起引发了相关讨论,但通用技术并非等同于强人工智能。对于复杂的神经网络和黑箱模型的研究仍在进行,如何使用和控制这些模型是业界和社会争论的热点。科技公司倾向于训练辅助人类的超级智能助手,而非自我改进升级的超级智能体,以推动新一轮的工业革命和经济增长。 总之,人工智能的发展带来了巨大的机遇和挑战,需要我们聪明而坚定地采取行动,以实现其正面影响并应对潜在风险。
2024-11-16
人工智能最新信息
以下是人工智能的一些最新信息: 神经网络研究在 2010 年左右开始有巨大发展,ImageNet 大型图像集合催生了相关挑战赛。 2012 年卷积神经网络用于图像分类使错误率大幅下降,2015 年微软研究院的 ResNet 架构达到人类水平准确率。 从 2015 年到 2020 年,神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中陆续实现人类水平准确率。 过去几年大型语言模型如 BERT 和 GPT3 取得巨大成功,得益于大量通用文本数据。 OpenAI 通用人工智能(AGI)的计划中,原计划 2026 年发布的 GPT7 因埃隆·马斯克的诉讼被暂停,计划 2027 年发布的 GPT8 将实现完全的 AGI。GPT3 及其升级版本 GPT3.5 是朝着 AGI 迈出的巨大一步。
2024-11-16
中国人工智能产业研究报告
以下是为您提供的中国人工智能产业相关研究报告: 《中国生成式 AI 行业市场热点月度分析(2024 年 5 月)》:行业移动端渗透率达 12%,月活用户超 4000 万,用户画像以高学历、白领为主。可通过获取。 《中国新一代人工智能科技产业发展报告(2024)》:指出中国人工智能产业正从“极化”向“扩散”发展。报告基于 4311 家 AI 企业的数据分析,展示了中国 AI 产业的创新版图。可通过获取。 《数说安全:2024 安全大模型技术与市场研究报告》:深入探讨了 AIGC 大语言模型在网络安全领域的应用和影响。可通过获取。 《微盟&爱分析:2024 年企业 AI 应用趋势洞察报告》:通过案例分析展示了 AI 技术如何助力企业提升生产力,并预测 AI 将在企业级应用中持续拓展服务边界,同时 AI Agent 将为企业级 AI 应用带来新想象空间。可通过获取。
2024-11-15
人工智能会取代人类吗
人工智能是否会取代人类是一个复杂且备受关注的问题。 从一些观点来看,按照目前 AI 发展的速度,在未来十几年内,人类的所有事情乃至人类这个种族有可能被 AI 完全替代。比如,当函数的参数超过兆亿级时,硅基生物可能会理解人类的所有行为及背后的意义,从而实现对人类的全面超越。 然而,也有不同的看法。虽然 AI 会优化效率,但每个工作的组成部分并非单一,人可以和 AI 更好地协同。例如放射科医生的工作,解读 X 光照片只是其中一部分,实际该岗位并未因 AI 而失业。 同时,对于人工智能的担忧还包括是否会放大人类的负面影响、导致失业以及人类毁灭等。但在技术层级上可以解决类似于社会歧视等问题,人类也有丰富的经验来控制比个体强大的事物,许多未完全控制的事物也有其价值和安全性,而且 AI 还可能成为解决气候变化和大流行病等问题的关键。 另外,ChatGPT 的崛起使人们认为大模型可能是通用的,但通用技术并非通用人工智能(强人工智能),强人工智能的定义是可以像人一样做任何智力任务。
2024-11-13
搭建个人知识库,请推荐的免费人工智能软件
以下为您推荐一些可用于搭建个人知识库的免费人工智能软件: 1. AnythingLLM:包含所有 Open WebUI 的能力,额外支持选择文本嵌入模型和向量数据库。安装地址:https://useanything.com/download 。安装完成后需进行配置,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在 AnythingLLM 中可创建独有的 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式会综合给出答案,Query 模式仅依靠文档数据给出答案),配置完成后可进行测试对话。 2. Coze 或 FastGPT 等工具可搭建知识库,但当下其 RAG 能力仅对问答场景友好,复杂企业级知识库场景可能需要专业团队,收费几万到几十万不等。若想使用专门搭建个人知识库的软件,可参考文章 ,忽略本地部署大模型环节,直接看其中推荐的软件。 此外,还有一些相关工具和方法: 用通义听悟整理录音笔记:https://tingwu.aliyun.com 用 React 实现选中即解释 定义提示语提取有用信息:https://memo.ac/zh/ 开源免费屏幕录制工具 OBS,下载地址:https://obsproject.com/ Mac 用 Downie,Windows 推荐 IDM 淘宝数码荔枝店购买 用 losslessCut 快速切块:https://github.com/mifi/losslesscut 希望这些信息对您有所帮助。
2024-11-11
合适搭建个人知识库的人工智能软件有哪一些
以下是一些适合搭建个人知识库的人工智能软件: 1. AnythingLLM:包含所有 Open WebUI 的能力,额外支持选择文本嵌入模型和向量数据库。安装地址为 https://useanything.com/download 。安装完成后需进行配置,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在使用时,可创建独有的 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式会综合训练数据和上传文档给出答案,Query 模式仅依靠文档数据给出答案),配置完成后可进行测试对话。 2. Coze:如果您想使用专门搭建个人知识库的软件,可参考文章 ,忽略本地部署大模型环节,直接看其中推荐的软件。但使用该软件可能需要对接一些额外的 API 。
2024-11-11