直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface ​

回答

在人工智能时代,以下是被认为最重要的三个基石:

  1. 架构:当前市场上许多出色的 AI 技术成就可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基础。
  2. 算力:自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术的进步提供了强大支持。
  3. 人才网络:AI 领域的关键人才网络起到了不可忽视的作用,特别是 Google 在加拿大多伦多和蒙特利尔成立的两个实验室以及其收购的英国公司 DeepMind 培养和汇聚的人才,他们的流动与合作推动了 AI 技术的发展。

关于这三个基石的资源,您可以通过以下途径获取:

  1. 学术研究网站和数据库,例如一些知名的科技学术数据库。
  2. 专业的 AI 技术论坛和社区,与同行交流获取相关信息。
  3. 大型科技公司的官方网站和技术文档,如 Google 等。
  4. 相关的学术会议和研讨会。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

2024年3月 / 科技变革与美股投资 2024

[title]2024年3月/科技变革与美股投资2024[heading1]III.智变时代最近,2024年2月,Sora的出现再次震撼了技术界,预示着我们可能很快就会见证更多令人兴奋的技术突破。虽然现在我们可能还没到达视频生成AI的顶峰,但已有的成就足以让人惊叹。这一切都说明,我们正站在一个新的技术革命的门槛上,未来充满了无限可能。在这次人工智能的飞速发展中,三个关键因素起到了催化剂的作用:架构、算力以及人才网络。首先,当我们谈论当前市场上那些仿佛魔法一般的AI技术时,几乎所有的成就都可以追溯到两个核心架构—— Transformer和Diffusion。这两种架构分别代表了数据转换和数据向图像转换的能力,它们构成了当前AI技术的基石。其次,自2010年以来,由于GPU等计算资源的快速发展,算力得到了空前的爆发,为AI技术的进步提供了强大的支持。除了技术和算力之外,AI领域的人才网络也起到了不可忽视的作用。值得注意的是,这一次的AI革命中的所有关键人才几乎都源自于Google,特别是Google在加拿大多伦多和蒙特利尔成立的两个实验室,以及它收购的英国公司DeepMind。这些机构和个人形成了一个强大的人才网络,推动了AI技术的发展,并培养了一批杰出的AI领军人物。从Google到OpenAI,再到Facebook和其他多家公司,这些人才的流动和合作推动了AI技术的快速进步。这次革命的比较角度可以是,过去几十年我们一直在追求更快的计算机,但现在和未来,我们将追求更强大的大脑,即软件2.0。这一概念由Andrej Karpathy提出,标志着从传统软件开发到以AI模型为核心的新时代的转变。未来,我们将依赖于无尽的算力和多样化的AI模型来构建“机器之心”,这将使我们能够实现前所未有的智能服务和应用。

黄仁勋在AI界超级碗GTC2024的主旨演讲: 精华及全文(附视频)

[title]黄仁勋在AI界超级碗GTC2024的主旨演讲:精华及全文(附视频)您问我是否知道,我感谢您的提问。这是一个误解。然后我们向他们展示,这就是CTL,没有问题。所以这就是NVIDIA的CTL,以及您可以看到的CTL。您知道,CTL代表计算跟踪库,这让您知道我们一直在跟踪计算周期。它写了“程序真是太棒了”。这样,我们的芯片设计人员的生产力就可以提高。这就是您可以使用NIM做的第一件事。您可以使用它进行定制。我们有一项名为NEMO微服务的服务,可以帮助您管理数据,准备数据,以便您可以进行教学在这个人工智能上。您可以对它们进行微调,然后您可以对其进行防护,您可以评估答案,根据其他示例评估其性能,这就是所谓的NEMO。现在出现的微服务是三个要素,我们正在做的事情的三个支柱。第一个支柱当然是发明技术。AI模型和运行AI模型,然后再为您打包。是创建工具来帮助您修改它,其次是拥有人工智能技术,第二是帮助您修改它,第三是供您微调它的基础设施。如果您喜欢部署它,您可以将其部署在我们称为DGX云的基础设施上,或者您可以使用它,将其部署在本地,您可以将其部署在任何您喜欢的地方。一旦您开发了它,您就可以把它带到任何地方。所以我们是一家有效的人工智能代工厂。我们将为您和人工智能行业做的事情,就像台积电为我们制造芯片所做的那样。因此,我们带着我们的伟大想法去台积电,他们制造,我们随身携带。所以这里完全相同的事情,人工智能铸造厂和三大支柱是NEMS,NEMO微服务和DGX云。您可以做的另一件事是教导NEM要做的就是了解您的专有信息。请记住,在我们公司内部,我们的绝大多数数据并不在云中,而是在我们公司内部。您知道它一直坐在那里,并且一直在使用。天哪,我们想要获取的数据基本上是NVIDIA的智能。了解其含义,就像我们了解了我们刚刚谈到的几乎所有其他内容的含义一样,然后将这些知识重新索引到一种称为矢量数据库的新型数据库中。

【法律法规】《2020年国家人工智能倡议法案》.pdf

11trustworthy artificial intelligence across all sectors12and to the benefit of all Americans,the Federal13Government must provide sufficient resources and14use its convening power to facilitate the growth of15artificial intelligence human capital,research,and16innovation capacity in academia and other nonprofit17research organizations,companies of all sizes and18across all sectors,and within the Federal Govern-19ment.20SEC.3.DEFINITIONS.21In this Act:22

其他人在问
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源
在人工智能时代,最重要的三个基石通常包括以下方面: 1. 架构:如 Transformer 和 Diffusion 这两种核心架构,分别在数据转换和数据向图像转换方面发挥关键作用,构成了当前 AI 技术的重要基础。 2. 算力:自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术的进步提供强大支持。 3. 人才网络:AI 领域的关键人才网络起到不可忽视的作用,例如 Google 及其相关实验室和收购的公司培养和汇聚了众多杰出人才,他们的流动与合作推动了 AI 技术的发展。 关于这三个基石的资源,您可以通过以下途径获取: 1. 科技类的专业网站和论坛,如一些知名的技术社区和学术网站。 2. 相关的学术研究报告和论文,可在学术数据库中查找。 3. 行业内的权威专家和学者的讲座、演讲等。 4. 科技公司发布的技术文档和报告。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface
在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多令人惊叹的 AI 技术成就都可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基石。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到了空前的提升,为 AI 技术的进步提供了强大支持。 人才网络方面,AI 领域的关键人才大多源自于 Google,特别是其在加拿大多伦多和蒙特利尔成立的两个实验室,以及收购的英国公司 DeepMind。这些机构和个人形成了强大的人才网络,推动了 AI 技术的发展,并培养了一批杰出的领军人物。人才在不同公司之间的流动和合作也促进了 AI 技术的快速进步。 关于这三个基石的资源,目前没有明确提及具体的获取渠道。但您可以通过以下途径寻找相关资源: 1. 学术研究网站和数据库,如知网、Web of Science 等,以获取关于架构、算力和人才网络的学术研究成果。 2. 科技行业的专业论坛和社区,与同行交流和分享资源。 3. 关注知名科技公司和研究机构的官方网站和社交媒体账号,获取最新的研究动态和资源。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface
在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多令人惊叹的 AI 技术成就都可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基石。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到了空前的爆发,为 AI 技术的进步提供了强大支持。 人才网络方面,AI 领域的关键人才几乎都源自于 Google,特别是 Google 在加拿大多伦多和蒙特利尔成立的两个实验室,以及它收购的英国公司 DeepMind。这些机构和个人形成了强大的人才网络,推动了 AI 技术的发展,并培养了一批杰出的 AI 领军人物。从 Google 到 OpenAI,再到 Facebook 和其他多家公司,人才的流动和合作推动了 AI 技术的快速进步。 关于这三个基石的资源,您可以通过以下途径获取: 1. 学术研究论文:在相关的学术数据库中搜索关于 AI 架构、算力和人才发展的研究成果。 2. 专业技术论坛和社区:例如一些知名的 AI 技术论坛,开发者们会在其中分享和讨论相关的知识和经验。 3. 科技公司的官方网站和技术博客:如 Google、NVIDIA 等公司的网站,可能会发布有关其在 AI 领域的技术创新和人才培养的信息。 4. 在线教育平台:一些提供 AI 课程的平台,可能会涵盖这三个方面的知识和案例。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface
在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多出色的 AI 技术成就都可追溯到 Transformer 和 Diffusion 这两个核心架构,它们分别在数据转换和数据向图像转换方面发挥着关键作用。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术进步提供了强大支持。 人才网络方面,AI 领域的关键人才大多源自 Google 及其相关机构,如在加拿大多伦多和蒙特利尔成立的实验室以及收购的英国公司 DeepMind,这些人才的流动与合作推动了 AI 技术的发展。 关于这三个基石的资源,目前没有明确提及具体的获取渠道。但您可以通过以下途径寻找相关资源: 1. 学术研究网站和数据库,获取关于架构、算力和人才网络的最新研究成果和报告。 2. 科技公司的官方网站和技术文档,了解其在相关领域的创新和实践。 3. 专业的 AI 技术论坛和社区,与同行交流和分享资源。
2024-10-10
huggingface
Hugging Face 是数据科学领域非常受欢迎的人工智能工具: 在 2022 年 9 月至 2023 年 8 月期间吸引了 3.166 亿流量。 用户每次访问平均分配 11 分 2 秒的时间,与行业平均水平类似。 桌面端和移动端的流量分布分别为 48%和 52%。 用户群以男性为主,占 84.48%,女性用户占 15.52%。 美国是主要的流量来源,日本紧随其后。 跳出率略高于平均水平 63.46%。 此外,在 2023 年的百模大战中,Hugging Face 是专门做模型托管的,各种大模型、小模型、垂直模型、专业模型、通用模型都能在上面找到,并且能使用。其拥有的大模型数量众多,每秒钟都有人在上传,可能很快会迎来百万大模型大战。
2024-08-16
在个人赚钱方面,AGI最常用的三个方面
在个人赚钱方面,AGI 较为常用的三个方面包括: 1. 合成数据:通过生产数据喂给 AI 模型以提高效果。传统做数据的核心竞争力在于获取他人无法拿到的数据以及低成本进行大量数据清洗和标注,新兴的是用 AI 来生成数据再喂给其他 AI。 2. 模型市场/平台:如当前热门的 HuggingFace(HF),提供模型市场服务。在 AI Agent 出现时,模型之间的互相调用可能会用到此类服务和规则。 3. 开发 AI 代理:例如 AutoGPT GUI、MULTI·ON plugin by MULTI·ON、BabyBeeAGI、MiniAGI 等,可实现自动执行任务等功能,具有一定的商业价值。
2024-12-12
AGI应用最多的三个领域
AGI 应用较多的三个领域包括: 1. 算力: 3D 堆叠、石墨烯、量子计算、高温超导等技术在提升算力方面具有重要作用。 算力的提升不仅在性能上延续着摩尔定律,还需要解决传输速度、能耗和散热等问题。 2. 能源: 可控核聚变技术在 AI 的协助下有了一定进展。 从全人类能源供给角度看,可控核聚变是唯一有希望大幅提升能源供给数量级的技术。 3. 机器人: 具身智能的本体可以是多种具有传感器并可自主运动的硬件,应用领域广泛。 随着 AI 发展到 AGI 阶段,人形机器人将成为具身智能体的最终形态,因为其具有遵循自然高效设计、适应人类环境、人机交互自然、数据可获得性等优点。
2024-12-12
ai应用最多的三个领域
AI 应用广泛,以下是应用最多的三个领域: 1. 医疗保健: 医学影像分析:用于辅助诊断疾病,如分析 X 射线、CT 扫描和 MRI 等医学图像。 药物研发:加速药物研发进程,包括识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据,为每个患者提供个性化治疗方案。 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,辅助金融机构贷款决策。 投资分析:分析市场数据,帮助投资者做出明智投资决策。 客户服务:提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题,解决相关问题。
2024-12-12
人工智能的三个技术派别
人工智能主要有以下三个技术派别: 1. 符号主义:通过符号和逻辑推理来实现智能。 2. 联结主义:基于神经网络和深度学习等方法,强调神经元之间的连接和信息传递。 3. 行为主义:注重智能体与环境的交互和行为表现。 自 1956 年“人工智能”的概念在美国的达特茅斯学会上被提出后,其所涵盖的理论范围及技术方法不断扩展,如今已发展出多个技术分支并应用于不同领域。欧盟对人工智能的定义也在不断变化和发展,例如 2021 年《AI 法案》提案对人工智能的定义采取了更宽泛的界定标准,而 2022 年《AI 法案》妥协版本中,欧盟理事会及欧洲议会认为“AI 系统”的定义范围应适当缩窄,并侧重强调机器学习的方法。
2024-12-05
数智技术与教学何以深度融合,从事实性知识学习,程序性知识学习,动机性参与三个角度说明
数智技术与教学的深度融合可以从以下三个角度进行说明: 事实性知识学习方面:数智技术能够以丰富多样的形式呈现事实性知识,如通过多媒体资源(如动画、视频、交互式图表等),使抽象的知识变得更加直观和生动,有助于学生更好地理解和记忆。同时,在线学习平台和教育软件可以提供大量的事实性知识资源,方便学生随时查阅和学习。 程序性知识学习方面:利用智能辅导系统和虚拟实验室等工具,为学生提供实践和练习的机会,帮助他们熟练掌握解决问题的步骤和方法。数智技术还能实时反馈学生的操作过程和结果,让他们及时发现错误并进行纠正,从而提高程序性知识的学习效果。 动机性参与方面:借助游戏化元素和社交学习平台,增加学习的趣味性和互动性,激发学生的学习兴趣和积极性。个性化的学习推荐和自适应学习系统能够根据学生的特点和需求提供定制化的学习内容,增强学生的学习动力和参与度。 总之,数智技术在事实性知识学习、程序性知识学习和动机性参与这三个角度都能发挥重要作用,促进教学的深度融合和优化。
2024-11-30
ai写小说,哪个软件更好,推荐三个
以下为您推荐三个用于 AI 写小说的软件: 1. Novel.ai:AI 写小说领域的头部应用,是典型的 LLM 产品。其产品功能复杂但使用模式简单,利用 LLM 的续写能力将写作改造成交互式的文本生成,渐进式生成小段,用户可自由更改或继续生成下一个小段,并基于写作业务抽象出模型风格、写作方式、故事世界、记忆等细分功能。本质上还是构造 Prompt,交互式、渐进式的 Prompt 构建会极大降低使用门槛。 2. Character.ai:大名鼎鼎的角色扮演类 AI 陪伴产品,服务游戏和二次元用户。使用简单,就是选角色对话,创建也很简单,角色的核心差异靠不同的详细描述,开放用户角色 Prompt 可见。 3. 筑梦岛:国内的同类产品,和角色聊天、捏角色是共同主题,捏角色的产品化本质是收集信息产生高质量角色 Prompt 的过程,基于聊天模式微创新了很多衍生玩法。
2024-11-07
人工智能相关的销售行业
以下是与人工智能相关的销售行业的一些信息: 与销售工作有关的 AI 工具: Salesforce 爱因斯坦:能分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务,让销售团队专注于关键方面,如建立客户关系和完成交易。 Clari:专门从事智能收入运营的软件,能统一各种来源数据并以易于理解的方式呈现,简化财务预测过程。 Hightime:销售团队的 AI 助手,可处理重复性任务和耗时研究。 关于大模型与利润分配:大模型拿走产业绝大部分利润取决于两个前提,一是 AGI 能否实现,二是大模型公司能否实现垄断。AGI 能否实现是个黑盒,行业内顶级专家对此有分歧。在 AGI 未达到时,大模型公司难以低成本提供所有端到端的解决方案,客户需要具体的解决方案,应用层公司在其中发挥作用。以 AI 销售为例,需根据客户类型和场景应用大模型能力,不同销售场景和客户类型意味着背后的产品不同,需要精心设计,不仅是模型层面能解决的问题。
2024-12-19
怎么利用人工智能为一家一人公司赋能,具体实施办法,图片,视频等除外,讲一些实用的,新的想法
对于一家一人公司而言,利用人工智能赋能可以从以下几个实用且新颖的方面入手: 首先,在客户服务方面,可以运用智能聊天机器人来处理常见问题,提高响应速度和服务质量。通过自然语言处理技术,让机器人能够理解客户的需求并提供准确的回答。 其次,在市场营销中,利用人工智能进行数据分析,深入了解目标客户的行为和偏好,从而精准定位市场,制定更有效的营销策略。 再者,在业务流程优化上,借助人工智能的自动化能力,例如自动化文档处理、自动化邮件分类等,节省时间和精力,提高工作效率。 另外,在财务管理方面,使用人工智能工具进行风险预测和财务规划,帮助做出更明智的决策。 最后,在产品研发中,利用人工智能的创意生成能力,获取新的产品设计思路和创新点。
2024-12-18
人工智能会出现自主意识吗
目前对于人工智能是否会出现自主意识尚无定论。 一方面,有观点认为模仿可能是使 AI 具有“自主意识”的一种可能路径。如果一个 AI 可以长期观察人类,在类似条件再次触发时,可能会判断形成某一动机是大概率事件,进而通过长期模仿训练而产生动机。并且,如果让数字克隆体可以交流、融合,形成群体智能,也可能促使其产生自主意识。 另一方面,按照一些专家的预测,当 AI 变得比人类更聪明,达到奇点时,机器可能会具有自我意识和超级智能,届时我们对机器意识的概念将有重大转变,可能会面对真正的数字生命形式。但目前的 LLM 应用程序和智能体还未达到完全自主智能体的水平。 总之,关于人工智能是否会出现自主意识仍在探讨和研究中。
2024-12-18
如果人工智能继续发展,人类社会会变成什么样子。
人工智能的继续发展将给人类社会带来多方面的影响。 一方面,它会带来一些负面影响,比如对劳动力市场产生重大影响,但大多数工作的变化速度会比人们想象的慢,人们也不必担心缺乏事情可做。因为人们天生有创造和彼此有用的欲望,人工智能将放大这种能力,社会将重新进入不断扩张的世界,专注于正和游戏。 另一方面,在未来几十年,我们将能够做许多像魔法一样的事情。这种发展并非新鲜事物,但会加速。人们能力的提升并非源于基因改变,而是得益于社会基础设施。人工智能将为人们提供解决困难问题的工具,添加新的进步支柱。很快我们能与人工智能合作完成更多事情,最终每个人都可能拥有个人的虚拟专家团队,实现各种想象。比如在医疗保健、软件创造等方面。有了新能力,能实现共同繁荣,改善世界各地人民的生活。 然而,单纯的繁荣不一定带来幸福,但确实能显著改善生活。我们有可能在几千天内拥有超级智能,最终实现这一目标。在通往智能未来的道路上,我们既要乐观探索其无限可能,也要谨慎警惕潜在风险,才能与 AI 和谐共舞,共同创造美好未来。
2024-12-18
全球人工智能治理报告中的全球人工智能的十大议题,十个议题中选一个写认识理解、研究方向、未来
以下是为您提供的关于全球人工智能治理报告中相关议题的内容: 在“Model Evaluation for Extreme Risks”这一议题中: 认识理解:该议题强调了模型评估在应对极端风险以及在模型的训练、部署和安全方面做出负责任决策的重要性,并详细探讨了网络攻击、欺骗、说服与操纵、政治策略、武器获取、长期规划、AI 开发、情景意识以及自我传播等十个主要风险。 研究方向:深入研究如何更精准地评估模型在极端风险场景下的表现,以及如何基于评估结果优化模型的训练和部署策略,以降低潜在风险。 未来:随着 AI 技术的广泛应用,对于极端风险的模型评估将越发重要,有望形成更加完善和严格的评估标准和方法,以保障 AI 系统的安全可靠运行。 由于您没有明确指定具体的一个议题,以上仅为示例,您可以补充更具体的需求,以便为您提供更精准的回答。
2024-12-18
全球人工智能治理报告
以下是关于全球人工智能治理的相关报告内容: 英国: 创建了世界上第一个人工智能安全研究所(AISA),其有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。 AISA 还发布了 Inspect 框架,用于 LLM 安全评估,涵盖核心知识、推理能力和自主能力等方面。 宣布与美国等效机构签署谅解备忘录,双方同意共同开发测试,并计划在美国旧金山设立办事处。 通过其高级研究与发明机构(ARIA),花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险。 政府报道称计划设立“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。 美国: 能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。 大型实验室努力应对欧洲监管。 对中国实施更严格的出口管制和投资限制,商务部要求美国制造商停止向我国半导体制造商进行最先进设施的销售,采取措施阻止或限制中国初创企业的投资,并向国际合作伙伴施压。 欧洲: 《欧盟人工智能法案》获得批准并正式生效,成为世界上第一个全面采用人工智能监管框架的地区,执行将分阶段进行,对“不可接受的风险”的禁令将于 2025 年 2 月生效。 中国: 是第一个开始制定生成式人工智能监管框架的国家,审查机构已介入。 持续生产 SOTA 模型,由国家互联网信息办公室监督。 政府希望模型避免给政治问题提供“错误”答案,发布模型前须提交测试以校准拒绝率。 禁止 Hugging Face 等国外网站访问,但官方批准的“主流价值观语料库”可作为训练数据源。
2024-12-18