Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

AGI应用最多的三个领域

Answer

AGI 应用较多的三个领域包括:

  1. 算力:
    • 3D 堆叠、石墨烯、量子计算、高温超导等技术在提升算力方面具有重要作用。
    • 算力的提升不仅在性能上延续着摩尔定律,还需要解决传输速度、能耗和散热等问题。
  2. 能源:
    • 可控核聚变技术在 AI 的协助下有了一定进展。
    • 从全人类能源供给角度看,可控核聚变是唯一有希望大幅提升能源供给数量级的技术。
  3. 机器人:
    • 具身智能的本体可以是多种具有传感器并可自主运动的硬件,应用领域广泛。
    • 随着 AI 发展到 AGI 阶段,人形机器人将成为具身智能体的最终形态,因为其具有遵循自然高效设计、适应人类环境、人机交互自然、数据可获得性等优点。
Content generated by AI large model, please carefully verify (powered by aily)

References

AGI 万字长文(下)| 2024,分叉与洪流

算力:3D堆叠、石墨烯、量子计算、高温超导。算力对于AI的价值更加直接,NVIDIA的股价可能就是最直接的例子。算力的提升目前还在性能上(而不是硅片栅-漏极间隔的物理尺寸上)继续延续着摩尔定律;但量子隧穿效应-普朗克长度的理论限制是AGI也无法突破的,因此,一定要有除了工艺尺寸缩小的其他方案。我并不是专业人员,没法给出比较靠谱的判断,从分析上能看到的几条路可能会有继续在硅基上发展:3D堆叠形态等(需要更好散热)材料创新:硅基掺杂、石墨烯片等如果再跳脱一些到计算原理的层次,就是量子计算。量子计算目前距离商用可能比可控核聚变还更远,目前的应用方向主要还在量子加密传输上,在“计算”上需要突破的理论和技术都还有不少。除了计算速度之外,另一个阻碍算力进展的是传输速度:可以想见高速网络会进一步进化、片间链接、片上内存等技术都会有明显的进展。最后,是能耗和散热问题。这里的明珠是高温超导技术。去年已经有好几篇半造假的“高温超导突破”,今年加上了AI或许就会有真的突破。广义机器人。最后,如果AGI的目标不是仅仅停留在虚拟世界,而是直接作用于物理世界,那么广义机器人就是必经之路。前文提到到“具身智能”就是为了操控机器人的AI:AGI是大脑,他也会想要身体。

AGI 万字长文(下)| 2024,分叉与洪流

最后,如果真的从“AGI已经出现”的阴谋论出发。那么不管AGI是否在隐藏自己的行踪,它所需要的基本资源一定是无法回避的;它也一定会在这几个领域里全力“协助”人类。于是,相信AGI觉醒的对话,自然会期待在这几个领域里出现划时代的突破——有些似乎已经有进展了。能源:可控核聚变。最近,有着“永远还差50年”称号的可控核聚变技术在AI的协助下开始有了松动:2月21日的新闻,普林斯顿大学等离子体物理实验室(Princeton Plasma Physics Laboratory)通过AI成功在离子体撕裂前300ms进行了预测。当然,这只是可控核聚变进展的一小步。(https://engineering.princeton.edu/news/2024/02/21/engineers-use-ai-wrangle-fusion-power-grid)从全人类能源供给的角度:->化石燃料、水能、风能、地热:只能维持现阶段全人类能源获取能力->太阳能过于分散、核裂变燃料稀少:即使最大规模使用,顶多再提升一个能源数量级-唯一有希望提升全人类能源供给数量级的就是可控核聚变在能源即将开始成为AI瓶颈的今天,AGI如果有了意识,那一定会全力“协助”人类突破核聚变技术。

一篇具身智能的最新全面综述!(下)

具身智能的本体不只是机器人,还可以是汽车、无人机、玩具等具有传感器并可自主运动的硬件。应用的领域包括工业生产、安防巡检、医疗护理、家庭陪护、应急救援等。具身智能的载体会因不同的应用场景而产生不同的形态。这是因为在目前的具身智能体仍处于ANI(人工狭窄智能)阶段,它们只能执行单一的任务。[heading4]人形的优点[content]随着AI的发展逐渐步入AGI(人工通用智能)阶段,人形机器人将成为具身智能体的最终形态。这是因为大模型为“智能”提供了通用性,而类人体的构造为“具身”提供了通用性。具体原因如下:1.遵循自然的高效设计:人类本身拥有高效的身体结构和功能。例如,直立行走解放了双手,使我们能够使用多种工具。机器人甚至可以弥补人类身体的缺憾,例如,机器人的可见光相机不会近视,还可以使用红外相机、深度相机等多种光学传感器。2.适应人类环境:人类物理世界的环境和工具都是为人类使用而设计的。人形机器人通过类似人体的构造可以自然地适配这些环境和工具。例如,ANI阶段的扫地机器人只能执行扫地任务,而AGI阶段的人形机器人不仅可以使用吸尘器扫地,还可以使用抹布擦桌子。3.人机交互的自然性:与非人形机器人相比,人形机器人具有与人类相似的外观和行为模式,更容易被用户接受,减少了用户对未知技术的恐惧感。用户更容易与人形机器人建立积极的心理联系,产生亲近感和信任感,这极大地降低了用户习惯培养的成本。拟人化的机器人更容易被视为有道德责任的主体,用户在与机器人互动时会更加注意自己的言行举止,从而减少对机器人硬件的损坏。4.数据的可获得性:具身智能训练模型时面临训练数据匮乏的问题,这是因为训练数据需要人类对机器的动作进行规划。而由于人形机器人的身体结构与人类相似,大量的人类运动视频可以通过标注成为训练数据,从而解决了数据匮乏的问题。

Others are asking
ai和agi的区别
AI(人工智能)和 AGI(通用人工智能)主要有以下区别: 1. 任务范围: AI 通常指的是弱人工智能(ANI),是针对特定任务或范围较小的任务来设计和训练的系统,例如智能音箱、网站搜索、自动驾驶等,只擅长执行提前定义好的任务,缺乏真正的理解和意识。 AGI 则是具有人类水平的智能和理解能力的系统,能够完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 2. 能力表现: 弱人工智能是高度专业化的,不具备像人类一样的认知能力,也无法超出为它设定的小范围领域来解决一般问题。 AGI 有能力在各种任务和环境中进行推理、学习、理解和适应。 3. 发展现状: 弱人工智能已经得到了巨大的发展,并在许多领域得到了广泛应用。 AGI 目前还只是一个理论概念,尚未有任何系统能达到这种通用智能水平。 图灵测试常被用于判断是否创造了真正的智能系统,若人类评审员在文本对话中无法区分真人和计算机系统,则该计算机系统被认为是“智能”的。
2024-12-30
推荐 AGI 的书
以下是为您推荐的与 AGI 相关的书籍: Python 方面: 《Python 学习手册》:名声在外。 《Python 编程》:对新手友好。 AI 方面: 《人类简史》:其中“认知革命”的相关章节令人获益匪浅。 《深度学习实战》:按脉络梳理了 ChatGPT 爆发前的 AI 信息与实践。 Andrej Karpathy 推荐的书: 《1984》(非虚构):经典之作,构建出令人毛骨悚然的世界,许多概念在现实中有对应。 《为食物辩护》(非虚构/饮食):教会如何选择食物,认识食品工业。 《倒计时至零日》(非虚构/网络战):深入探讨 Stuxnet,是关于网络安全、未来战争和 AGI 的重要读物。 《深渊上的火》(科幻):第一章就深刻描绘超智的样貌。 《枪炮、病菌与钢铁》(非虚构/历史):对资源分布及其对人类文明影响有全面分析。 《献给阿尔吉侬的花束》(科幻):关于智力的震撼杰作。 《阿特拉斯耸耸肩》(科幻):世界构建震撼,虚构元素在现实中有影踪。 《无限的世界》(非虚构/生物学):探讨动物感官,感叹人类感官局限性。 《主开关》(非虚构/技术历史):追溯信息技术历史,揭示“循环”模式。
2024-12-30
什么事AGI
AGI 即通用人工智能(Artificial General Intelligence),是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。目前还只是一个理论概念,还没有任何 AI 系统能达到这种通用智能水平。 例如,OpenAI 曾有关于实现 AGI 的计划,如原计划在 2026 年发布的 Q的下一阶段(最初被称为 GPT6,后重新命名为 GPT7)因埃隆·马斯克的诉讼而被暂停。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。 在生成式 AI 的发展中,当一个通用 AI 系统展现出超越人类的思考和决策时,或许就是通用人工智能(AGI)到来的时刻,但这并不意味着 AI 将“觉醒”,而是技术发展的下一个阶段。
2024-12-30
你好,你们Way to AGI能否为我提供中小学课程内容设计,尤其是AI通识课理论部分
以下是为您提供的关于中小学 AI 通识课理论部分的相关内容: 目前在“通往 AGI 之路”中,有以下相关课程和活动: 1. 一堂超好玩儿的离谱村 AI 课以及后续开源共创预告: 由一个小团队创建通用课件,然后开源给部分老师群体,在实践中迭代并补充多样的变体用法,最后完全开源。目前共创小团队有作者和詹娜。作者对 AI 了解深,詹娜在创新教育领域视野开阔。若有强烈加入共创的意愿,欢迎留言介绍专长、教育主张及在教育上使用 AI 的状况。 对于公立学校和公益机构的老师,后续会免费提供:支付一定押金可得教学课件和授课说明,教学后写相关文章回馈社区(原创内容>1000 字,公开署名发表)则全额退回押金,否则押金捐赠为活动经费。商业机构若需要,可向 waytoagi 采购课件。 为保护版权,初期只对在 waytoagi 社群并做出贡献的人群提供,是否符合标准由 waytoagi 智囊团判断。 2. 【已结束】AIPO:校园 AI 创投活动 10 月 8 日10 月 20 日: 10 月 9 日 20:00 有理论基础课程,讲师为银海,课程标题为基础通识课。 3. 如果让我推荐一门 AI 课: 预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 如果您想要免费获得课程,可以参与 video battle,每期的评委野菩萨老师要求严格,需要寓意深度审美并存。冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。扫码添加菩萨老师助理,可了解更多课程信息。
2024-12-30
我需要关于waytoAGI的使用教程
以下是关于 waytoAGI 的使用教程: 1. 二狗子的整合包:通往 AGI 之路天命人整合包(工作流和一键包都上传了),链接:,提取码:LYAI。 2. 二狗子推荐的环境安装器,对没有魔法的小白同学比较友好,项目地址:https://github.com/11dogzi/ComfyuinodesHJGL.git 。 3. B 站 up 小黄瓜帮忙做的使用教程:【环境依赖一键安装,多种源便捷更改,解决依赖问题!】https://www.bilibili.com/video/BV1XZ421i7Nk/?share_source=copy_web&vd_source=766e97e9a72d0634f585e86f359dc8d6 。 4. 小白的 30min Cursor AI 编程上手步骤: 基础需求:需要魔法。 网址:https://www.cursor.com 。 注册:下载安装软件后,直接在页面中注册即可。
2024-12-28
要怎么实现agi
要实现 AGI(通用人工智能)是一个复杂且长期的目标,以下是一些相关的要点和信息: 弱人工智能与强人工智能的区别:弱人工智能是针对特定任务或范围较小的任务设计和训练的,只擅长执行提前定义好的任务,缺乏真正的理解和意识,例如 Siri 等虚拟助手、推荐算法和特定客服任务的对话机器人。强人工智能则具有人类水平的智能和理解能力,能完成任何人类可以完成的智力任务,适用于不同领域,同时拥有某种形式的意识或自我意识,但目前还只是一个理论概念,尚未有实际的 AI 系统达到。 Sora 成为实现 AGI 重要里程碑的理由:Sora 具备理解和模拟现实世界的独特能力,体现在复杂环境理解、跨领域学习与适应、抽象思维与创造力、动态环境交互等方面。其发展和完善将推动人工智能从专用 AI 向通用人工智能转变。 OpenAI 通用人工智能(AGI)的计划:OpenAI 原计划在 2026 年发布的 GPT7 因埃隆·马斯克的诉讼而暂停,计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步,早期的语言模型如 GPT2 实际上没有真正连贯回应的能力。 更多信息请见(AGI)。
2024-12-28
目前国内最多人用的ai软件是什么,大家具体的应用场景是什么。
目前国内较多人使用的 AI 软件及应用场景如下: 医疗保健领域: 医学影像分析:辅助诊断疾病。 药物研发:加速药物研发过程。 个性化医疗:提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 金融服务领域: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出贷款决策。 投资分析:辅助投资者决策。 客户服务:提供 24/7 服务并回答常见问题。 零售和电子商务领域: 产品推荐:向客户推荐可能感兴趣的产品。 搜索和个性化:提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 制造业领域: 预测性维护:避免机器故障停机。 质量控制:检测产品缺陷。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:提高生产效率。 此外,还有一些具体的应用产品,如: 游戏领域:腾讯游戏助手的 AI 游戏角色生成器,为游戏开发者生成独特角色。 招聘领域:智联招聘 APP 的 AI 招聘筛选工具,帮助企业快速筛选简历。 房地产领域:贝壳找房 APP 的 AI 房地产评估系统,准确评估房地产价值。 天气领域:墨迹天气 APP 的 AI 天气预报助手,提供精准天气预报和气象预警。 需要注意的是,关于国内使用人数最多的 AI 软件,没有确切的权威统计数据,其使用情况可能因行业、用户需求和地域等因素而有所不同。
2024-12-24
目前中国用户最多的AI应用
目前中国用户较多的 AI 应用有: 1. 500px 摄影社区:这是一个 AI 摄影比赛平台,运用图像识别、数据分析技术,市场规模达数亿美元。它举办摄影比赛,展示优秀摄影作品,利用 AI 技术对参赛作品进行评选和分类,为摄影爱好者提供展示和交流的平台。 2. Logic Pro X 教学软件:作为 AI 音乐制作教学平台,采用机器学习、音频处理技术,市场规模达数亿美元。它为用户提供个性化的音乐制作教学服务,帮助用户掌握音乐制作技巧。 3. 鲁班到家 APP:这是一个 AI 家居维修服务平台,借助数据分析、自然语言处理技术,市场规模达数亿美元。它能分析用户的维修需求和地理位置,为用户推荐附近的专业维修人员。 4. 雪球财经 APP:作为 AI 金融投资教育平台,运用数据分析、自然语言处理技术,市场规模达数亿美元。它为用户提供个性化的金融投资教育服务,包括投资课程、市场分析和投资策略等。 5. WPS 文档翻译功能:这是一个 AI 办公文档翻译工具,使用自然语言处理技术,市场规模达数亿美元。它可以快速翻译办公文档,提高工作效率。 6. 美丽修行 APP:这是一个 AI 美容护肤产品推荐平台,通过数据分析、自然语言处理技术,市场规模达数亿美元。它根据用户肤质推荐适合的美容护肤产品。 7. 360 儿童手表:作为 AI 儿童安全监控系统,运用图像识别、机器学习技术,市场规模达数亿美元。它实现定位、通话、安全区域设置等功能,家长可实时监控孩子的位置和活动情况。 8. 汽车之家 APP:这是一个 AI 汽车保养提醒系统,借助数据分析、机器学习技术,市场规模达数亿美元。它根据用户的汽车型号、行驶里程等信息提醒车主进行定期保养。 9. 彩云天气专业版:这是一个 AI 天气预报定制服务应用,利用数据分析、机器学习技术,市场规模达数亿美元。它根据用户需求提供个性化天气预报服务。 10. 微医 APP:作为 AI 医疗健康管理平台,运用数据分析、机器学习技术,市场规模达数十亿美元。它分析用户的健康数据,为用户提供个性化的健康管理方案。 11. 腾讯会议策划工具:这是一个 AI 会议策划助手,使用自然语言处理、数据分析技术,市场规模达数亿美元。它协助用户策划会议,提高会议效率和质量。 12. 雅昌艺术网拍卖频道:这是一个 AI 书法作品拍卖平台,借助图像识别、数据分析技术,市场规模达数亿美元。它对书法作品进行鉴定和评估,为书法爱好者提供作品拍卖服务。
2024-12-13
ai应用最多的三个领域
AI 应用广泛,以下是应用最多的三个领域: 1. 医疗保健: 医学影像分析:用于辅助诊断疾病,如分析 X 射线、CT 扫描和 MRI 等医学图像。 药物研发:加速药物研发进程,包括识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据,为每个患者提供个性化治疗方案。 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,辅助金融机构贷款决策。 投资分析:分析市场数据,帮助投资者做出明智投资决策。 客户服务:提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题,解决相关问题。
2024-12-12
Claude最多输出多少字
Claude2100k 模型的上下文上限是 100k Tokens,即 100000 个 Tokens。Claude 可以看到的最大提示长度是其上下文窗口,具体大小可查看模型比较表。同时,Claude 是一个基于大型语言模型(LLM)的对话助手,它通过序列预测工作,逐个字符地构建响应,写完后不能返回编辑,除非在后续提示中有机会。它只能看到上下文窗口中的内容,无法记住以前的对话除非将其放入提示中,也不能打开链接。
2024-11-15
能够读取文本数字最多的大模型是哪一个
目前能够读取文本数字较多的大模型有以下几种: Claude2 模型的上下文上限是 100,000 个 token。 ChatGPT16k 模型的上下文上限是 16,000 个 token。 ChatGPT432k 模型的上下文上限是 32,000 个 token。 需要注意的是,token 限制会同时对一次性输入和一次对话的总体上下文长度生效。例如,一次性输入的文本长度以及一次对话中累计的上下文长度都受到相应的限制。当达到上限时,并非停止对话,而是会遗忘最前面的对话内容。
2024-11-08
中文短篇小说创作用的最多的ai app
目前在中文短篇小说创作方面,以下是一些常见的 AI 应用: 1. Grammarly、秘塔写作猫:属于 AI 智能写作助手,运用自然语言处理技术,可辅助检查语法、拼写错误并提供改进建议,进行智能润色和内容创作辅助。 2. 小爱同学、Siri:作为 AI 语音助手定制开发产品,采用语音识别和自然语言理解技术,能控制智能家居、回答问题等进行语音交互和任务处理。 如果您想用 AI 把小说做成视频,通常包括文本分析、角色与场景生成、视频编辑与合成等步骤。以下是一些可用的工具及网址: 1. Stable Diffusion(SD):AI 图像生成模型,可基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):适用于创建小说中的场景和角色图像。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,能生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/
2024-11-05
我现在想学习使用AI知识应用在生活知及工作上,请计划一下我应该怎么学习
以下是为您制定的学习将 AI 知识应用在生活及工作中的计划: 一、了解 AI 基本概念 1. 阅读相关入门文章,熟悉 AI 的术语、基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。了解 AI 的历史、当前的应用和未来的发展趋势。 2. 建议阅读「」部分。 二、学习编程语言 从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 三、尝试使用 AI 工具和平台 1. 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 2. 探索一些面向大众的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 四、学习 AI 基础知识 1. 深入了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 2. 学习 AI 在教育、医疗、金融等领域的应用案例。 五、参与 AI 相关的实践项目 1. 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 2. 尝试利用 AI 技术解决生活和工作中的实际问题,培养动手能力。 六、选择感兴趣的模块深入学习 AI 领域广泛,您可以根据自己的兴趣选择特定的模块进行深入学习,比如图像、音乐、视频等。同时,一定要掌握提示词的技巧,它上手容易且很有用。 七、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 八、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 九、利用 AI 辅助学习 1. 英语学习: 利用 AI 写作助手(如 Grammarly)进行英语写作和语法纠错。 使用语音识别应用(如 Call Annie)进行口语练习和发音纠正。 使用自适应学习平台(如 Duolingo)获取个性化的学习计划和内容。 利用智能对话机器人(如 ChatGPT)进行英语会话练习。 2. 数学学习: 使用自适应学习系统(如 Khan Academy)获取个性化的学习路径和练习题。 利用智能题库和作业辅助工具(如 Photomath)获取数学问题的解答和解题步骤。 使用虚拟教学助手(如 Socratic)解答数学问题、获取教学视频和答疑服务。 参与交互式学习平台(如 Wolfram Alpha)的数学学习课程和实践项目。 通过结合 AI 技术和传统学习方法,您可以更高效、更个性化地进行学习,并将 AI 知识应用到生活和工作中。
2024-12-30
开发应用的提示词
以下是关于开发应用的提示词相关内容: 软件工程师方面: 解释代码:向我解释此代码{要解释的代码}、请解释这段代码{代码段}。 调试代码,找 Bug:这个{编程语言}代码有什么问题 代码:{待调试代码}、这段代码有什么问题{代码段}。 生成单元测试:生成单元测试代码 请输入你要{要使用的语言和框架},再输入{代码段}、请为以下代码片段创建一组单元测试以进行彻底测试 它的功能。首先,概述你计划创建的测试用例。其次,使用{要使用的语言和框架}和下面提供的代码片段来实现测试用例。 创建样本代码库:为{描述功能所需的应用程序创建样板代码库}。请使用{指定的编程语言和框架}。 向代码添加注释:请输入你要添加注释的{代码段}、请查看以下代码片段并为每一行代码提供注释,解释其目的和功能。检查完代码后,请重新生成带有添加注释的代码段。 比较两段代码:请输入你要比较的两个{代码段 1}、{代码段 2},最好{描述你在建构的内容和目的}、我正在开发一个{描述你正在构建的}并且想评估和 将{第一个比较项}与{第二个比较项}进行比较。请提出基本{您正在构建的内容}的要求,并创建两个满足这些要求的代码库一个使用{第一个比较项},另一个使用{第二个比较项}。请提供在我的本地计算机上运行这两个应用程序的明确说明。 生成正则表达式:请创建一个正则表达式匹配{你想匹配的模式}。 解决 Leetcode 问题:请用{所需语言}编写代码来解决以下挑战:{待解决挑战的概述}。 查找边缘情况:请帮我找下以下代码的边缘情况:{代码段}、我想让你充当软件开发人员。请帮我抓住这个功能的边缘情况{插入功能函数}。 Claude 官方提示词(中文版):涵盖工作和娱乐各个方面,共 63 组。例如生成一个单 HTML 文件的互动打字游戏,宇宙打字,侧滚玩法,Tailwind CSS 风格。Prompt 为编写一个完整的网络应用程序作为单个 HTML 文件,该应用程序应包含一个简单的横向滚动游戏,使用 WASD 来移动。在移动世界时,偶尔角色/精灵会遇到单词,当遇到单词时,玩家必须尽快正确输入该单词,输入单词越快,玩家获得的分数就越高,应在右上角有一个计数器来跟踪分数,单词应该是随机和高度可变的,以保持游戏有趣,应使网站非常美观,并使用 Tailwind。链接:https://mp.weixin.qq.com/s/rdKcT76ayfVH9wkfLVaJQ
2024-12-29
以下是大致可以采用的步骤来实现这样一个能自动在大语言模型网站生成不同场景机器人图片的程序(以下以Python语言示例,不过不同平台具体实现会有差异且需遵循对应网站的使用规则和接口规范): ### 1. 选择合适的大语言模型网站及确认其API(应用程序编程接口)情况 不同大语言模型网站对于图片生成通常会提供相应的API来允许外部程序与之交互,比如部分知名的AI绘画相关平台。你需要先确定要使用哪些网站,然后去注册开发者账号等,获取对应的API Key以及详细的API文档,了解如何通过代码向其发起图
以下是为您整合的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,用户能轻松在本地环境启动和运行大模型。 3. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装:访问 https://ollama.com/download/ 进行下载安装。安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 基于 COW 框架的 ChatBot 实现步骤: 1. COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 2. 基于张梦飞同学的教程: 。 3. 实现内容: 打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)。 常用开源插件的安装应用。 4. 正式开始前需知: ChatBot 相较于在各大模型网页端使用区别:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项: 微信端因非常规使用,有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保所有操作均符合相关法律法规要求。 禁止用于任何非法目的。 处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 5. 多平台接入:微信、企业微信、公众号、飞书、钉钉等。 6. 多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 7. 多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 8. 多部署方法:本地运行、服务器运行、Docker 的方式。
2024-12-29
我想用AI应用工具来写小说,你推荐哪些?
以下是为您推荐的可用于写小说的 AI 应用工具: 1. 文本生成工具: ChatGPT:可用于分析小说内容、生成情节和角色描述等。 2. 图像生成工具: Stable Diffusion:能基于文本描述生成图像,适用于创建小说中的场景和角色形象。 Midjourney:可生成小说中的场景和角色图像。 3. 音频制作工具: Adobe Firefly:可将小说文本转换为语音,并添加背景音乐和音效。 4. 视频生成和编辑工具: Pika AI:文本生成视频的 AI 工具,适合动画制作。 Clipfly:一站式 AI 视频生成和剪辑平台。 VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。 故事 AI 绘图:小说转视频的 AI 工具。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-12-28
撰写一篇汽车领域人工智能自动驾驶应用系统方案,参照以下要求:(1) 选题应为课程相关的技术或者原理的应用。 (2) 重点撰写第2部分技术与服务,必须要使用到课程中所学到或者相关技术。 (3) 第6部分财务分析可根据情况适当缩减。 (4) 整体架构可以根据选题进行调整,可适当增加章节或者删减。 (5) 字体大小、标题等必须和模板相同。篇幅20页以上,不少于10000字,小四,宋体。 以下为一篇样稿,可参考其框架撰写 城市智能停车服务系统建设方案 目 录 1 项目背景 1 1.1 项目背景
以下是为您撰写的汽车领域人工智能自动驾驶应用系统方案的部分内容,您可以根据实际需求进行进一步的完善和补充: 一、项目背景 人工智能在汽车行业的应用已经十分广泛,正在深刻改变汽车的各个方面。自动驾驶技术利用 AI 进行图像识别、传感器数据分析和决策制定,使汽车能够自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司都在积极开发和测试自动驾驶汽车。车辆安全系统中,AI 用于增强自动紧急制动、车道保持辅助和盲点检测等功能,通过分析摄像头和传感器数据预防事故。个性化用户体验方面,AI 可根据驾驶员偏好调整车辆设置,包括座椅位置、音乐选择和导航系统。预测性维护通过分析车辆实时数据,预测潜在故障和维护需求,提高车辆可靠性和效率。在汽车制造中,AI 用于自动化生产线,优化生产流程和质量控制。汽车销售和市场分析中,AI 帮助分析市场趋势、消费者行为和销售数据,优化营销策略和产品定价。电动化和能源管理方面,AI 在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。共享出行服务借助 AI 优化路线规划、车辆调度和定价策略,提升服务效率和用户满意度。语音助手和车载娱乐由 AI 驱动,允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。车辆远程监控和诊断利用 AI 系统远程监控车辆状态,提供实时诊断和支持。 二、技术与服务 1. 自动驾驶技术 传感器融合:采用多种传感器,如激光雷达、摄像头、毫米波雷达等,收集车辆周围环境信息。利用 AI 算法对这些多源数据进行融合和分析,提高环境感知的准确性和可靠性。 深度学习决策:基于深度神经网络,训练车辆的决策模型。通过大量的真实驾驶数据,让模型学习如何在各种复杂场景下做出最优的驾驶决策,如加速、减速、转向等。 模拟训练:利用虚拟仿真环境进行大规模的自动驾驶训练。在模拟环境中,可以快速生成各种复杂和罕见的交通场景,加速模型的训练和优化。 2. 车辆安全系统 实时监测与预警:利用 AI 实时分析来自车辆传感器的数据,如车速、加速度、转向角度等,以及外部环境信息,如道路状况、天气条件等。当检测到潜在的危险情况时,及时向驾驶员发出预警。 自动紧急制动:基于 AI 的图像识别和距离检测技术,当判断车辆即将与前方障碍物发生碰撞且驾驶员未采取制动措施时,自动启动紧急制动系统,降低事故风险。 3. 个性化用户体验 偏好学习:通过收集驾驶员的日常操作数据,如座椅调整习惯、音乐播放喜好、常用导航路线等,利用机器学习算法分析和学习驾驶员的偏好模式。 智能推荐:根据学习到的偏好,为驾驶员提供个性化的推荐,如座椅自动调整、音乐推荐、导航路线规划等。 4. 预测性维护 数据采集与分析:安装各类传感器收集车辆的运行数据,如发动机转速、油温、轮胎压力等。利用 AI 算法对这些数据进行分析,挖掘潜在的故障模式和趋势。 故障预测模型:建立基于机器学习的故障预测模型,提前预测可能出现的故障,并及时通知驾驶员和维修人员,安排预防性维护。 5. 生产自动化 质量检测:利用机器视觉技术和 AI 算法,对生产线上的汽车零部件进行自动检测,识别缺陷和瑕疵,提高产品质量。 生产流程优化:通过分析生产数据,如设备运行状态、生产节拍等,利用 AI 优化生产流程,提高生产效率,降低生产成本。 三、财务分析(可根据情况适当缩减) 1. 初始投资 技术研发费用:包括自动驾驶算法开发、硬件设备采购、测试场地建设等方面的费用。 车辆改装和设备安装成本:为实现自动驾驶功能,对车辆进行改装和安装相关传感器、计算设备等的成本。 2. 运营成本 数据采集和处理费用:持续收集车辆运行数据和环境数据,并进行处理和分析的费用。 维护和升级成本:对自动驾驶系统进行定期维护、软件升级和硬件更换的费用。 3. 收益来源 车辆销售增值:配备自动驾驶和智能功能的汽车可以提高售价,增加销售收入。 服务订阅费用:为用户提供个性化服务、远程监控和诊断等服务的订阅收费。 4. 盈利预测 根据市场需求、成本控制和收益增长情况,进行短期和长期的盈利预测。 以上内容仅供参考,您可以根据具体的项目需求和实际情况进一步完善和细化各个部分。
2024-12-27
人工智能应用具体案例
以下是一些人工智能的应用具体案例: 在汽车行业: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司开发和测试的自动驾驶汽车。 2. 车辆安全系统:AI 用于增强自动紧急制动(AEB)、车道保持辅助(LKA)和盲点检测等系统,通过分析数据预防事故。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,制定策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 利用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持。 其他领域: 1. 游戏领域:AI 游戏道具推荐系统,根据玩家需求推荐游戏道具。 2. 天气领域:AI 天气预报分时服务,提供精准的分时天气预报。 3. 医疗领域:AI 医疗病历分析平台,分析医疗病历辅助诊断。 4. 会议领域:AI 会议发言总结工具,自动总结会议发言内容。 5. 书法领域:AI 书法作品临摹辅助工具,帮助书法爱好者进行临摹。 6. 儿童用品领域:AI 儿童安全座椅推荐系统,为家长推荐合适的儿童安全座椅。 7. 汽车保养领域:AI 汽车保养套餐推荐系统,根据车辆情况推荐保养套餐。 8. 物流领域:AI 物流快递柜管理系统,优化快递柜使用效率。 9. 招聘领域:AI 招聘面试模拟平台,帮助求职者进行面试模拟。 10. 房地产领域:AI 房地产装修设计平台,为用户提供装修设计方案。
2024-12-27
这几天ai领域有没有突破性的论文
以下是这几天 AI 领域的一些相关论文和研究成果: 1. 《山姆·奥特曼传(二):OpenAI 的第一次内斗》中提到,2017 年 Google Brain 团队撰写的论文《Attention is All You Need》介绍了 Transformer 架构,彻底改变了 AI 领域的格局。OpenAI 在其技术领袖伊利亚的推动下,基于 Transformer 架构开发了 GPT 系列模型。 2. 《2024 人工智能报告》中包含了关于 AI 在未来一年的 10 个预测,如一个主权国家向美国大型人工智能实验室投资 100 亿美元以上需要国家安全审查,没有任何编码能力的人独自创建的应用程序或网站将会迅速走红等。 3. 《入门经典必读》中指出人工智能的研究正在以指数级别的速度增长,文中分享了一份用于更深入了解现代 AI 的精选资源列表,其中提到从 2017 年谷歌发布的“Attention is All You Need”这篇开启了生成 AI 时代的论文开始的一系列里程碑式研究成果。
2024-12-26
AIGC视频生成领域的最新技术动态
以下是 AIGC 视频生成领域的最新技术动态: 以生成方式划分,当前视频生成可分为文生视频、图生视频与视频生视频。主流生成模型为扩散模型,其涉及深度学习技术如 GANs 和 Video Diffusion。视频生成可用于娱乐、体育分析和自动驾驶等领域,且经常与语音生成一起使用。 用于语音生成的模型可以由 Transformers 提供,可用于文本到语音的转换、虚拟助手和语音克隆等。生成音频信号常用的技术包括循环神经网络(RNNs)、长短时记忆网络(LSTMs)、WaveNet 等。 一些具有代表性的海外项目: Sora(OpenAI):以扩散 Transformer 模型为核心,能够生成长达一分钟的高保真视频。支持文本生成视频、视频生成视频、图像生成视频,在文本理解方面表现出色,还能在单个生成的视频中创建多个镜头,保留角色和视觉风格。 Genie(Google):采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数,可通过单张图像提示生成交互式环境。 此外,AIGC 周刊中也有相关动态: 2024 年 7 月第三周:未提及视频生成领域的具体内容。 2024 年 7 月第四周:未提及视频生成领域的具体内容。 2024 年 7 月第五周:未提及视频生成领域的具体内容。 2024 年 8 月第一周:未提及视频生成领域的具体内容。 在 AIGC 概述中提到,AIGC 主要分为语言文本生成、图像生成和音视频生成。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。
2024-12-26
AIGC视频生成领域的最新技术动态
以下是 AIGC 视频生成领域的最新技术动态: 以生成方式划分,当前视频生成可分为文生视频、图生视频与视频生视频。主流生成模型为扩散模型,其涉及深度学习技术,如 GANs 和 Video Diffusion。视频生成可用于娱乐、体育分析和自动驾驶等领域,且经常与语音生成一起使用。 用于语音生成的模型可以由 Transformers 提供,可用于文本到语音的转换、虚拟助手和语音克隆等。生成音频信号常用的技术包括循环神经网络(RNNs)、长短时记忆网络(LSTMs)、WaveNet 等。 一些具有代表性的海外项目: Sora(OpenAI):以扩散 Transformer 模型为核心,能够生成长达一分钟的高保真视频。支持文本生成视频、视频生成视频、图像生成视频,在文本理解方面表现出色,还能在单个生成的视频中创建多个镜头,保留角色和视觉风格。 Genie(Google):采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数,可通过单张图像提示生成交互式环境。 此外,AIGC 周刊中也有相关动态: 2024 年 7 月第三周:未提及视频生成的具体内容。 2024 年 7 月第四周:未提及视频生成的具体内容。 2024 年 7 月第五周:未提及视频生成的具体内容。 2024 年 8 月第一周:未提及视频生成的具体内容。 AIGC 作为一种强大的技术,能够赋能诸多领域,但也存在多重潜在的合规风险。我国对 AIGC 的监管框架由多部法律法规构成。AIGC 主要分为语言文本生成、图像生成和音视频生成,在多个领域展现出广泛的应用前景。
2024-12-26
人工智能教育领域的应用
人工智能在教育领域的应用广泛且具有颠覆性,主要体现在以下几个方面: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师能引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 同时,北京大学教育学院教授汪琼指出,教育领域的数字化转型不能只是将传统教育方式搬到线上,还需新解决方案,技术创新应用和数据整合挖掘是关键。我们正进入新时代,AI 成为教与学的伙伴,但在迎接新一代人工智能发展带来的挑战时,必须注意“信息茧房”的危害,平衡其潜力与局限,注意技术引入的全局影响。 然而,AI 技术对传统教育体系的冲击也带来诸多挑战,如教育体系内部惯性、教师技能更新、课程内容适时调整、评估和认证机制改革等。
2024-12-26
大模型在金融领域的量化投研领域的应用
大模型在金融领域的量化投研领域有以下应用和特点: 1. 大型系统工程: 量化和大模型都需要大型计算集群,上万张卡的互联是对基础设施的极致挑战。量化对性能和效率有极致追求,交易指令速度至关重要;大模型在基础设施层面的每一点提升都能优化训练效率。 细节在大型系统工程中十分关键。量化交易系统包含多个方面,任何环节出问题都会导致交易系统失败;大模型预训练从数据到评估包含大量细节,如数据配比、顺序、训练策略等。 2. 本土化机会: 很多 Global 的量化基金到中国会水土不服,国家政策也限制其大规模开展业务,给国内量化基金崛起机会。 OpenAI、Google、Meta 等的模型中文能力一般,未对中国国情优化,不符合政策要求,给国内大模型公司本土化预训练机会。 两者都受政策影响极大,需要有效监管才能健康发展。 3. 其他相似之处: 少数精英的人赚大量的钱,做大模型和金融量化都不用很多人,但每个人都要绝顶聪明。 核心问题一样,下一个 token 预测和下一个股价预测类似。 都需要大量数据,都追求可解释性。 作者:黄文灏 源地址:https://zhuanlan.zhihu.com/p/646909899 最近和朋友讨论发现大模型预训练和金融量化有很多相似之处,作者恰好同时具有两者背景,做了对比。
2024-12-25