人工智能的主要分支包括:
此外,“人工智能”的概念自 1956 年提出后,其所涵盖的理论范围及技术方法不断扩展,如今已应用于不同领域。
自然语言处理(NLP)如今已经成为人工智能领域中不可或缺的重要分支。然而,令人惊讶的是,NLP的起源甚至早于"人工智能"概念的诞生(达特茅斯会议)。在这个领域中,最广为人知且被普遍认可的起点,要追溯到艾伦·图灵在其开创性论文《计算机器与智能》中提出的"图灵测试"。他提出的核心理念是:让计算机能够与人类进行如此自然、流畅的对话,以至于人类无法分辨对方是机器还是真人。这个看似简单的概念实际上涵盖了自然语言处理的两大核心领域:自然语言理解(NLU)和自然语言生成(NLG)。前者要求机器能够准确理解人类语言的复杂性和微妙之处,而后者则需要机器能够生成流畅、自然、符合语境的人类语言。
[heading4](1)人工智能目前人们对人工智能的定义并不统一。欧盟广泛使用的人工智能定义来自《2018年人工智能战略》,该战略指出:“人工智能(AI)是指通过分析环境并采取行动(具有一定程度的自主性)以实现特定目标来展示其智能行为的系统。基于人工智能的系统可以完全依赖于软件,在虚拟世界中运行(例如语音助手、图像分析软件、搜索引擎、语音和人脸识别系统)或者也可以嵌入硬件设备中(例如高级机器人、自动驾驶汽车、无人机或物联网应用程序)。”[4]郭佳楠:《欧盟人工智能的政策、伦理准则及规制路径研究》,载《互联网天地》,2023年第1期第26-32页。2021年《AI法案》提案第3条对人工智能的定义为:“AI系统指采用附录1中所列的一种或多种技术和方法开发的软件,该软件能生成影响交互环境的输出(如内容、预测、建议或决策),以实现人为指定的特定目标。”其中,附录1列举的技术方法主要包括:机器学习方法(包括监督、无监督、强化和深度学习);基于逻辑和知识的方法(包括知识表示、归纳编程、知识库、影响和演绎引擎、符号推理和专家系统);统计方法,贝叶斯估计,以及搜索和优化方法。事实上,“人工智能”的概念自1956年于美国的达特茅斯学会上被提出后,其所涵盖的理论范围及技术方法随着时代的发展也在不断扩展。如今,人工智能技术也发展出多个技术分支,应用于不同的领域中。相比于《2018年人工智能战略》,2021年《AI法案》提案对于人工智能的定义采取更加宽泛的界定标准。值得注意的是,在2022年《AI法案》妥协版本中,欧盟理事会及欧洲议会对于上述界定的观点有进一步意见,其认为“AI系统”的定义范围应适当缩窄,并侧重强调机器学习的方法。
机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径之一,即以机器学习为手段,解决人工智能中的部分问题。机器学习在近30多年已发展为一门多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。[heading1]自然语言是什么?[content]自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言。是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。[heading1]AI的推理是什么?[content]推理是指利用训练好的模型,使用新数据推理出各种结论。借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论的过程。这也有叫做预测或推断。[heading1]AI的训练是什么?[content]训练是指通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练需要较高的计算性能、能够处理海量的数据、具有一定的通用性,以便完成各种各样的学习任务。