Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

物流方面的知识用哪方面的AI好?

Answer

在物流方面,以下几种 AI 应用较为有益:

  1. 路线优化:AI 可用于优化物流路线,降低运输成本。
  2. 配送计划优化:帮助制定更高效的配送计划。
  3. 无人机送货:利用 AI 实现无人机送货,将货物快速送达偏远地区。

需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:请问 AI 有哪些应用场景?

[title]问:请问AI有哪些应用场景?自动驾驶:AI可以用于开发自动驾驶汽车,提高交通安全性和效率。交通管理:AI可以用于优化交通信号灯和交通流量,缓解交通拥堵。物流和配送:AI可以用于优化物流路线和配送计划,降低运输成本。无人机送货:AI可以用于无人机送货,将货物快速送达偏远地区。6.其他应用场景:教育:AI可以用于个性化学习,为每个学生提供定制化的学习体验。农业:AI可以用于分析农田数据,提高农作物的产量和质量。娱乐:AI可以用于开发虚拟现实和增强现实体验。能源:AI可以用于优化能源的使用,提高能源效率。人工智能的应用场景还在不断扩展,未来人工智能将对我们的生活产生更加深远的影响。内容由AI大模型生成,请仔细甄别

Others are asking
Ai高端工作坊
以下是为您整理的两个关于 AI 的高端工作坊相关信息: 全球 AI 视觉分享会 AI 视觉创意大赛 活动日程: 颁奖典礼:10 月 17 日,14:30 18:00,红立方公共艺术馆负一楼大屏幕。包括嘉宾签到、获奖作品欣赏、领导致辞、评委介绍、产业推介、合作项目签约、颁奖点评、AI 创意周启动、合影留念及作品展参观。 AI 视觉创意汇:10 月 18 20 日,10:00 18:00,专业观众日和公众开放日,红立方公共艺术馆 1、2、3 号展馆。体验最新 AI 视觉技术,参与产品发布会和场景对接会。 AI 视觉工作坊:10 月 19 日,9:00 20:00,红立方公共艺术馆及少年宫。深入探讨 AI 在艺术创作中的应用,参与分享会、模型训练、圆桌交流和实时挑战赛。 地点:深圳红立方公共艺术馆(广东省深圳市龙岗区龙翔大道 8028 号) 活动亮点: 颁奖典礼:见证 AI 艺术的新星诞生,与行业领袖共同庆祝。 AI 视觉创意汇:亲身体验最新 AI 视觉技术,探索创意作品。 AI 视觉工作坊:深入了解 AI 艺术创作,与专家面对面交流。 活动报名:记得填写 waytoagi AI 摊主速成脑暴会 AI 摆摊玩什么 AI 娱乐与算命:AI 算命、星盘、八字、人格测试、趣味算命、游戏化互动。示例项目如 AI 算命(15 积分)、星盘解析、职业规划、社交小游戏(如积分狩猎、刮刮乐)。 技术与工具教学:Prompt 技巧、AI 工具安装、提示词优化、复杂模型训练、文档信息提取。示例项目如 Prompt 技巧传授(10 积分)、MJ/Sd 出图(10 积分)、大模型调参(20 积分)、文件抽取(15 积分)。 个性化小工具:小红书账号文案、表情包、爆款名片生成、定制黄历、智能对话、内容分享。示例项目如小红书爆款文案(10 积分)、个人知识笔记(3 积分)、AI 爆款名片(10 积分)。 体验型项目:AI 桌宠、人工智能体互动、数字人互动、项目商业模式咨询、AI 情感陪伴。示例项目如桌宠体验(10 积分)、数字人体验(10 积分)、商业落地场景咨询(20 积分)。 AI 图像处理:图像生成、照片修复与动起来、动漫化头像、老照片复活、创意壁纸制作。示例项目如 AI 写真、老照片动起来(10 积分)、卡通头像(10 积分)、赛博头像定制(多样风格)。 文案与内容创作:文案定制、朋友圈文案生成、爆款文案编写、创意故事、情话生成。示例项目如产品文案优化(10 积分)、AI 土味情话(5 积分)、个性化文案定制(10 积分)、朋友圈鸡汤生成。 音频与音乐制作:专属歌曲创作、音频处理、声音克隆、AI 唱歌、背景音乐定制。示例项目如制作专属歌曲(10 积分)、声音克隆/视频对口型(20 积分)、声音解梦音乐制作。 视频处理:视频换脸、照片转视频、视频动漫化、视频剪辑、数字人制作。示例项目如换脸(60 积分)、视频动漫化、AI 生成的视频脚本(20 积分)、AI 高清处理(10 积分)。 智能体与 Coze:搭建智能体、GPTs 创建、coze 工作流、微信机器人。示例项目如搭建智能体(50 积分)、智能体体验(10 积分)、Coze 工作流(20 积分)、微信机器人搭建(100 积分)。 AI 教育与咨询:AI 应用培训、课程设计、商业化咨询、AI + 行业应用咨询。示例项目如 AI 培训策划(20 积分)、商业化建议(10 20 积分)、产品思路分享(5 积分)、应用场景分析。
2025-01-23
前沿ai学习网站
以下是一些前沿的 AI 学习网站: 1. WaytoAGI:这是一个致力于人工智能(AI)学习的中文知识库和社区平台。为学习者提供系统全面的 AI 学习路径,覆盖从基础概念到实际应用的各个方面。它汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯。平台提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。此外,社区还定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 2. 在没有任何推广的情况下,WaytoAGI 一年时间已有超过 100 万用户和超千万次的访问量。其目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。目前合作过的公司/产品包括阿里云,通义千问,淘宝,智谱,支付宝,豆包,火山引擎,marscode,coze,堆友,即梦,可灵,MiniMax 海螺 AI,阶跃星辰,百度,Kimi,吐司,liblib,华硕,美团,美的,360,伊利,魔搭,央视频,Civitai,Openart,Tripo3D,青椒云等。 3. 「通往 AGI 之路」的品牌 VI 融合了独特的设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性,共同构建了一个充满活力和前瞻性的品牌形象。
2025-01-23
我想学习AI视频创作流程
以下是 AI 视频创作的一般流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 另外,在一些具体的创作案例中,比如“AI 离谱社黄师傅”的工作流程中,有以下要点: 创作思路基于深度文化挖掘、自然风光和历史遗迹展示、故事性和情感连接等关键概念和创新方法,旨在通过人工智能技术全面展示中国各省份的文化和旅游魅力。 任务划分方面,制片人搭建整体框架,图像创意者提供有冲击力的图像画面,视频制作者熟悉并运用视频工具,编剧构思故事和创作台词文本,还有配音和配乐等工作。 在 AI 春晚采访问题中提到,脚本创作由 GPT 完成但需要大量人工干预,图像生成由 MJ 完成也需要人工调词,人工比例在 70%以上。
2025-01-23
有用来做网络游戏研发和运营的全套AI工具吗?
目前游戏领域还没有涵盖整个制作过程(包括代码、资产生成、纹理、音频等)的全套生成式人工智能工具,也没有能与流行的游戏引擎(如虚幻和 Unity)紧密结合使用、专为适应典型的游戏生产流程而设计的一体化平台。但有一些相关的工具和平台在不同方面发挥作用,例如: 生成可以互动的角色方面:有很多初创公司在研究,如 Charisma.ai、Convai.com、Inworld.ai 等平台,它们可以为具有情感和自主权的完全渲染的 3D 角色提供动力,并提供工具让创作者给角色设定目标。 语音生成方面:Coqui Studio(https://coqui.ai)、Bark(https://github.com/sunoai/bark)、Replica Studios(https://replicastudios.com)等。 语音识别方面:OpenAI Whisper(https://huggingface.co/openai/whisperbase)、Facebook Wav2Vec2(https://huggingface.co/facebook/wav2vec2largexlsr53)。 对话模型方面:ChatGPT(https://chat.openai.com)、HuggingChat(https://huggingface.co/chat)。 故事讲述模型方面:MPT7BStoryWriter65k+(https://huggingface.co/mosaicml/mpt7bstorywriter)、Claude 100k(https://www.anthropic.com/index/100kcontextwindows)、GTP4 32k(https://platform.openai.com/docs/models/overview)。 游戏设计方面:Ludo.ai(https://ludo.ai)。 搜索引擎方面:Haddock(https://www.haddock.ai)。 AI NPC 方面:Inworld(https://inworld.ai)。
2025-01-23
Ai智能体
AI 智能体在以下方面有重要应用和发展: 1. 在品牌卖点提炼中: 可搭建智能体作为引导型助手,帮助提炼品牌卖点。 但在搭建前需明确 AI 的能力边界,如 AI 对公司的主要产品、产品解决的用户需求、产品独特之处、获得的认可、依赖的核心渠道、核心购买人群、曾使用的营销手段、在新渠道的期望结果等了解程度接近于 0。 AI 真正的能力在于通过分析数据和信息进行逻辑推理、快速处理和分析数据并提取有价值信息和模式、拥有大量训练数据可输出更全面相关信息、理解用户提供内容并按正确结构梳理有效输出。 引导型助手更适合成为灵感提问助手,在寻找卖点思考路径停滞时提供更多思考维度。 2. 企业自动化方面: 生成式 AI 应用有三个核心用例与强大的产品市场契合度:搜索、合成和生成。 领先的应用程序构建商正在建立解决方案,处理之前只能由大量人力解决的工作流程。 借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,下一波智能体正在拓展 AI 能力边界,实现端到端流程自动化。 未来的完全自主智能体可能拥有所有四个构建块,但当前的 LLM 应用程序和智能体还未达到。 如流行的 RAG 架构不是智能体式的,一些设计支持工具使用,但应用程序的步骤仍由代码预先确定。 当将 LLM 置于应用程序的控制流中让其动态决定行动、使用工具等时,智能体出现。 确定了三种不同主要用例和应用程序进程控制自由度的智能体类型:决策智能体、轨道智能体、通用人工智能体。
2025-01-23
初学者如何使用AI学习AI知识
对于初学者学习 AI 知识,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-23
AI智能体对个人工作能力培养方面的启示
AI 智能体对个人工作能力培养有以下启示: 1. 工作方法方面: 彻底让自己变成一个“懒人”。 能动嘴的不要动手,用嘴说出想做的事远比打字快。 能动手的尽量用 AI,用 AI 远比苦哈哈手敲快。 把手上的工作单元切割开,建设属于自己的智能体。 根据结果反馈不断调整自己的智能体。 定期审视自己的工作流程,看哪个部分可以更多地用上 AI。 2. 个人素质方面: 技术层面之外,个人能力的提升是核心,尤其是学习能力和创造能力。 学习能力是通过持续阅读和实践来吸收、消化和积累知识的能力,是构建个人知识体系的基础和个人成长的动力源泉。 为保持竞争力,要培养并维持旺盛的好奇心和持续学习的习惯,广泛阅读,深入研究新领域,不断探索前沿知识,全方位、多角度学习和实践,以积累知识、提高适应能力和创新思维。 3. 技术应用方面: 迅速掌握生成式人工智能的基本概念和潜在影响,重点理解其如何革新工作方式和重塑行业格局。 深入了解市场上现有的人工智能产品和工具,并积极应用到实际工作中。 学习提示词技术,编写清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体,让其革新工作方式,多个虚拟伙伴和助手协同工作,提高工作效率和创新能力。 需要注意的是,AI 技术的出现能把大部分人的能力提升到及格线以上,人与人之间最大的差距在于认知差距。对创建 AI 智能体感兴趣的小伙伴,可前往 WaytoAGI 开源免费社区了解(里面有保姆级教程)。
2025-01-22
国内哪款AI应用在咨询解答方面比较好
以下是国内在咨询解答方面表现较好的一些 AI 应用: 1. 抖音搜索:是一个独立 App,增加了 AI 问答功能。字节旗下还有“豆包”这一国民级的 AI 应用入口。 2. 小红书: 点点:独立的 AI 搜索 App,基于小红书和少量外部数据,回答用户提出的攻略、美食、经验等问题。 问点点:小红书 App 内的 AI 问答页面,从检索框可以进入。 3. 作业帮智能辅导:为学生提供个性化学习辅导,使用机器学习、自然语言处理技术,市场规模百亿美元以上。 4. 法信智能法律咨询:解答法律问题提供法律咨询,使用自然语言处理、知识图谱技术,市场规模数亿美元。 此外,国内免费的大模型 APP 有 Kimi 智能助手(Moonshot AI 出品)、文心一言(百度出品)、通义千问(阿里云开发)。
2025-01-21
ai现在主要用于哪个方面
人工智能(AI)目前已广泛应用于多个领域,主要包括以下方面: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 药物研发,加速研发过程。 个性化医疗,提供个性化治疗方案。 机器人辅助手术,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 信用评估,辅助贷款决策。 投资分析,帮助投资者做出明智决策。 客户服务,提供 24/7 服务。 3. 零售和电子商务: 产品推荐,根据客户数据推荐感兴趣的产品。 搜索和个性化,改善搜索结果和购物体验。 动态定价,根据市场需求调整价格。 聊天机器人,回答客户问题。 4. 制造业: 预测性维护,避免机器故障停机。 质量控制,检测产品缺陷。 供应链管理,优化供应链提高效率。 机器人自动化,提高生产效率。 5. 交通运输: 自动驾驶技术,实现自主导航驾驶。 车辆安全系统,预防事故。 个性化用户体验,根据偏好调整车辆设置。 预测性维护,减少停机和维修成本。 生产自动化,提高制造效率和质量。 销售和市场分析,制定营销策略。 电动化和能源管理,优化电池使用和充电策略。 共享出行服务,提高服务效率和满意度。 语音助手和车载娱乐,方便控制和获取信息。 车辆远程监控和诊断,及时了解车辆状况。
2025-01-19
如何忘AI这方面发展
如果您想在 AI 方面发展,可以参考以下几点: 1. 持续学习和跟进:AI 是一个快速发展的领域,新的研究成果和技术不断涌现。您需要关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。同时,考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 2. 对于创新者来说,在前沿工作并开发新技术时,应对监管制度可能具有挑战性。英国确认致力于推进帕特里克·瓦伦斯爵士提出的为 AI 建立监管沙盒的关键建议,这将使监管机构能够直接支持创新者,并帮助他们将产品推向市场。 3. 英国已退出欧盟,可以建立一种监管方法,使英国成为 AI 超级大国。这种方法将积极支持创新,同时解决风险和公众关注。英国拥有蓬勃发展的初创企业,监管框架将支持其扩大规模并参与国际竞争。这种支持创新的方法也将对海外的 AI 企业在英国设立业务产生强大的激励作用。 4. 英国在制定 AI 监管方法时依靠政府、监管机构和企业之间的协作。最初,不打算引入新的立法。过早匆忙立法可能会给企业带来不必要的负担。同时,在赋予监管机构领导权的同时,也在设定相关内容。
2025-01-18
制作短视频方面,AI 能帮我做些什么
在制作短视频方面,AI 能为您提供以下帮助: 1. 根据视频脚本生成短视频: ChatGPT + 剪映:ChatGPT 生成视频脚本,剪映根据脚本分析出所需场景、角色、镜头等要素并生成素材和文本框架,实现从文字到画面的快速转化。 PixVerse AI:在线 AI 视频生成工具,支持将多模态输入转化为视频。 Pictory:AI 视频生成器,用户提供文本描述即可生成相应视频内容。 VEED.IO:提供 AI 图像生成器和 AI 脚本生成器,帮助从图像制作视频并规划内容。 Runway:将文本转化为风格化视频内容,适用于多种场景。 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务。 2. 故事创作与剧本写作: 故事来源:可以是原创,如自身或周围人的经历、做过的梦、想象的故事等;也可以是改编,如经典 IP、名著、新闻、二创等。 剧本写作:编剧有一定门槛,建议先写再看书,不断实践和总结经验。短片创作可从自身或朋友经历改编入手,或对短篇故事进行改编,多与他人讨论修改。 3. 视频制作相关工具: 动画工具:用于在视频中为人脸制作动画的 DiD,用于从文本创建视频的 Runway v2。 语音克隆:ElevenLabs。 需要注意的是,深度伪造是一个问题,这些系统需要合乎道德地使用。同时,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-17
你现在是一个工作流方面的专家 我需要你用最简单的方法让我这个小白理解工作流是怎么工作的
工作流是一种通过可视化方式对插件、大语言模型、代码块等功能进行组合,以实现复杂、稳定业务流程编排的方法。 工作流由多个节点构成,节点是基本单元,包括大语言模型 LLM、自定义代码、判断逻辑等。默认包含 Start 节点(工作起始,可包含用户输入信息)和 End 节点(工作末尾,返回运行结果)。 不同节点可能需要不同输入参数,分为引用前面节点的参数值和自定义的参数值。扣子提供了基础节点,还可添加插件节点或其他工作流。 例如,在角色设计变体生成工作流中,在不改变角色某些特定样式的基础上仅改变设计,能防止提示词外流,还可使用图片引导特定部分的风格和样式。 在智能体“竖起耳朵听”的编排中,插件像工具箱,工作流像可视化拼图游戏,将各种功能组合,满足多步骤、高要求的任务。
2025-01-16
关于物流在人工智能配送方面的知识
在物流配送领域,人工智能有以下应用: 优化物流路线和配送计划,降低运输成本。 实现无人机送货,将货物快速送达偏远地区。 例如: 美团外卖配送系统利用数据分析和机器学习优化外卖小哥的配送路线,会根据订单位置、餐厅出餐速度等因素,在高峰期自动调整配送路线,确保外卖及时送达。 猎聘 APP 作为 AI 招聘求职平台,利用数据分析和自然语言处理技术,连接求职者和招聘企业,促进就业。 链家 APP 作为 AI 房地产交易平台,利用数据分析和自然语言处理,为买卖双方提供安全、高效的交易平台。 游戏开发工具 Unity 利用图像生成和机器学习技术,为游戏开发者自动生成游戏关卡,提高开发效率。
2024-12-16
你了解哪儿些大模型在电商行业供应链物流领域的应用,如果能举例阿里、淘宝、抖音、京东等涉及到电商的公司进行说明就更好了
目前在电商行业供应链物流领域,一些大模型的应用还处于不断发展和探索的阶段。 阿里巴巴:可能利用其强大的技术能力和数据优势,通过大模型优化物流路径规划、库存管理和订单预测等方面,提高物流效率和降低成本。 淘宝:或许借助大模型来分析消费者的购买行为和偏好,从而更精准地进行商品推荐,并优化物流配送的调度。 抖音:可能运用大模型对用户的兴趣和行为进行深度挖掘,以实现更高效的商品匹配和物流配送安排。 京东:有可能利用大模型改进仓储管理、物流配送的智能调度,以及预测商品的需求和销售趋势。 但需要注意的是,具体的应用情况和效果会受到多种因素的影响,包括数据质量、算法优化、业务场景的复杂性等。
2024-09-25
AI如何根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率
AI技术在供应链管理中的应用可以大大提高采购计划、库存预测和物流优化的效率。以下是如何利用AI根据历史数据和市场变化自动生成这些内容的详细步骤: 1. 数据收集和预处理 首先,需要收集大量的历史数据和实时市场数据。这些数据可以来自企业内部系统(如ERP、WMS)和外部数据源(如市场情报、经济指标)。 数据类型: 历史销售数据:包括销售数量、时间、地点等。 库存数据:当前库存水平、历史库存变化、仓储信息。 采购数据:采购订单、供应商信息、采购周期等。 市场数据:市场需求预测、经济指标、季节性变化等。 数据预处理: 数据清洗:处理缺失值、异常值和重复数据。 数据整合:将来自不同来源的数据整合成统一格式。 特征工程:提取关键特征,如时间序列特征、季节性特征等。 2. 采购计划自动生成 利用AI模型分析历史采购和销售数据,结合市场变化,生成优化的采购计划。 方法: 时间序列分析:使用ARIMA、Prophet等模型预测未来的需求量。 机器学习算法:如随机森林、XGBoost,通过学习历史数据中的模式来预测需求。 深度学习:如LSTM、GRU,适合处理复杂的时间序列数据。 具体步骤: 1. 需求预测:预测未来一段时间内的产品需求量。 2. 供应商选择和评估:根据历史绩效和市场条件,选择最佳供应商。 3. 采购量确定:结合库存水平、需求预测和供应商能力,确定每个产品的采购量。 4. 优化采购时间:利用AI优化采购时间,以最低成本满足需求。 3. 库存预测 利用AI技术进行库存预测,确保在最低库存水平下满足需求,减少库存持有成本和缺货风险。 方法: 库存优化模型:如Economic Order Quantity 。 库存水平预测:基于历史数据和需求预测,计算安全库存和再订货点。 机器学习算法:如支持向量机(SVM)、KNN,通过学习历史库存变化和需求波动,预测未来库存需求。 具体步骤: 1. 需求预测:预测未来的产品需求。 2. 库存水平计算:根据需求预测、订单交付时间、当前库存水平,计算安全库存和再订货点。 3. 库存补货策略:制定补货策略,确定何时和多少补货。 4. 物流优化 AI技术可以优化物流路径、运输方式和仓储布局,降低物流成本,提高运输效率。 方法: 路线优化:利用优化算法(如遗传算法、蚁群算法)优化运输路线,减少运输成本和时间。 运输方式选择:根据货物类型、运输距离、成本等因素,选择最佳的运输方式(如海运、空运、陆运)。 仓储布局优化:利用AI优化仓库布局,提高仓储效率和利用率。 具体步骤: 1. 运输需求分析:分析需求预测和库存计划,确定运输需求。 2. 路线规划:利用优化算法规划最佳运输路线。 3. 运输方式选择:根据成本和时间要求,选择合适的运输方式。 4. 仓储优化:利用AI优化仓库布局和操作,提高仓储效率。 案例示例:使用AI进行供应链优化 以下是一个使用AI进行供应链优化的具体示例: 需求预测: 1. 收集过去两年的销售数据和市场数据。 2. 使用LSTM模型对未来6个月的需求进行预测。 3. 将预测结果与当前库存水平进行比较,确定需要补货的产品和数量。 采购计划: 1. 根据需求预测结果,使用EOQ模型计算每个产品的最优采购量。 2. 结合供应商历史绩效数据,选择最佳供应商并确定采购时间。 库存管理: 1. 使用支持向量机(SVM)模型预测未来的库存水平。 2. 根据预测结果调整安全库存和再订货点,制定补货计划。 物流优化: 1. 利用蚁群算法优化运输路线,降低运输成本。 2. 根据货物类型和运输距离选择最佳运输方式。 3. 利用AI优化仓库布局,提高货物存取效率。 总结 通过利用AI技术,企业可以实现自动化和智能化的采购计划、库存预测和物流优化。这不仅可以提高供应链管理的效率,还能降低成本,减少库存风险,提升客户满意度。为了实施这些AI技术,企业需要投入时间和资源进行数据收集、模型开发和系统集成,同时需要培养数据分析和AI技术的人才。
2024-05-30
知识库中已有的ai工具按能力分类列举
以下是知识库中已有的 AI 工具按能力分类列举: 工具入门篇 数据工具: 多维表格小白之旅 适用人群:Excel 重度使用者、手动数据处理使用者、文件工作者 简要说明:用表格+AI 进行信息整理、提效、打标签,满足 80%数据处理需求 编程工具: Cursor 的小白试用反馈 适用人群:0 编程经验、觉得编程离我们很遥远的小白 简要说明:通过 AI 工具对编程祛魅,降低技术壁垒 音乐工具: Suno 的小白探索笔记 适用人群:0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白 简要说明:AI 赋能音乐创作,无需乐理知识即可参与音乐制作 100 个 AI 应用 81 100: AI 菜谱口味调整工具 已有产品:下厨房口味调整功能 一句话介绍:根据用户反馈调整菜谱口味。 AI 语言学习纠错平台 已有产品:英语流利说纠错功能 一句话介绍:帮助语言学习者纠正错误。 AI 电影剧情分析系统 已有产品:豆瓣电影剧情分析工具 一句话介绍:分析电影剧情,提供深度解读。 AI 办公文件分类系统 已有产品:腾讯文档分类功能 一句话介绍:自动分类办公文件,方便管理。 AI 美容护肤方案定制平台 已有产品:美丽修行定制方案功能 一句话介绍:根据用户肤质定制护肤方案。 21 40: AI 菜谱生成平台 已有产品:豆果美食 APP 一句话介绍:根据用户口味和现有食材生成个性化菜谱。 AI 语言学习助手 已有产品:沪江开心词场 一句话介绍:辅助用户学习语言,提供个性化学习方案。 AI 电影推荐系统 已有产品:爱奇艺智能推荐 一句话介绍:根据用户喜好推荐电影,发现优质影片。 AI 办公自动化工具 已有产品:WPS Office 一句话介绍:提高办公效率,实现自动化办公流程。
2025-01-23
如何构建企业AI知识库
构建企业 AI 知识库可以参考以下步骤: 1. 结合企业私有数据与 RAG 模型的私有化部署。如有特殊需求,还可以进行模型的 Finetuning(微调),以优化性能。基础模型负责提供推理提示,RAG 用于整合新知识,实现快速迭代和定制化信息检索。 2. 确定功能范围,包括编写【prompt】提示词,设定 Bot 的身份和目标。 3. 创建【知识库】: 整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 选择创建知识库路径,如个人空间知识库创建知识库。 支持的知识库文档类型包括本地文档、在线数据、飞书文档、Notion 等,可根据需求选择,如本次使用【本地文档】。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:知识库的好用程度与内容切分粒度有关,可以在内容中加上特殊分割符,如“”,便于自动切分数据。分段标识符号选择“自定义”,内容填“”。如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮进行相应操作。 在构建过程中,KnowHow 很重要,同时工作流不必复杂,能实现目的即可,所以在设计 Bot 前“确定目的”和“确定功能范围”很关键。
2025-01-23
本地怎么构建知识库
以下是关于本地构建知识库的详细步骤和相关知识: 一、硬件配置要求 运行大模型需要较高的机器配置,个人玩家可能负担不起。 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 二、RAG 技术 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 RAG 是指检索增强生成(Retrieval Augmented Generation),当需要依靠不包含在大模型训练集中的数据时,通过以下 5 个过程实现: 1. 文档加载(Document Loading):从多种不同来源加载文档。LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化的数据、SQL 在内的结构化的数据,以及 Python、Java 之类的代码等。 2. 文本分割(Splitting):文本分割器把 Documents 切分为指定大小的块。 3. 存储:涉及将切分好的文档块进行嵌入(Embedding)转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. Output(输出):把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 三、本地知识库搭建步骤 如果想要对知识库进行更加灵活的掌控,需要一个额外的软件:AnythingLLM。 1. 安装 AnythingLLM 安装地址:https://useanything.com/download 安装完成后,会进入到其配置页面,主要分为三步: 第一步:选择大模型 第二步:选择文本嵌入模型 第三步:选择向量数据库 2. 构建本地知识库 AnythingLLM 中有一个 Workspace 的概念,可以创建自己独有的 Workspace 跟其他的项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式。AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 测试对话:当上述配置完成之后,就可以跟大模型进行对话了。 四、写在最后 “看十遍不如实操一遍,实操十遍不如分享一遍”。如果对 AI Agent 技术感兴趣,可以联系作者或者加作者的免费知识星球(备注 AGI 知识库)。
2025-01-22
如何搭建定制知识库
以下是关于如何搭建定制知识库的相关内容: 要搭建基于 GPT API 的定制化知识库,需要给 GPT 输入定制化的知识。但 GPT3.5(即当前免费版的 ChatGPT)一次交互支持的 Token 数量有限,约 4096 个,相当于 3000 个单词或 2300 个汉字,容量对于多数领域知识不够。为处理大量领域知识,OpenAI 提供了 embedding API 解决方案,可参考 OpenAI embedding documents。 embeddings 是浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。向量是用一串数字表示大小和方向的量,在计算机科学和数据科学中通常用列表表示。向量之间的距离是度量相似性的方法,常见的如欧几里得距离。在 OpenAI 词嵌入中,靠近的向量词语在语义上相似。 LlamaIndex 是更高一层 LangChain 的抽象,之前叫 GPT Index。之前的文章中的例子使用了 LlamaIndex 包,它简化了 LangChain 对文本分割和查询的接口,并提供了更丰富的 Data Connector。LlamaIndex 只针对 GPT Model 做 Index,而 LangChain 可对接多个 LLMs,可扩展性更强。参考 https://gptindex.readthedocs.io/en/latest/ 在基于大模型+知识库的 Code Review 实践中,对于自定义知识库飞书文档(自定义),没有格式要求,能看懂正确代码即可。可直接使用 LangChain 提供的文档加载类,对有权限的飞书文档进行获取,使用 CharacterTextSplitter/RecursiveCharacterTextSplitter 将文本分割成固定长度的块(chunks),方法有两个主要参数:chunk_size 控制每个块的长度,如设置为 1024,则每个块包含 1024 个字符;chunk_overlap 控制相邻两个块之间的重叠长度,如设置为 128,则每个块会与相邻块重叠 128 个字符。 因为大模型有足够多的数据,想让大模型按要求执行就需要用到“Prompt 提示词”。 最近各家大厂接连放大招,AI 技术和应用突飞猛进,GPT4 接口已支持最大 32K 输入,AI 的开发和使用门槛会越来越低。垂直领域知识库的搭建和优化可能更多是业务问题,而非技术问题。
2025-01-22
如何搭建私人知识库
搭建私人知识库可以参考以下方法: 1. 基于 GPT 搭建: 给 GPT 输入(投喂)定制化的知识,但 GPT3.5(即当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字,容量对于绝大多数领域知识不够。 OpenAI 提供了 embedding API 解决方案,embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。 将大文本拆分成若干个小文本块(chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,在一个地方(向量储存库)中保存这些 embeddings 向量和文本块,当用户提出问题时,将问题先通过 embeddings API 转换成问题向量,然后与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的 prompt(问题/提示词),发送给 GPT API。 2. 本地部署大模型搭建: 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用,在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 RAG 的应用包括文档加载(从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器)、文本分割(把 Documents 切分为指定大小的块)、存储(将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库)、检索(通过某种检索算法找到与输入问题相似的嵌入片)、Output(把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案)。 文本加载器就是将用户提供的文本加载到内存中,便于进行后续的处理。
2025-01-22