Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

物流方面的知识用哪方面的AI好?

Answer

在物流方面,以下几种 AI 应用较为有益:

  1. 路线优化:AI 可用于优化物流路线,降低运输成本。
  2. 配送计划优化:帮助制定更高效的配送计划。
  3. 无人机送货:利用 AI 实现无人机送货,将货物快速送达偏远地区。

需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:请问 AI 有哪些应用场景?

[title]问:请问AI有哪些应用场景?自动驾驶:AI可以用于开发自动驾驶汽车,提高交通安全性和效率。交通管理:AI可以用于优化交通信号灯和交通流量,缓解交通拥堵。物流和配送:AI可以用于优化物流路线和配送计划,降低运输成本。无人机送货:AI可以用于无人机送货,将货物快速送达偏远地区。6.其他应用场景:教育:AI可以用于个性化学习,为每个学生提供定制化的学习体验。农业:AI可以用于分析农田数据,提高农作物的产量和质量。娱乐:AI可以用于开发虚拟现实和增强现实体验。能源:AI可以用于优化能源的使用,提高能源效率。人工智能的应用场景还在不断扩展,未来人工智能将对我们的生活产生更加深远的影响。内容由AI大模型生成,请仔细甄别

Others are asking
ai写毕业论文
使用 AI 写毕业论文需要注意以下几点: 1. 虽然可以向 LLM 寻求写作建议甚至直接要求其帮忙写论文,但这并非道德的使用方式。 2. 论文写作领域中,AI 技术提供了多方面的辅助,包括文献搜索、内容生成、语言润色和数据分析等。常用的工具和平台有: 文献管理和搜索:Zotero 可自动提取文献信息,Semantic Scholar 是 AI 驱动的学术搜索引擎。 内容生成和辅助写作:Grammarly 提供文本校对等,Quillbot 可重写和摘要。 研究和数据分析:Google Colab 支持 AI 和机器学习研究,Knitro 用于数学建模和优化。 论文结构和格式:LaTeX 结合自动化和模板处理格式,Overleaf 是在线 LaTeX 编辑器。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 检测抄袭。 3. AI 文章排版工具方面,有以下选择: Grammarly 不仅检查语法拼写,还能改进排版风格。 QuillBot 可改进文本清晰度和流畅性。 Latex 常用于学术论文排版,有 AI 辅助的编辑器和插件。 PandaDoc 是文档自动化平台。 Wordtune 是 AI 写作助手。 Overleaf 是在线 Latex 编辑器,适合学术写作。 选择工具时应根据文档类型、出版标准和个人偏好来决定。对于学术论文,Latex 和 Overleaf 受欢迎;一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。但使用时要结合自身写作风格和需求,并仔细甄别内容。
2025-02-26
如何生成稳定的AI视频
以下是关于生成稳定的 AI 视频的相关信息: 工具推荐: Runway: 网址:https://app.runwayml.com/videotools/ 官方使用教程:https://academy.runwayml.com/ 知识库详细教程: 特点:支持文生视频、图生视频、视频生视频;文生视频支持正向提示词、风格选择、运镜控制、运动强度控制、运动笔刷,支持多种尺寸,可设置种子值;生成好的视频可以延长时间,默认生成 4s 的视频;使用英文提示词。 Stable video: 网址:https://www.stablevideo.com/generate 知识库详细教程: 特点:支持文生视频、图生视频,仅英文;图生视频不可写 prompt,提供多种镜头控制;文生视频先生成 4 张图片,选择其中一张图片以后再继续生成视频。 技术差异: 代表产品如 Runway,在端到端视频生成中,涉及的技术包括 GAN 生成对抗网络、VAE 变分自编码器和 Transformer 自注意力机制。 GAN 生成对抗网络:是一种无监督的生成模型框架,能生成视觉逼真度高的视频,但控制难度大、时序建模较弱。 VAE 变分自编码器:可以学习数据分布,像压缩和解压文件一样重建视频数据,能根据条件输入控制生成过程,但质量较 GAN 略低。 GAN、VAE 生成视频速度快,但存在生成质量和分辨率较低、长度短、控制能力弱的缺点。 Transformer 自注意力机制:通过学习视频帧之间的关系,理解视频的长期时间变化和动作过程,对长视频建模更好,时序建模能力强,可实现细粒度语义控制,但计算量大。 当前面临的问题及解决方案: 当前仍面临生成时间长、视频质量不稳定、生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。解决方案包括使用渐进生成、增强时序一致性的模型等方法,上述的补帧算法、视频完善策略也可在一定程度上缓解问题。 制作技巧: 在镜头衔接上要写运镜提示词,描述多种运镜方式,否则画面会乱变。在做视频时要不断尝试参数。
2025-02-26
AI陪伴有什么好的产品
以下是一些 AI 陪伴的好产品: 1. Character.ai:这是一个 AI 虚拟陪伴平台,用户能与数百个 AI 驱动的角色交流,还可创建自己的角色并赋予其各种特性。 2. Replika:一款 AI 虚拟陪伴应用,用户可设计理想伴侣,其会存储记忆并在未来对话中参考,甚至能发送照片。 3. Talkie:主打情感路线的 AI 虚拟陪伴应用,设计有大量 npc,游戏和休闲娱乐体验感强,每个 npc 都有自己的剧情体系,交流中会触发抽取卡牌机会。 AI 陪伴已进入成长爆发期,可能看起来是小众市场,但实际上已成为生成式 AI 主流应用场景之一。网页端和移动端数据表明其正变得越来越普及。例如,在网页端榜单上,Character.ai 领跑 AI 陪伴榜单。 陪伴应用的范畴也在迅速扩大,不仅限于“男友”“女友”概念,还涵盖友谊、指导、娱乐、医疗保健等方面。一些早期研究显示,AI 在诊断准确性和患者沟通技巧上能超越真人医生,如 Replika 聊天机器人帮助部分用户减轻了自杀念头。 移动端和网页端应用在 AI 使用类型上有明显不同。网页端产品更倾向支持内容创作和编辑的复杂工作流程,如 ElevenLabs、Leonardo、Gamma 等。移动端应用更倾向通用型助手,不少模仿了 ChatGPT。
2025-02-26
AI基础
以下是关于 AI 基础的全面介绍: 一、AI 背景知识 1. 基础理论:人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:简介强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习资源和方法 1. 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。特别推荐李宏毅老师的课程。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 七、书籍推荐 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让你系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。
2025-02-26
普通人怎么学习AI
普通人学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 此外,还可以参考以下方法: 1. 万能公式法:问 AI【一个(xxx 职业)需要具备哪些知识?】,AI 就可给出知识框架,然后根据知识框架每一个小点去问,就能让 AI 工具帮你指数级深度思考。 2. 寻找优质信息源:像没有技术背景的普通人,学习或了解 AI 最好的信息源在「即刻」App 的“”等免费圈子里。 3. 信息爆炸之做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 对于纯 AI 小白,如果还在观望 AI 不知从何入手,可以参考《雪梅 May 的 AI 学习日记》。其学习模式是输入→模仿→自发创造。学习资源免费开源,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。
2025-02-26
AI基础
以下是关于 AI 基础的知识: 一、背景知识 了解人工智能、机器学习、深度学习的定义及其之间的关系,简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:了解强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习建议 1. 了解 AI 基本概念:阅读相关部分,熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 2. 开始学习之旅:在入门课程中学习生成式 AI 等基础知识,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习。 3. 选择感兴趣模块深入:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,使用各种产品创作作品,并分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等互动,了解工作原理和交互方式。 此外,为您推荐三本神经科学相关的基础学科书籍: 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,系统了解认知神经科学的多方面内容。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让您系统了解神经元的相关知识。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域的名著,涵盖神经科学的方方面面。
2025-02-26
我是一名AI工具使用小白,渴望快速掌握AI工具,在电子表格制作、ppt制作、公文写作、文案写作等方面提升应用能力,请问应该学习哪些入门课程。
以下是一些适合您入门学习的 AI 课程: 1. 工具入门篇(AI Tools): 数据工具多维表格小白之旅:适合 Excel 重度使用者、手动数据处理使用者、文件工作者。通过表格+AI 进行信息整理、提效、打标签,满足 80%数据处理需求。 文章链接: 视频链接: 2. 工具入门篇(AI Code): 编程工具Cursor 的小白试用反馈:适合 0 编程经验、觉得编程离我们很遥远的小白。通过 AI 工具对编程祛魅,降低技术壁垒。 文章链接: 3. 工具入门篇(AI Music): 音乐工具Suno 的小白探索笔记:适合 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。AI 赋能音乐创作,无需乐理知识即可参与音乐制作。 文章链接: 此外,还有以下相关内容供您参考: 1. 关于 AI 视频制作的交流与答疑: 视频流表格制作:在知识库的 AI 视频专栏中有相关教程和模板。 Copy UI 社区:微推有专门研究 Copy UI 的社区,相关内容有趣但本次未展开讲。 SD 类图片作用:国内大厂很卷,一般需求吉梦等产品可完成,特殊精细要求才用 SD,不了解可在微推加 AI 会话中找。 图片视角转移:使用 P 模型,上传图片并告知镜头移动方向和相关内容。 PNG 与背景融合:Recraft 产品目前不太擅长 PNG 与背景的特别好的融合,可通过合并方式处理。 保证文字不崩:使用吉梦的 2.1 模型效果较好。 新手 AI 视频制作:纯小白参与项目时,项目组会做好部分准备工作,上手难度不高,专注出图和出视频,用好相关技术。 关于利用 AI 工具创作北京宣传片相关问题的探讨。 AI 工具使用思路:对于如何利用 AI 工具创作,建议直接上手尝试,通过试错和与 AI 交流获取反馈,遇到具体问题再向社区请教。 素材处理方法:若有故宫相关照片素材,可采用导入参考图生图、让实拍素材动起来等方式,还可通过抠图、融图等操作将素材与虚拟背景融合。 创作需先构思:创作时不能仅考虑如何连接已有素材,而应先构思剧本和想要表达的内容,再合理运用素材。 2. 入门工具推荐: Kimi 智能助手:Chatgpt 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。不用科学🕸️、不用付费、支持实时联网。是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品。能一次搜索几十个数据来源,无广告,能定向指定搜索源。 PC 端: 移动端 Android/ios: 您还可以通过「飞书」这款工具,浏览其社区的精选课程、先进客户实践。下载飞书:
2025-02-26
那普通人要研发机器狗从哪方面开始学习?
对于普通人想要研发机器狗,以下这些 AI 相关的基础知识是很有帮助的: 1. 了解 AI 的概念:AI 即人工智能,是让计算机模拟人类智能的技术。 2. 掌握机器学习:这是电脑找规律学习的方式,包括监督学习、无监督学习和强化学习。 监督学习:使用有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:处理没有标签的数据,让算法自主发现规律,例如聚类任务,像将一堆新闻文章按主题或内容特征分组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:这是一种参照人脑构建神经网络和神经元的方法,由于有很多层所以称为深度。神经网络可用于监督学习、无监督学习和强化学习。 4. 熟悉生成式 AI:能够生成文本、图片、音频、视频等内容形式。 5. 了解 LLM(大语言模型):对于生成式 AI,生成图像的扩散模型不属于大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解,像上下文理解、情感分析、文本分类等,但不太擅长文本生成。 6. 关注技术里程碑:例如 2017 年 6 月谷歌团队发表的论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。 这些基础知识能为您研发机器狗提供理论支持和技术思路。
2025-02-26
当前DEEPSEEK发展壮大情况下,个人应具备AI方面什么能力避免被时代淘汰,如何提升这些能力,细化具体可执行的步奏
在 DEEPSEEK 发展壮大的情况下,个人为避免被时代淘汰,应具备以下 AI 方面的能力并通过以下具体可执行的步骤来提升: 1. 善用工具: 历史表明,使用工具的人通常表现更优,人类发展就是工具演化的过程。 不会用 AI 工具自动化重复性任务,可能面临被淘汰,应适应这种转变。 因自动化效率提升,可腾出时间进行高层次思考。 具体步骤:积极学习和掌握 AI 工具的使用方法,将重复性工作交给工具处理,培养利用工具提升效率的习惯。 2. 抽象与整合: “大语言模型”压缩了大量知识,可快速回放,无需直接学习所有知识细节,要在更高层次学习并抽象更多细节。 AI 能使人类更易学习技能或知识,技术进步使“整合”而非专业化成为可能,人们在更高层次工作,为 AI 提供方向并作选择。 具体步骤:锻炼高层次的思维能力,学会从复杂信息中提炼关键要点,不断提升整合能力,将精力集中于制定“策略”,把执行细节交给自动化系统。
2025-02-24
在教育方面怎么应用
以下是 AI 在教育方面的应用: 1. 定制和动态化教育材料:视频扩散模型可将文本描述或课程大纲转化为针对个别学习者的特定风格和兴趣量身定制的动态、引人入胜的视频内容,图像到视频编辑技术能将静态教育资产转换为互动视频,支持多种学习偏好,增加学生参与度,使复杂概念更易于理解和吸引人。 2. 个性化教学:个性化学习平台通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。 3. 自动评估:利用自然语言处理技术,机器可自动批改学生的作文和开放性答案题,减轻教师批改负担,提高评估效率和一致性。 4. 智能辅助教学:AI 教师能引导学生通过对话学习,解答疑问并提供即时反馈,创建定制的学习内容,提高学习动机,加深知识掌握。 5. 虚拟现实和增强现实教学:学生可通过 VR 头盔进入虚拟实验室进行实验操作,立即得到 AI 系统反馈,无需昂贵设备或专业环境。 6. 数字教师和数字陪伴:人工智能生成的角色可作为数字教师,如让历史人物授课,实现一对一辅导,提供定制化学习计划和资源,还可作为数字陪伴促进儿童成长。
2025-02-23
我是一个文科生,并且是AI方面的小白,请问如何在这学习AI
对于文科背景且是 AI 小白的您,以下是学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,以下是一些关于 AI 技术原理和框架的通俗易懂的内容: 1. 视频一主要回答了什么是 AI 大模型,原理是什么。 生成式 AI 生成的内容,叫做 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归。无监督学习是学习的数据没有标签,算法自主发现规律,经典任务包括聚类。强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法。神经网络可以用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。对于生成式 AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-02-22
你能回答关于AI以外的事情吗?有关于AI的方面你又知道多少。
以下是关于 AI 的相关知识: 1. 基础方面: 背景知识:包括人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 2. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 3. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 4. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 关于 WaytoAGI 网站,它提供以下功能: 1. 和 AI 知识库对话:您可以在这里问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,可以复制到 AI 对话网站来使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 请注意,我只能为您提供与 AI 相关的知识和指导,对于其他非 AI 领域的内容,我的知识库中没有相关信息。
2025-02-16
物流公司信息系统管理员给同事讲解大模型入门级使用,帮忙推荐一些经验
以下是为物流公司信息系统管理员推荐的大模型入门经验: 一、什么是大模型 通俗来讲,大模型是通过输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 可以用“上学参加工作”这件事来类比大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在大模型中,Token 被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与大模型可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表。 二、数字化与 Embedding 数字化便于计算机处理,但为了让计算机理解 Token 之间的联系,还需要把 Token 表示成稠密矩阵向量,这个过程称之为 embedding。常见的算法有: 1. 基于统计: Word2Vec,通过上下文统计信息学习词向量。 GloVe,基于词共现统计信息学习词向量。 2. 基于深度网络: CNN,使用卷积网络获得图像或文本向量。 RNN/LSTM,利用序列模型获得文本向量。 3. 基于神经网络: BERT,基于 Transformer 和掩码语言建模(Masked LM)进行词向量预训练。 Doc2Vec,使用神经网络获得文本序列的向量。 以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 大模型的“大”,指的是用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。 参考:
2025-02-11
AI如何运用到集装箱物流行业?
AI 在集装箱物流行业有以下应用方式: 1. 物流路线优化:利用 AI 分析各种数据,如货物数量、目的地、运输条件等,优化物流路线,降低运输成本。 2. 配送计划制定:通过 AI 制定更合理的配送计划,提高配送效率和准确性。 3. 集装箱管理:借助数据分析和机器学习技术,优化集装箱的分配和使用,提高利用率。 4. 预测需求:利用 AI 预测货物的需求,提前做好准备,减少库存和延误。 5. 风险评估:分析潜在的风险因素,如天气变化、交通拥堵等,提前制定应对策略。 例如,像丰巢快递柜管理系统利用 AI 和物联网技术管理柜子的使用情况,提高快递配送效率。未来,AI 在集装箱物流行业的应用还将不断拓展和深化。
2025-01-24
关于物流在人工智能配送方面的知识
在物流配送领域,人工智能有以下应用: 优化物流路线和配送计划,降低运输成本。 实现无人机送货,将货物快速送达偏远地区。 例如: 美团外卖配送系统利用数据分析和机器学习优化外卖小哥的配送路线,会根据订单位置、餐厅出餐速度等因素,在高峰期自动调整配送路线,确保外卖及时送达。 猎聘 APP 作为 AI 招聘求职平台,利用数据分析和自然语言处理技术,连接求职者和招聘企业,促进就业。 链家 APP 作为 AI 房地产交易平台,利用数据分析和自然语言处理,为买卖双方提供安全、高效的交易平台。 游戏开发工具 Unity 利用图像生成和机器学习技术,为游戏开发者自动生成游戏关卡,提高开发效率。
2024-12-16
你了解哪儿些大模型在电商行业供应链物流领域的应用,如果能举例阿里、淘宝、抖音、京东等涉及到电商的公司进行说明就更好了
目前在电商行业供应链物流领域,一些大模型的应用还处于不断发展和探索的阶段。 阿里巴巴:可能利用其强大的技术能力和数据优势,通过大模型优化物流路径规划、库存管理和订单预测等方面,提高物流效率和降低成本。 淘宝:或许借助大模型来分析消费者的购买行为和偏好,从而更精准地进行商品推荐,并优化物流配送的调度。 抖音:可能运用大模型对用户的兴趣和行为进行深度挖掘,以实现更高效的商品匹配和物流配送安排。 京东:有可能利用大模型改进仓储管理、物流配送的智能调度,以及预测商品的需求和销售趋势。 但需要注意的是,具体的应用情况和效果会受到多种因素的影响,包括数据质量、算法优化、业务场景的复杂性等。
2024-09-25
AI如何根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率
AI技术在供应链管理中的应用可以大大提高采购计划、库存预测和物流优化的效率。以下是如何利用AI根据历史数据和市场变化自动生成这些内容的详细步骤: 1. 数据收集和预处理 首先,需要收集大量的历史数据和实时市场数据。这些数据可以来自企业内部系统(如ERP、WMS)和外部数据源(如市场情报、经济指标)。 数据类型: 历史销售数据:包括销售数量、时间、地点等。 库存数据:当前库存水平、历史库存变化、仓储信息。 采购数据:采购订单、供应商信息、采购周期等。 市场数据:市场需求预测、经济指标、季节性变化等。 数据预处理: 数据清洗:处理缺失值、异常值和重复数据。 数据整合:将来自不同来源的数据整合成统一格式。 特征工程:提取关键特征,如时间序列特征、季节性特征等。 2. 采购计划自动生成 利用AI模型分析历史采购和销售数据,结合市场变化,生成优化的采购计划。 方法: 时间序列分析:使用ARIMA、Prophet等模型预测未来的需求量。 机器学习算法:如随机森林、XGBoost,通过学习历史数据中的模式来预测需求。 深度学习:如LSTM、GRU,适合处理复杂的时间序列数据。 具体步骤: 1. 需求预测:预测未来一段时间内的产品需求量。 2. 供应商选择和评估:根据历史绩效和市场条件,选择最佳供应商。 3. 采购量确定:结合库存水平、需求预测和供应商能力,确定每个产品的采购量。 4. 优化采购时间:利用AI优化采购时间,以最低成本满足需求。 3. 库存预测 利用AI技术进行库存预测,确保在最低库存水平下满足需求,减少库存持有成本和缺货风险。 方法: 库存优化模型:如Economic Order Quantity 。 库存水平预测:基于历史数据和需求预测,计算安全库存和再订货点。 机器学习算法:如支持向量机(SVM)、KNN,通过学习历史库存变化和需求波动,预测未来库存需求。 具体步骤: 1. 需求预测:预测未来的产品需求。 2. 库存水平计算:根据需求预测、订单交付时间、当前库存水平,计算安全库存和再订货点。 3. 库存补货策略:制定补货策略,确定何时和多少补货。 4. 物流优化 AI技术可以优化物流路径、运输方式和仓储布局,降低物流成本,提高运输效率。 方法: 路线优化:利用优化算法(如遗传算法、蚁群算法)优化运输路线,减少运输成本和时间。 运输方式选择:根据货物类型、运输距离、成本等因素,选择最佳的运输方式(如海运、空运、陆运)。 仓储布局优化:利用AI优化仓库布局,提高仓储效率和利用率。 具体步骤: 1. 运输需求分析:分析需求预测和库存计划,确定运输需求。 2. 路线规划:利用优化算法规划最佳运输路线。 3. 运输方式选择:根据成本和时间要求,选择合适的运输方式。 4. 仓储优化:利用AI优化仓库布局和操作,提高仓储效率。 案例示例:使用AI进行供应链优化 以下是一个使用AI进行供应链优化的具体示例: 需求预测: 1. 收集过去两年的销售数据和市场数据。 2. 使用LSTM模型对未来6个月的需求进行预测。 3. 将预测结果与当前库存水平进行比较,确定需要补货的产品和数量。 采购计划: 1. 根据需求预测结果,使用EOQ模型计算每个产品的最优采购量。 2. 结合供应商历史绩效数据,选择最佳供应商并确定采购时间。 库存管理: 1. 使用支持向量机(SVM)模型预测未来的库存水平。 2. 根据预测结果调整安全库存和再订货点,制定补货计划。 物流优化: 1. 利用蚁群算法优化运输路线,降低运输成本。 2. 根据货物类型和运输距离选择最佳运输方式。 3. 利用AI优化仓库布局,提高货物存取效率。 总结 通过利用AI技术,企业可以实现自动化和智能化的采购计划、库存预测和物流优化。这不仅可以提高供应链管理的效率,还能降低成本,减少库存风险,提升客户满意度。为了实施这些AI技术,企业需要投入时间和资源进行数据收集、模型开发和系统集成,同时需要培养数据分析和AI技术的人才。
2024-05-30
我应该如何学习ai相关知识
以下是关于如何学习 AI 相关知识的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、对于不会代码的情况 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 七、中学生学习 AI 的建议 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始学习,这些是 AI 和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-26
什么AI可以帮我将知识点形成思维导图
以下是一些可以帮助您将知识点形成思维导图的 AI 工具和方法: 1. 6 月 11 日 AI 秒学团队的方法: 思维导图模块的应用缘由:从新闻到旧闻,拒绝缪闻,追本溯源;由点及面,广度与深度兼顾,培养小朋友的探究意识与能力;凝练提升,形成强大的知识网络,助力小朋友研究性思维、统合型能力的培养。 具体操作:通过新闻涉及的主题词/关键词,或是小朋友对新闻中的感兴趣点,提取背后的知识点;调用“generateTreeMind”插件,创建一个思维导图,清晰展示知识点的起源、发展和相互关系,凝练知识网络;通过“快捷指令”提醒小朋友,可以使用此功能。 初步尝试放在聊天机器人的工作流里,存在调用比较慢且不能顾到全局的问题。后期调整为直接调用插件+提示词直接 cue 到,Precess on 与树状图相比,后者可以直接出图,点击后可以直达网站,进行二次修改。 实操展示包括新闻激发、提炼关键词/主题词/兴趣点,并发出指令“思维导图”。 2. kimi: kimi 是月之暗面公司推出的类似 ChatGPT 的大模型聊天机器人,支持超长的上下文,能输入长达 20 万字。 可以让 kimi 梳理全书,但目前 kimi 还不能直接生成思维导图,需要借助 MarkMap 来得到这本书内容的思维导图。 对于具体的章节或者知识点,可以让 kimi 展开讲解。 3. 危柯宇的方法: 日常活动文案输出(读书社活动,AI 复核型玩法“高阶”,依托传音智库+飞书妙记+在线思维导图 Markmap)。 方法一:一键知识图谱。用 kimi chat 让 AI 拆解这本书的三级章节并按照 markdown 产出内容,然后复制 AI 内容粘贴到在线思维导图 Markmap 中,一键生成思维导图,还可以自定义微调内容,并免费导出图片。 方法二:推导知识图谱(可以参考下面 prompt 自己构建)。
2025-02-26
aigc智能体技能提升 ,需要掌握哪些知识
要提升 AIGC 智能体技能,需要掌握以下知识: 1. 对 AI 及提示词工程有清晰的理解。 2. 掌握 Python 语言,以便能搓更多智能体。 3. 了解向量数据库,如 Milvus 等。 4. 熟悉 Web 框架,如 FastAPI 框架,掌握流传输、负载限流等相关技术,实现与前端或业务后端的接口对接。 5. 学会提出具体且有详细背景信息的问题,以从 ChatGPT 等模型获得更精准的答案。 6. 不断积累行业领域知识,达到能较好操纵 AI 完成复杂任务的程度。
2025-02-26
什么工具可以帮忙总结课程视频的知识点
以下是一些可以帮忙总结课程视频知识点的工具: 1. 剪映:只需提供文案,能够自动配图配音,帮助优化线上课程,为微课总结内容和知识点。 2. BibiGPT:支持小红书、B 站等网站视频的归纳总结,还可以提问互动,答案会附上对应的视频节点,是融合课程备课的好助手,网址为 https://bibigpt.co/ 。 3. 飞书妙记:可以先从视频网站上提取出视频的音频部分,利用其免费语音转文字功能将音频转换成文本,下载文本后上传至其他工具进行总结。 此外,可汗学院出品的 AI Tutor Khanmigo 也具有一定的辅助作用,它可以为学生总结视频内容,并以苏格拉底式教学法引导学生思考和学习。
2025-02-26
请帮我梳理WaytoAGI知识库所有信息的目录
以下是 WaytoAGI 知识库的信息目录: 1. 通往 AGI 之路知识库使用指南 智能纪要 总结 关于 AI 知识库使用及 AIPO 活动的介绍 AIPO 线下活动及 AI 相关探讨 way to AGI 社区活动与知识库介绍 关于 AI 知识库及学习路径的介绍 时代杂志评选的领军人物 AI 相关名词解释 知识库的信息来源 社区共创项目 学习路径 经典必读文章 初学者入门推荐 历史脉络类资料 2. 介绍说明 AJ,产品经理,「通往 AGI 之路」WaytoAGI 开源知识库的创建者 项目的起源和社群开发的初衷 社区介绍 WaytoAGI 是一个致力于人工智能学习的中文知识库和社区平台,为学习者提供系统全面的 AI 学习路径,覆盖从基础概念到实际应用的各个方面。 全球领先的 AI 开源社区,最新最全面的 AI 资源,丰富多样的技术活动,100+进行中的活动,4000+学习资源,1500000+社区成员。 知识库与社区平台:汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯。 学习资源:提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 实践活动:社区定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 开放共享:引领并推广开放共享的知识体系,倡导共学共创等形式,孵化了 AI 春晚、离谱村等大型共创项目。 用户基础:在没有任何推广的情况下,一年时间已有超过 100 万用户和超千万次的访问量。 目标与愿景:让每个人的学习过程少走弯路,让更多的人因 AI 而强大。 目前合作过的公司/产品:阿里云,通义千问,淘宝,智谱,支付宝,豆包,火山引擎,marscode,coze,堆友,即梦,可灵,MiniMax 海螺 AI,阶跃星辰,百度,Kimi,吐司,liblib,华硕,美团,美的,360,伊利,魔搭,央视频,Civitai,Openart,Tripo3D,青椒云等 3. 「用 AI 一起搞钱搞事搞脑子他们在线下密谋」 WaytoAGI 是啥? 是一个专门讲人工智能的“百科全书”,从基础到高级,还有实用的 AI 工具推荐、案例分享、行业最新动态,用飞书文档整理得清楚。 对我有啥用? 对 AI 一窍不通,从零开始教。 懂点 AI,提供实用工具和案例。 怕错过 AI 最新动态,帮你整理资讯。 想用 AI 赚钱或创业,告诉你相关工具和方法。 不想浪费时间找资源,帮你筛选推荐。
2025-02-26
知识库中关于 deepseek 有哪些文档
以下是关于 DeepSeek 的相关文档和内容: 章节: 知识点: 申请: 接入: 此外,还有以下相关内容: 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日的智能纪要,包括关于 DP 模型的使用分享、音系学和与大模型互动的分享、DeepSeek 的介绍与活动预告等。 DP 模型的功能、使用优势、存在问题、审核方法、使用建议、使用场景和案例展示。 音系学研究、大模型取队名。 DeepSeek 文档分享、使用介绍、未来活动预告。
2025-02-25