Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你现在是一个工作流方面的专家 我需要你用最简单的方法让我这个小白理解工作流是怎么工作的

Answer

工作流是一种通过可视化方式对插件、大语言模型、代码块等功能进行组合,以实现复杂、稳定业务流程编排的方法。

工作流由多个节点构成,节点是基本单元,包括大语言模型 LLM、自定义代码、判断逻辑等。默认包含 Start 节点(工作起始,可包含用户输入信息)和 End 节点(工作末尾,返回运行结果)。

不同节点可能需要不同输入参数,分为引用前面节点的参数值和自定义的参数值。扣子提供了基础节点,还可添加插件节点或其他工作流。

例如,在角色设计变体生成工作流中,在不改变角色某些特定样式的基础上仅改变设计,能防止提示词外流,还可使用图片引导特定部分的风格和样式。

在智能体“竖起耳朵听”的编排中,插件像工具箱,工作流像可视化拼图游戏,将各种功能组合,满足多步骤、高要求的任务。

Content generated by AI large model, please carefully verify (powered by aily)

References

工作流介绍

工作流支持通过可视化的方式,对插件、大语言模型、代码块等功能进行组合,从而实现复杂、稳定的业务流程编排,例如旅行规划、报告分析等。当目标任务场景包含较多的步骤,且对输出结果的准确性、格式有严格要求时,适合配置工作流来实现。[heading1]功能概述[content]工作流由多个节点构成,节点是组成工作流的基本单元。例如,大语言模型LLM、自定义代码、判断逻辑等节点。工作流默认包含了Start节点和End节点。Start节点是工作流的起始节点,可以包含用户输入信息。End节点是工作流的末尾节点,用于返回工作流的运行结果。不同节点可能需要不同的输入参数,输入参数分为引用和输入两类。引用是指引用前面节点的参数值、输入则是支持设定自定义的参数值。扣子为你提供了以下基础节点,除此之外,你还可以添加插件节点或其他工作流。|节点名称|描述||-|-||LLM|大语言模型节点。使用输入参数和提示词生成处理结果。||Code|代码节点。通过IDE编写代码处理输入参数,并返回输出值。||Knowledge|知识库节点。根据输入参数从关联知识库中召回数据,并返回。||Condition|if-else逻辑节点。用于设计工作流内的分支流程,满足设置条件则运行如果分支,否则运行否则分支。|

CLS- workshop工作流

工作流OpenArt:https://openart.ai/workflows/emperor_rare_28/workflow-for-generating-variant-of-character-design/5jOoeySLayaIevahRZhT工作流简介:1.用于生成角色设计时在不改变角色的剪影、服装和发型样式(如这个角色必须要有特定形状的小臂甲、必须要有大的双马尾发型等)的基础上仅改变设计;2.可防止提示词外流,通过为特定区域绘制蒙版,可以将对于特定区域的描述仅作用于该区域,不影响其他部分(比如说我们可能会遇到这样的情况:写了皮靴,丝质长裙,结果裙子也变成了皮的;只写了需要小臂甲,结果生成了全身的铠甲,此工作流可避免此类情况发生);3.可使用图片引导特定部分的风格和样式(当你不知道如何描述你想添加的元素时,可以通过添加目标效果的图片来引导特定元素的生成)。工作流的具体的使用方法可见工作流中的注释节点中的内容。工作流json:[角色设计变体生成工作流(防提示词外流)-0531.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/GuUsb3d6EooIi5x3vo1c18qPnJb?allow_redirect=1)工作流截图:成品效果:

我用扣子做一个简单的智能体——竖起耳朵听

👉插件插件就像是一个工具箱,里面可以放一个或者好几个工具,我们把这些工具叫做API。目前扣子这个平台上已经有很多不同类型的插件了,比如可以看新闻、规划旅行、提高办公效率、理解图片内容的API,还有一些很厉害的能处理多种任务的模型。用了这些插件,我们创建的智能体就能变得更厉害,比如给它加个新闻搜索的插件,它就能帮你找新闻了。要是扣子上现有的插件没有我们想要的,我们还可以自己动手做一个插件,把我们需要的API加进去。在我的智能体里我加了如下插件:👉工作流工作流就像是一个可视化的拼图游戏,我们可以把插件、大语言模型、代码块这些功能像拼图一样组合在一起,这样就能创造出复杂但又很稳定的业务流程。当我们面对的任务有很多步骤,而且对最后的结果要求很严格,比如结果要准确无误、格式也要对,那这时候用工作流来帮忙就最合适了。😎简单来说,工作流是由很多个小块块(节点)组成的,这些小块块就是工作流的基本单元。比如,大语言模型LLM、你自己写的代码、做判断的逻辑,都可以是小块块。工作流一开始和结束都有特别的小块块。开始的那个小块块就像是工作的起点,它可以包含你输入的信息。结束的那个小块块就像是工作的终点,它会告诉你工作流运行的结果是什么。不同的小块块可能需要不同的信息才能工作,这些信息有两种:一种是引用前面小块块给出的信息,另一种是你可以自己设定的信息。在竖起耳朵听的智能体里,我也用到了5个小块块,可以回答带有图片口语的结果,使回答更好。😎👉知识库

Others are asking
想要入行ai产品经理,要学的东西很多,还有本职工作,很焦虑,怎么办
如果您想要入行 AI 产品经理但感到焦虑,以下是一些建议: 1. 合理规划时间:在本职工作之余,制定一个合理的学习计划,将学习 AI 产品经理所需的知识和技能分解为小目标,逐步实现。 2. 明确学习重点:根据行业需求,例如参考 AI 提示词工程师的岗位技能要求,包括本科及以上学历,计算机科学、人工智能、机器学习相关专业背景;熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验;熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理;负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法;了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等);对数据驱动的决策有深入的理解,能够基于数据分析做出决策;具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案;对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注;具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成;具有一定的编程基础,熟练使用 Python、Git 等工具。明确自己需要重点学习和提升的方面。 3. 掌握算法知识:理解产品核心技术,了解基本的机器学习算法原理,有助于更好地理解 AI 产品的核心技术,从而做出更合理的产品决策;掌握一定的算法知识,可以帮助与开发团队进行更有效的沟通,减少信息不对称带来的误解;在产品规划阶段,能够评估某些功能的技术可行性;了解算法前沿可以帮助更好地把握产品的未来发展方向;了解算法可以帮助发现产品的独特优势,提出创新的产品特性,从而提升产品的竞争力;掌握相关知识可以提升数据分析能力。 4. 借鉴他人经验:可以参考身边 AI 产品经理的工作内容和经验,例如从 01 打造产品、完成 LLM 评测体系的搭建等。 5. 调整心态:认识到学习和成长需要时间,不要过分焦虑,保持积极的心态,逐步积累和进步。
2025-02-19
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
动漫制作中如何使用ai辅助工作
在动漫制作中使用 AI 辅助工作,大致流程如下: 1. 面临时间和金钱的双重压力,需找到适合的制作捷径。AI 目前主要是辅助工具,负责搞定图和片,其他部分仍依赖人工。 2. 效率至关重要。和视频相关的所有内容、资料都记录在飞书文档里。 3. 分工方面,有人负责前期的内容构思和脚本编写,有人主要负责图片、视频生成和视频剪辑。 4. Midjourney 提示词围绕皮克斯、迪士尼、3D 风格来写,例如:"a small white Chiense dragon,anthropomorphic,Smile with surprise,wearing a school uniform,looking at a blurry gift box in the foreground,super closeup shot,camera focus on his face,3D render,Unreal Engine,Pixar 3D style,blurry classroom scene,bright sunshinear 16:9niji 6",重点是"a small white Chiense dragon,anthropomorphic,3D render,Unreal Engine,Pixar 3D style",尺寸比例 16:9,模型选择 niji 6,其他根据需求调整。 5. 动画制作主要使用 Runway,因其控制笔刷有优势。
2025-02-18
AI带来的新工作岗位
以下是关于 AI 带来的新工作岗位的相关信息: 2023 年,AI 将会替代 4 亿 8 亿工作岗位,同时也会增加 5.55 8.90 亿新岗位。计算被替代的岗位主要是查看岗位的任务构成,其中重复性高的任务容易被替代,而灵活、非常规、创造性的岗位更难被取代。 随着生成式人工智能技术的发展,在编程、自动化任务处理和内容创作等方面展现出惊人的能力,这威胁到了一些技术岗位的存在,如系统管理员、数字营销文案撰写等。但同时也为能够适应新环境的技术工作者带来了新机遇,例如云架构师、网络架构师和企业架构师等职位,因为这些工作不仅需要技术知识,更需要人际交往、团队领导和复杂决策制定的能力。 此外,OpenAI COO 提到 AI 可能创造新工作机会。
2025-02-18
目前做设计的工作者怎么用ai赋能
对于目前做设计工作的人员,可以通过以下方式利用 AI 赋能: 1. 建立针对性的 AI 工作流:构建有效的设计工作流,提高工作效率。 2. 进行实用的模型训练:例如使用 lora 模型训练方式,生成特定形象及 KV 风格,建立包含品牌形象、风格视觉 DNA 的模型,并根据实用场景进行分类。同时,根据市场环境和消费者偏好的变化迅速调整模型,使营销内容更符合目标用户喜好。 3. 储备 AI 设计资产:包括建立和管理 AI 设计资产,沉淀相关知识、技能、工具,促进团队内部的知识积累和提升。团队成员分享设计经验和学习心得,利用参数库快速启动新项目,确保设计准确性并减少重复工作,借助工具、模版、元素提高设计效率和质量。 4. 利用 AI 整合工具平台:如“桃花源|淘宝设计 AIGC”,引入实用功能,增强设计工作的专业性和效率。 随着二次元绘画 AI 的发展和优化,对二次元设计行业影响显著: 1. 降低设计成本和提高效率,更多公司和个人能轻松创作高质量作品。 2. 为设计师提供创作灵感,但市场对大量二次元美术设计师的需求可能降低,从业者需关注行业动态,提升技能和创新能力,注重作品原创性和创新性,学会有效利用工具,提高沟通和协作能力。 在数字营销趋势中,AI 加持的创意与设计方面: 1. 现状:AI 驱动的创意工具已融入设计流程,如素材生成和高级图像编辑,设计师使用 Adobe Firefly 和 Midjourney 等工具加速视觉创作和创建符合品牌的素材。 2. 风险与挑战: 过度依赖 AI 可能导致设计同质化,失去独特创意表达,需平衡 AI 效率与原创创意输入。 设计师要不断适应新的 AI 工具和技术,持续学习保持竞争力并发挥 AI 潜力。 AI 生成的内容可能引发版权问题,需要明确法律框架解决所有权和权利问题。 3. 展望:随着 AI 技术发展,预计在实时、按需设计中发挥更大作用,未来的 AI 工具可能支持更复杂的创意任务,进一步融入创意流程的核心。
2025-02-18
小白怎样学习ai工具 熟练运用于工作生活
以下是为小白提供的学习 AI 工具并运用于工作生活的建议: 一、从菜鸟到达人的进阶之路 可以参考元子的进化史: 1. Day 1:懵懵懂懂,只会说“你好,帮我写个报告”。 2. Day 7:学会表达,比如“帮我写一份周报,重点说明项目进度”。 3. Day 14:熟练掌握,例如“我需要一份项目总结,包含数据分析和改进建议”。 4. Day 30:把常规 AI 工具都试过一遍,并选定自己要持续玩的方向,比如 AI Agent。 5. Day 60:组队参加 AI Agent 比赛并有幸得奖。 这里推荐一个社区小伙伴的 100 天 AI 之路,每天都有记载,大家可以感受一下进境: 元子的心得: 1. 不要怕问“笨”问题,但要多直接问 AI。 2. 解决一个小问题也是进步,不积跬步,无以至千里。 3. 多试多练才是王道,来社区共学,一群人走得更远。 4. 融入生活和工作才能持久,学完就用才是王道,不要纯靠意志力。 二、工作中的 AI 小帮手 1. 需要快速生成报告,AI 来帮忙。 2. 需要快速整理数据,AI 来处理。 3. 需要快速翻译文件,AI 来翻译。 4. 需要快速优化文案,AI 来优化。 三、参与制作 AI 动画短片的经验分享 在参与设计 AI 动画短片时,比如负责“刺猬菠萝”角色的图片和视频制作,即使没有相关经验,在他人指导下也能逐渐掌握基本技巧,并通过 MJ 和 RunWayAI 工具提高效率。 为了做好这件事,可以: 1. 利用 WaytoAGI 社群中的入门资料,快速了解动画制作的基本流程和技术。 2. 积极参与团队讨论,向有经验的大佬请教,多多参与「共创活动」,不仅能快速学习,还能收获伙伴。 四、AI 与生活 对于超出自己理解范围的事情,最简单的方法就是试一试。学习新东西,百闻不如一练。在面向父母的“AI 布道”活动中会发现,AI 工具虽强大,但与普通人之间存在一定距离。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。 如果想要跟元子交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-02-18
compy ui 工作流是什么意思
ComfyUI 的工作流包括以下方面: 1. 一般的 Workflow 概念:Workflow 是 ComfyUI 的节点结构及数据流运转过程。 2. 推荐的工作流网站: Openart.ai:流量较高,支持上传、下载、在线生成,免费账户有 50 个积分,加入 Discord 可再加 100 积分,开通最低每月 6 美元的套餐后每月有 5000 积分。 ComfyWorkflows 网站:支持在线运行工作流,实际下载量和访问量略少于 openart。 Flowt.ai:https://flowt.ai/community 3. FLUX 低显存运行工作流: 目的是让 FLUX 模型能在较低显存情况下运行。 分阶段处理思路: 初始生成在较低分辨率下进行以提高效率。 采用两阶段处理,先用 Flux 生成,后用 SDXL 放大,有效控制显存使用。 使用 SD 放大提升图片质量。 工作流流程: 初始图像生成(Flux):包括 UNETLoader 加载 flux1dev.sft 模型、DualCLIPLoader 加载 t5xxl 和 clip_l 模型等步骤。 初始图像预览。 图像放大和细化(SDXL):包括 CheckpointLoaderSimple 加载 SDXL 模型、UpscaleModelLoader 加载 RealESRGAN_x4.pth 用于放大等步骤。 最终图像预览。 4. 换装服饰一致性工作流: 应用场景:电商服饰行业、换装、虚拟试穿等。 整体思路: 首先生成适合服装的模特,很多时候换装效果不好是因为服装和人物不匹配,可抽卡抽到满意模特后进入第二步。 第二步进行高精度换装,先预处理拼出 mask,然后重绘 mask 区域。 模特生成:加入 Redux 模型,强度不用太高,让提示词生效。 服装高精度处理:包括 mask 的处理,使用 Flux 的 fill 模型,提示词书写格式有特定要求,Redux 权重需调整为最大。
2025-02-17
coze上的工作流是怎么运行的
Coze 上的工作流运行主要包括以下步骤: 1. 梳理工作流:明确工作流的核心,如对于类似秘塔搜索的 Bot,要清楚其主要能力,包括使用搜索引擎进行搜索、对搜索内容整理成答案、给出答案中的引用等,从而形成创建 Bot 的思路。 2. 创建工作流: 任务处理阶段:将开始节点输入的用户指令配置给模型,保证指令顺利进入大模型组件中处理。 最终阶段:将任务处理的输出内容配置到结束节点,结束节点将处理完的回复反馈给用户,完成工作流闭环。 输出节点:注意回答模式有两种选择,一是返回变量由 Bot 生成回答,适用于复杂任务;二是直接根据设定内容进行回答,适用于一般性任务。 3. 试运行工作流:目的是确保工作流中的所有节点按预期协同工作,输出结果准确无误。可能需要多次调整和优化工作流,包括检查数据流动、条件判断和最终输出是否符合预期。 4. 评估并优化 Agent 效果: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 具体操作包括试运行整个工作流,验证整体运行效果(包括响应速度、生成质量);迭代优化工作流,提升性能;在外层 bot 中封装工作流;进行外层 bot 调试;最后发布 bot。
2025-02-07
智能体与工作流是同一个概念吗
智能体和工作流不是同一个概念。 智能体是一个能够执行特定任务、具有一定自主性和智能的实体。例如,在扣子平台上,可以通过添加插件和设置工作流等方式让智能体变得更强大,以完成各种复杂的任务。 工作流则像是一个可视化的拼图游戏,由多个小块块(节点)组成,如插件、大语言模型、代码块等,这些小块块可以像拼图一样组合在一起,从而创造出复杂但稳定的业务流程。当面对多步骤、对结果要求严格的任务时,工作流最为适用。工作流有开始和结束的小块块,不同小块块可能需要不同的信息才能工作。 在构建稳定可用的 AI 智能体时,通常会先测试单条 Prompt 或 Prompt Chain 的执行质量和稳定性,然后根据实际情况逐步拆解子任务,对于场景多样、结构复杂、对输出格式要求严格的任务,基本可以预见到需要将其拆解为工作流。此外,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,也必然需要通过工作流来调用相应的插件。
2024-12-26
AI中的工作流是什么?
AI 工作流是在一般工作流的基础上引入了 AI 工具。 一般工作流指的是将一项工作拆分成多个明确步骤,每个步骤都有特定的输入和产出,且步骤之间环环相扣。比如写公众号文章,要经过选题、列大纲写初稿、改稿、写标题、排版、发布等固定步骤。 而 AI 工作流则是将 AI 工具融入到这些工作环节中以提高效率。例如在写作的各个环节使用相应的 AI 工具。搭建 AI 工作流需要具备三层能力: 1. 了解各种 AI 工具的特点和用途。 2. 学会写提示词,以便向 AI 清晰地描述任务。 3. 搭建 AI 智能体,使多个 AI 工具协同工作,自动完成任务。 同时,AI 工作流还在信息获取、处理和表达等方面带来了变革。如重塑了获取信息的方式,颠覆了传统搜索引擎;辅助高效处理信息,如智能摘要能帮助快速筛选;让信息表达更简便。
2024-09-29
我是一个小白,我想要一个deepseek学习路线
以下是为您提供的 DeepSeek 学习路线: 1. 首先,通过相关报道和研究,了解 DeepSeek 在全球 AI 社区的意义,包括技术突破与资源分配策略。重点关注其长上下文能力、量化商业模式以及对 AI 生态系统的深远影响。您可以参考: 2. 深入研究 DeepSeek 在架构和工程上的创新,例如 MoE、MLA、MTP 和 FP8 混合精度训练。思考其在工程和应用平衡中的高效优化方式,以及开源与闭源竞争的相关反思和 AI 生态未来发展方向。相关内容: 3. 了解 DeepSeek R1 模型,它属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考来提升回答质量。理解这种模拟人类深度思考的能力以及其背后独特的“教育方式”。 4. 学习 DeepSeek 深夜发布的大一统模型 JanusPro,它将图像理解和生成统一在一个模型中。了解其具有的两种本领,包括理解模式和画画模式,以及其核心的 DeepSeek 语言模型、特别训练法、与 Diffusion 模型的区别、好处和关键设计等方面。
2025-02-19
作为产品经理小白 我该如何学习成为一名合格的aipm
以下是为您提供的关于产品经理小白如何学习成为一名合格的 AI PM 的建议: 首先,了解一些重要的 AI 技术概念和框架: 1. 思维链:谷歌在 2022 年的论文中提到,思维链能显著提升大语言模型在复杂推理方面的能力,即便不用小样本提示,也可在问题后加一句“请你分步骤思考”。 2. RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一起传给 AI,可搭建企业知识库和个人知识库。 3. PAL(程序辅助语言模型):2022 年一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助如 Python 解释器等工具作为计算工具。 4. ReAct:2022 年《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,比如用搜索引擎对关键字进行搜索,观察行动结果,可借助 LangChain 等框架简化构建流程。 个人总结:很多大佬都强调要关注或直接阅读技术论文,像产品经理转型为 AI 产品经理,需要懂技术脉络。但小白直接看技术论文有难度,虽可让 AI 辅助阅读,但仍需一定知识储备。林粒粒呀的相关视频是很好的科普入门,值得观看。 此外,还可以观看一些关于技术框架与未来想象的访谈视频,比如安克创新 CEO 阳萌的访谈,其观点可能会给您带来启发。
2025-02-19
我是一个ai小白,我想要在一个月内快速入行ai,需要怎么做
以下是对于您在一个月内快速入行 AI 的建议: 首先,要明白对于超出自己理解范围的事情,最简单有效的方法就是亲自尝试。学习新事物,百闻不如一练。AI 是未来必然的发展方向,其科普还有很长的路要走,但尽可能简单地试用它,是让普通人在这场 AI 浪潮中受益的最佳方式。 对于普通人来说,对 AI 最好的直观初接触主要有两个方面: 1. 思考最低成本能直接上手试的工具是什么,自己能否亲自尝试。 2. 了解现在最普遍或最好的工具是什么,以及它们能达到的效果。 虽然底层都是大模型,但 AI 工具各有侧重,不同公司也会进行各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。为了更便捷地展示 AI 的能力,让普通人能更直观地马上上手,您可以重点关注以下几种工具: 1. 聊天工具 2. 绘画工具 3. 视频工具 4. 音乐工具 如果您想要跟他人交流、一起在 AI 路上探寻,可以戳这里:
2025-02-18
我是一个ai小白,我要怎么入行ai
对于 AI 小白入行 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,您还可以参考《雪梅 May 的 AI 学习日记》: 1. 学习模式:输入→模仿→自发创造。 2. 第一阶段:迈出第一步,看书听课进社区。例如: DAY5 2024.5.26:使用 kimi,参考,抱着每天向 kimi 问 100 个问题的心态,调整思考模式,养成有问题问 AI 的习惯。 DAY6 2024.5.31:应朋友强烈推荐,插队先看吴恩达的课程,在 B 站搜索对应关键词,有很多课程资源,如吴恩达《面向所有人的生成式 AI 入门课程 Generative AI for Everyone》,抽空陆续 3 天学完。 DAY7 2024.6.1:探索用 AI 解决一个真实问题,例如团队要写一份行业研究报告,试试看 AI 怎样能帮到自己。 需要注意的是,学习资源可能会更新变化,您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。本日记中学习资源的内容都是免费开源的。
2025-02-18
我是一个ai小白,我想学习怎么入行
以下是为您提供的新手入行 AI 的学习建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,为了帮助您更好地理解技术原理与建立框架,以下是一些通俗易懂的内容: 1. 概念:生成式 AI 生成的内容,叫做 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习是基于有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-02-18
deepseek的论文里面讲的混合专家模型怎么理解
混合专家(MoE)模型是一种在深度学习中提升计算效率的架构。以 DeepSeek 为例,其最新模型 V3 与 R1 采用了这种架构。 在 DeepSeek 的 V3 模型中,引入了多头潜注意力(MLA),将 KV 缓存压缩至新低,从而提升了计算性能。R1 模型则通过强化学习激活推理能力,首次验证无需监督微调即可实现推理。 DeepSeek 的 2360 亿参数的 DeepSeekV2 是 60 位专家混合开源模型,在数学、编码和推理方面表现出色,具有 236B 参数,21B 在生成过程中被激活,在 MTBench 上表现优异,中文能力强且性价比高。 您可以通过以下链接获取更详细的介绍:https://xiaohu.ai/p/7468 、https://zhuanlan.zhihu.com/p/21208287743 。
2025-02-19
deepseek为什么在古诗词理解上这么弱智?
DeepSeek 在很多方面表现出色,并非像您认为的在古诗词理解上弱智。它具有以下优点: 1. 语气还原:能还原帝王的语气,相比其他模型输出更准确恰当,兼顾了古典文字和可读性。 2. 熟悉历史细节:可能与支持“深度探索”和“联网搜索”同时开启有关,能准确还原唐初的历史称谓,如“太极宫”“甘露殿”“掖庭局”“观音婢”“宫门鱼符”等,对“魏徵”等字词的使用也很讲究。 3. 输出具体且细节惊人:其输出充满具体而惊人的细节,行文的隐喻拿捏到位,如“狼毫蘸墨时发现指尖残留着未洗净的血痂”等句子,虽未直接写“愧疚与野心,挣扎与抱负”,但句句体现。
2025-02-18
如何理解Deepseek认知启发式的设计理念
DeepSeek 认知启发式的设计理念主要包括以下几个方面: 1. 将 Agent 封装成 Prompt,并将 Prompt 储存在文件中,以保证最低成本的人人可用,同时减轻调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,通过思考减轻 AI 味,增加可读性。 4. 参照大模型的 temperature 设计了阈值系统,但可能形式大于实质,后续可能根据反馈修改。 5. 用 XML 来进行更为规范的设定,而非 Lisp(有难度)和 Markdown(运行不太稳定)。 此外,DeepSeek 具有以下特点: AI 特性定位:支持多模态理解,包括文本/代码/数学公式混合输入;具备动态上下文,即对话式连续记忆(约 4K tokens 上下文窗口);具有任务适应性,可切换创意生成/逻辑推理/数据分析模式。 系统响应机制:采用意图识别+内容生成双通道理,自动检测 prompt 中的任务类型、输出格式、知识范围,对位置权重(开头/结尾)、符号强调敏感。 在提示词系统方面: 基础指令框架包括四要素模板、格式控制语法等。格式控制语法中,强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号中>表示关键要求,!表示禁止项。 进阶控制技巧包含思维链引导、知识库调用、多模态输出。思维链引导中有分步标记法和苏格拉底式追问;知识库调用中有领域限定指令和文献引用模式。 HiDeepSeek 是为解决使用 AI 工具时答案思考过程不可见的问题而设计的工具,其核心目标是让 AI 像人类交流时那样展示思考过程,在技术层面通过特别规则实现,例如要求 AI 思考像人类一样自然。它能帮助用户更好地理解和使用 AI,让 AI 成为更好的助手。
2025-02-11
扣子工作流上传图片并让AI理解图片内容
扣子工作流可以实现上传图片并让 AI 理解图片内容。具体步骤如下: 1. 上传输入图片:将本地图片转换为在线 OSS 存储的 URL,以便在平台中进行调用。 2. 理解图片信息,提取图片中的文本内容信息:通过封装的图片理解大模型和图片 OCR 等插件来实现。 3. 场景提示词优化/图像风格化处理。 4. 返回文本/图像结果。 在搭建工作流时,主要关注以下几个步骤: 1. 点击工作流后面的“➕”来添加一个工作流。 2. 点击创建工作流。 3. 给工作流起名字和描述,名字只能用字母、数字和下划线,描述清晰以便区分。 4. 初始化的工作流:左边有各种可用的插件和搭建 Agent 的工具,可通过点击加号或直接拖拽使用。插件一般有对应的参数说明,初始化后会生成开始模块和结束模块,且只能以开始模块启动,结束模块终结工作流。 此外,扣子平台具有以下特点和功能: 1. 集成了丰富的插件工具,包括资讯阅读、旅游出行、效率办公、图片理解等 API 及多模态模型,支持内置插件和自定义插件。 2. 提供简单易用的知识库功能来管理和存储数据,支持多种格式的数据上传,包括文本格式、表格格式,也支持本地文件和在线网页内容及 API JSON 数据的上传。 3. 具有持久化的记忆能力,可记住用户对话的重要参数或内容。 4. 工作流功能灵活,可通过拖拉拽的方式搭建处理逻辑复杂且稳定性要求高的任务流。
2025-02-10
长文本理解能里较强的AI
以下是一些长文本理解能力较强的 AI 模型: 1. 智谱·AI 的 ChatGLM26B32k:这是第二代 ChatGLM 长上下文对话模型,在 ChatGLM26B 的基础上进一步强化了对于长文本的理解能力,能够更好地处理最多 32K 长度的上下文。在实际使用中,如果上下文长度基本在 8K 以内,推荐使用 ChatGLM26B;如果需要处理超过 8K 的上下文长度,推荐使用 ChatGLM26B32K。此外,还有 ChatGLM26B32kint4 版本,它是 ChatGLM26B32K 的 int4 版本。 2. 通义千问的 Qwen2.51M:推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速。首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息。其开源平台包括 Huggingface(https://huggingface.co/spaces/Qwen/Qwen2.51MDemo)和 Modelscope(https://www.modelscope.cn/studios/Qwen/Qwen2.51MDemo)。
2025-02-09
从行业角度怎么理解AI行业
从行业角度理解 AI 行业可以从以下几个方面来看: 1. 领军人物与公司:以 OpenAI 及其掌舵人山姆·奥特曼为例,了解其为人处事态度和原则,以及宏伟构想,有助于洞悉 AI 行业的理念趋势。 2. 行业渗透率:AI 对各行业的渗透呈现出不同的生态位。如智能驾驶和具身智能行业对 AI 技术需求紧密且伴生性强,处于第一梯队;营销、游戏、影视和智能硬件行业处于第二梯队,通过 AI 技术实现生产降本增效和行业升级;教育和医疗基础行业处于第三梯队,在政策支持下积极拥抱 AI 技术,但对安全可控性有更高要求。行业的数据基础和用户需求是影响 AI 技术渗透和变革力的关键因素。 3. 创投情况:2024 年,AI 仍是最强吸金赛道。国内 AI 行业融资总金额增加,但事件数同比下降,马太效应明显,资本更青睐热点和高成熟度赛道。智能驾驶在各细分赛道中独占鳌头,AI+教育、AI+游戏、AI+医疗等赛道投资总额也有所增长。同时,政府积极推进 AI 原生行业发展,出台政策吸引人才和企业,国家队频繁出手投资体现政策支持。
2025-02-09