Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

初学者如何使用AI学习AI知识

Answer

对于初学者学习 AI 知识,建议如下:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
    • 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。

记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」知识库首页的布鲁姆分类法,设计自己的学习路径。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:新手如何学习 AI?

记住,学习AI是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,你将逐渐建立起自己的AI知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往AGI之路」[知识库首页](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)的布鲁姆分类法,设计自己的学习路径。类似问题:我是新人,怎么学习AI?新手学习AI学习AI,我应该从哪里开始如何从头开始学习AI?

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。

Others are asking
我想学习AI视频创作流程
以下是 AI 视频创作的一般流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 另外,在一些具体的创作案例中,比如“AI 离谱社黄师傅”的工作流程中,有以下要点: 创作思路基于深度文化挖掘、自然风光和历史遗迹展示、故事性和情感连接等关键概念和创新方法,旨在通过人工智能技术全面展示中国各省份的文化和旅游魅力。 任务划分方面,制片人搭建整体框架,图像创意者提供有冲击力的图像画面,视频制作者熟悉并运用视频工具,编剧构思故事和创作台词文本,还有配音和配乐等工作。 在 AI 春晚采访问题中提到,脚本创作由 GPT 完成但需要大量人工干预,图像生成由 MJ 完成也需要人工调词,人工比例在 70%以上。
2025-01-23
有用来做网络游戏研发和运营的全套AI工具吗?
目前游戏领域还没有涵盖整个制作过程(包括代码、资产生成、纹理、音频等)的全套生成式人工智能工具,也没有能与流行的游戏引擎(如虚幻和 Unity)紧密结合使用、专为适应典型的游戏生产流程而设计的一体化平台。但有一些相关的工具和平台在不同方面发挥作用,例如: 生成可以互动的角色方面:有很多初创公司在研究,如 Charisma.ai、Convai.com、Inworld.ai 等平台,它们可以为具有情感和自主权的完全渲染的 3D 角色提供动力,并提供工具让创作者给角色设定目标。 语音生成方面:Coqui Studio(https://coqui.ai)、Bark(https://github.com/sunoai/bark)、Replica Studios(https://replicastudios.com)等。 语音识别方面:OpenAI Whisper(https://huggingface.co/openai/whisperbase)、Facebook Wav2Vec2(https://huggingface.co/facebook/wav2vec2largexlsr53)。 对话模型方面:ChatGPT(https://chat.openai.com)、HuggingChat(https://huggingface.co/chat)。 故事讲述模型方面:MPT7BStoryWriter65k+(https://huggingface.co/mosaicml/mpt7bstorywriter)、Claude 100k(https://www.anthropic.com/index/100kcontextwindows)、GTP4 32k(https://platform.openai.com/docs/models/overview)。 游戏设计方面:Ludo.ai(https://ludo.ai)。 搜索引擎方面:Haddock(https://www.haddock.ai)。 AI NPC 方面:Inworld(https://inworld.ai)。
2025-01-23
Ai智能体
AI 智能体在以下方面有重要应用和发展: 1. 在品牌卖点提炼中: 可搭建智能体作为引导型助手,帮助提炼品牌卖点。 但在搭建前需明确 AI 的能力边界,如 AI 对公司的主要产品、产品解决的用户需求、产品独特之处、获得的认可、依赖的核心渠道、核心购买人群、曾使用的营销手段、在新渠道的期望结果等了解程度接近于 0。 AI 真正的能力在于通过分析数据和信息进行逻辑推理、快速处理和分析数据并提取有价值信息和模式、拥有大量训练数据可输出更全面相关信息、理解用户提供内容并按正确结构梳理有效输出。 引导型助手更适合成为灵感提问助手,在寻找卖点思考路径停滞时提供更多思考维度。 2. 企业自动化方面: 生成式 AI 应用有三个核心用例与强大的产品市场契合度:搜索、合成和生成。 领先的应用程序构建商正在建立解决方案,处理之前只能由大量人力解决的工作流程。 借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,下一波智能体正在拓展 AI 能力边界,实现端到端流程自动化。 未来的完全自主智能体可能拥有所有四个构建块,但当前的 LLM 应用程序和智能体还未达到。 如流行的 RAG 架构不是智能体式的,一些设计支持工具使用,但应用程序的步骤仍由代码预先确定。 当将 LLM 置于应用程序的控制流中让其动态决定行动、使用工具等时,智能体出现。 确定了三种不同主要用例和应用程序进程控制自由度的智能体类型:决策智能体、轨道智能体、通用人工智能体。
2025-01-23
即梦AI里做儿童绘本制作、故事绘本里,怎么做到人物一致,风格一致,场景风格一致。
要在即梦 AI 中制作儿童绘本并做到人物、风格和场景风格一致,可以按照以下步骤进行: 1. 描述故事场景:利用 ChatGPT 或者自行构思一段适合画绘本的故事,将其分为多个场景,用一句包含环境、人物、动作的话描述每个场景。例如,故事名《Lily 的奇妙之旅》,场景 1 为“探险开始,Lily 来到一个阳光明媚的森林,跳过清澈的小溪,愉快玩耍。在路上结识了一只友善的棕熊,她们成为了旅伴”。 2. 生成场景图片:为每个场景生成图片时,使用固定的 prompt 风格词,如“super high details,HDsmooth,by Jon Burgerman,s 400niji 5style expressivear 3:4”。为了使熊和人物有更好的互动感,生成场景时也包括人物主角。如场景 2 的 prompt 为“Walking in a mysterious cave with glittering gems,little girl Lily wearing a yellow floral skirt,her friend brown bear,dim,dreamlike,super high details,HDsmooth,by Jon Burgerman,s 400niji 5style expressivear 3:4”。如果需要,可使用 mj 的 region vary 工具将小女孩完全框选,在提示词中完全删除 Lily 的描述词,重新生成得到场景图像。 3. 绘制绘本主角:确定人物形象,如“a little girl wearing a yellow floral skirt+人物动作+风格词”,在 mj 中生成直到得到一张满意的人物图像,且一套绘本中风格词语不要改变。 4. 保持一致性描述:在写 prompt 时,应从多个角度描述需求,包括人种、画风、宠物品种等,以稳定内容符合预期。例如,如果想生成一个关于“狗”的视频,提供不同狗的品种、外貌、行为等信息,确保物种和画风的一致性。
2025-01-23
你有哪些AI工具
以下是一些常见的 AI 工具: 对于建筑设计师审核规划平面图,有以下工具: HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 Maket.ai:面向住宅行业,可根据输入自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,能引入标准和规范约束设计结果。 Fast AI 人工智能审图平台:形成全自动智能审图流程,实现建筑全寿命周期内信息的集成与管理。 绘制逻辑视图、功能视图、部署视图的工具包括: Lucidchart:流行的在线绘图工具,支持多种图表创建。 Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 ArchiMate:开源建模语言,与 Archi 工具配合使用可创建逻辑视图。 Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 draw.io(diagrams.net):免费的在线图表软件。 PlantUML:文本到 UML 转换工具,可通过描述文本生成相关视图。 Gliffy:基于云的绘图工具,支持创建多种架构图。 Archi:免费开源工具,支持逻辑视图创建。 Rational Rose:IBM 的 UML 工具,支持多种视图创建。 与 Excel 相关的 AI 工具和插件有: Excel Labs:Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术。 Microsoft 365 Copilot:整合办公软件,通过聊天形式完成任务。 Formula Bot:提供数据分析聊天机器人和公式生成器功能。 Numerous AI:支持 Excel 和 Google Sheets,可生成文本、执行情感分析等任务。
2025-01-23
AI从业者相关资质证书
以下是一些与 AI 从业者相关的资质证书和学习资源: 学习资源: 云端问道:https://developer.aliyun.com/topic/techworkshop?spm=a2c6h.29649919.J_3425856640.1.45d87102rfvft7 云起实践平台:https://developer.aliyun.com/adc/?spm=a2c6h.28938832.0.0.5ca5448a0xO1Q9 人工智能认证证书: (免费) 视觉开放平台:https://vision.aliyun.com/ 此外,以下是一些关于 AI 从业者的相关信息: 【已结束】AI 创客松中参与同学的自我介绍和分类,包括擅长领域、想法方向和优势等。 AI 切磋大会第七期·线下狂欢 Show 中提到适合做 AI 摊主的人群特点,如技术背景丰富、产品开发与管理经验、多元化应用场景等,以及 AI 爱好者与学习者、AI 内容创作与营销能力方面的相关情况。
2025-01-23
我是一个初学者,要怎么学习ai
对于初学者学习 AI,建议您采取以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-20
初学者从哪里开始
对于 AI 初学者,以下是一些学习的起点和资源推荐: 1. 学习 SD 提示词:可从官方资料入手掌握基本概念,通过大量实践培养敏锐度,追求创新性并挖掘新维度,持续学习、实践和总结反馈。 2. 课程资源: 微软的 AI 初学者课程: AI for every one(吴恩达教程): 大语言模型原理介绍视频(李宏毅): 谷歌生成式 AI 课程: ChatGPT 入门: 3. 小七姐的 Prompt 喂饭级系列教程:可以在关注她。对于初学者,建议至少先真正理解以下几个问题: GPT 说人话的能力是怎么来的 “涌现”的产生 prompt 的概念和意义 为什么现阶段我们不得不用 prompt 推荐两个课外阅读:B站 UP Yjango(于建国博士)很早前发布的相关视频。
2025-01-13
我是一位ai初学者,该如何选择学习的方向和材料
对于 AI 初学者,以下是一些选择学习方向和材料的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果您偏向技术研究方向,需要学习的内容包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,需要学习的内容包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2024-12-19
我是一名AI初学者 该如何开始学习怎么使用AI
对于 AI 初学者,以下是一些学习建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支如机器学习、深度学习、自然语言处理等以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还可以参考微软为期 12 周、共 24 课时的课程,课程原网址 https://microsoft.github.io/AIForBeginners/ 。在课程中,将深入学习符号人工智能、神经网络、计算机视觉、自然语言处理等内容。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-18
初学者怎样快速使用AI工具
对于初学者想要快速使用 AI 工具,以下是一些建议和相关信息: 在 CAD 绘图方面,存在一些可辅助或自动生成 CAD 图的 AI 工具和插件,例如: 1. CADtools 12:这是 Adobe Illustrator 的插件,添加了 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:Autodesk 开发的云端 3D CAD/CAM 软件,集成了 AI 功能,能创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 一些主流 CAD 软件如 Autodesk 系列、SolidWorks 等提供的基于 AI 的生成设计工具,可根据设计目标和约束条件自动产生多种设计方案。但使用这些工具通常需要一定的 CAD 知识和技能,初学者建议先学习基本的 3D 建模技巧。 对于普通人直观初接触 AI,主要有两个方面: 1. 最低成本能直接上手试的工具是什么,自己能否尝试。 2. 现在最普遍/最好的工具是什么,能达到什么效果。虽然底层都是大模型,但 AI 工具各有侧重,不同公司也有各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。为了便捷展示 AI 能力,让普通人更直观马上上手,可选择以下几种工具展开说明:聊天工具、绘画工具、视频工具、音乐工具。
2024-12-17
学习AI 初学者
对于初学者学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-28
知识库中已有的ai工具按能力分类列举
以下是知识库中已有的 AI 工具按能力分类列举: 工具入门篇 数据工具: 多维表格小白之旅 适用人群:Excel 重度使用者、手动数据处理使用者、文件工作者 简要说明:用表格+AI 进行信息整理、提效、打标签,满足 80%数据处理需求 编程工具: Cursor 的小白试用反馈 适用人群:0 编程经验、觉得编程离我们很遥远的小白 简要说明:通过 AI 工具对编程祛魅,降低技术壁垒 音乐工具: Suno 的小白探索笔记 适用人群:0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白 简要说明:AI 赋能音乐创作,无需乐理知识即可参与音乐制作 100 个 AI 应用 81 100: AI 菜谱口味调整工具 已有产品:下厨房口味调整功能 一句话介绍:根据用户反馈调整菜谱口味。 AI 语言学习纠错平台 已有产品:英语流利说纠错功能 一句话介绍:帮助语言学习者纠正错误。 AI 电影剧情分析系统 已有产品:豆瓣电影剧情分析工具 一句话介绍:分析电影剧情,提供深度解读。 AI 办公文件分类系统 已有产品:腾讯文档分类功能 一句话介绍:自动分类办公文件,方便管理。 AI 美容护肤方案定制平台 已有产品:美丽修行定制方案功能 一句话介绍:根据用户肤质定制护肤方案。 21 40: AI 菜谱生成平台 已有产品:豆果美食 APP 一句话介绍:根据用户口味和现有食材生成个性化菜谱。 AI 语言学习助手 已有产品:沪江开心词场 一句话介绍:辅助用户学习语言,提供个性化学习方案。 AI 电影推荐系统 已有产品:爱奇艺智能推荐 一句话介绍:根据用户喜好推荐电影,发现优质影片。 AI 办公自动化工具 已有产品:WPS Office 一句话介绍:提高办公效率,实现自动化办公流程。
2025-01-23
如何构建企业AI知识库
构建企业 AI 知识库可以参考以下步骤: 1. 结合企业私有数据与 RAG 模型的私有化部署。如有特殊需求,还可以进行模型的 Finetuning(微调),以优化性能。基础模型负责提供推理提示,RAG 用于整合新知识,实现快速迭代和定制化信息检索。 2. 确定功能范围,包括编写【prompt】提示词,设定 Bot 的身份和目标。 3. 创建【知识库】: 整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 选择创建知识库路径,如个人空间知识库创建知识库。 支持的知识库文档类型包括本地文档、在线数据、飞书文档、Notion 等,可根据需求选择,如本次使用【本地文档】。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:知识库的好用程度与内容切分粒度有关,可以在内容中加上特殊分割符,如“”,便于自动切分数据。分段标识符号选择“自定义”,内容填“”。如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮进行相应操作。 在构建过程中,KnowHow 很重要,同时工作流不必复杂,能实现目的即可,所以在设计 Bot 前“确定目的”和“确定功能范围”很关键。
2025-01-23
本地怎么构建知识库
以下是关于本地构建知识库的详细步骤和相关知识: 一、硬件配置要求 运行大模型需要较高的机器配置,个人玩家可能负担不起。 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 二、RAG 技术 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 RAG 是指检索增强生成(Retrieval Augmented Generation),当需要依靠不包含在大模型训练集中的数据时,通过以下 5 个过程实现: 1. 文档加载(Document Loading):从多种不同来源加载文档。LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化的数据、SQL 在内的结构化的数据,以及 Python、Java 之类的代码等。 2. 文本分割(Splitting):文本分割器把 Documents 切分为指定大小的块。 3. 存储:涉及将切分好的文档块进行嵌入(Embedding)转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. Output(输出):把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 三、本地知识库搭建步骤 如果想要对知识库进行更加灵活的掌控,需要一个额外的软件:AnythingLLM。 1. 安装 AnythingLLM 安装地址:https://useanything.com/download 安装完成后,会进入到其配置页面,主要分为三步: 第一步:选择大模型 第二步:选择文本嵌入模型 第三步:选择向量数据库 2. 构建本地知识库 AnythingLLM 中有一个 Workspace 的概念,可以创建自己独有的 Workspace 跟其他的项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式。AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 测试对话:当上述配置完成之后,就可以跟大模型进行对话了。 四、写在最后 “看十遍不如实操一遍,实操十遍不如分享一遍”。如果对 AI Agent 技术感兴趣,可以联系作者或者加作者的免费知识星球(备注 AGI 知识库)。
2025-01-22
如何搭建定制知识库
以下是关于如何搭建定制知识库的相关内容: 要搭建基于 GPT API 的定制化知识库,需要给 GPT 输入定制化的知识。但 GPT3.5(即当前免费版的 ChatGPT)一次交互支持的 Token 数量有限,约 4096 个,相当于 3000 个单词或 2300 个汉字,容量对于多数领域知识不够。为处理大量领域知识,OpenAI 提供了 embedding API 解决方案,可参考 OpenAI embedding documents。 embeddings 是浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。向量是用一串数字表示大小和方向的量,在计算机科学和数据科学中通常用列表表示。向量之间的距离是度量相似性的方法,常见的如欧几里得距离。在 OpenAI 词嵌入中,靠近的向量词语在语义上相似。 LlamaIndex 是更高一层 LangChain 的抽象,之前叫 GPT Index。之前的文章中的例子使用了 LlamaIndex 包,它简化了 LangChain 对文本分割和查询的接口,并提供了更丰富的 Data Connector。LlamaIndex 只针对 GPT Model 做 Index,而 LangChain 可对接多个 LLMs,可扩展性更强。参考 https://gptindex.readthedocs.io/en/latest/ 在基于大模型+知识库的 Code Review 实践中,对于自定义知识库飞书文档(自定义),没有格式要求,能看懂正确代码即可。可直接使用 LangChain 提供的文档加载类,对有权限的飞书文档进行获取,使用 CharacterTextSplitter/RecursiveCharacterTextSplitter 将文本分割成固定长度的块(chunks),方法有两个主要参数:chunk_size 控制每个块的长度,如设置为 1024,则每个块包含 1024 个字符;chunk_overlap 控制相邻两个块之间的重叠长度,如设置为 128,则每个块会与相邻块重叠 128 个字符。 因为大模型有足够多的数据,想让大模型按要求执行就需要用到“Prompt 提示词”。 最近各家大厂接连放大招,AI 技术和应用突飞猛进,GPT4 接口已支持最大 32K 输入,AI 的开发和使用门槛会越来越低。垂直领域知识库的搭建和优化可能更多是业务问题,而非技术问题。
2025-01-22
如何搭建私人知识库
搭建私人知识库可以参考以下方法: 1. 基于 GPT 搭建: 给 GPT 输入(投喂)定制化的知识,但 GPT3.5(即当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字,容量对于绝大多数领域知识不够。 OpenAI 提供了 embedding API 解决方案,embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。 将大文本拆分成若干个小文本块(chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,在一个地方(向量储存库)中保存这些 embeddings 向量和文本块,当用户提出问题时,将问题先通过 embeddings API 转换成问题向量,然后与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的 prompt(问题/提示词),发送给 GPT API。 2. 本地部署大模型搭建: 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用,在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 RAG 的应用包括文档加载(从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器)、文本分割(把 Documents 切分为指定大小的块)、存储(将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库)、检索(通过某种检索算法找到与输入问题相似的嵌入片)、Output(把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案)。 文本加载器就是将用户提供的文本加载到内存中,便于进行后续的处理。
2025-01-22
我是一名数据产品经理,想转行ai产品经理,该从哪里入手。你的知识库里有哪些可以帮到我。最好把他们列举出来,具体一些最好有步骤
以下是为您整理的从数据产品经理转行 AI 产品经理的相关知识和建议: 一、AIPM 技能树 1. 理解产品核心技术 了解基本的机器学习算法原理,有助于做出更合理的产品决策。 2. 与技术团队有效沟通 掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性 在产品规划阶段,能更准确地判断某些功能的技术可行性。 4. 把握产品发展方向 了解算法前沿,更好地把握产品的未来发展方向。 5. 提升产品竞争力 发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力 掌握相关知识,提升数据分析能力。 二、AI 提示词工程师岗位技能要求 1. 学历和专业背景 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 AI 工具 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 3. 项目经验 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 4. 技术理解 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 5. 数据分析与决策 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 6. 创新思维 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 7. 技术关注 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 8. 编程能力 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 三、AI 市场与 AI 产品经理分析 当前有两个场景: 1. 企业(包括传统企业和互联网企业)如何实现 AI 转型或用好 AI。 2. 产品经理如何转型 AI 产品经理。 希望以上内容对您有所帮助。
2025-01-21
Python机器学习基础教程
很抱歉,目前知识库中没有关于“Python 机器学习基础教程”的具体内容。但我可以为您提供一个大致的指导方向。 首先,学习 Python 机器学习需要掌握 Python 编程语言的基础知识,包括数据类型、控制结构、函数等。 其次,了解常见的机器学习概念和算法,如线性回归、逻辑回归、决策树、聚类等。 然后,学习使用相关的 Python 库,如 Scikitlearn,它提供了丰富的机器学习工具和函数。 您可以通过在线课程、书籍、官方文档等多种资源来深入学习 Python 机器学习。
2025-01-23
我是一个AI小白,想系统学习AI,实现的目标是成为AI领域小能手,如果能用于变现则更好,我需要从什么开始学习,周期大概是多少?适合做哪些变现的项目呢
对于您这样的 AI 小白,想要系统学习 AI 并实现成为领域小能手甚至变现的目标,以下是一些建议: 1. 学习模式:可以采用输入→模仿→自发创造的模式。先广泛输入知识,然后进行模仿,最后尝试自发创造。 2. 学习内容:去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。但要注意,一些旧的学习材料可能已经不适用。 3. 时间安排:学习时间不必每天依次进行,可以在有空的时候学习。 4. 学习状态:保持良好的学习状态,有意愿和动力去学。 5. 费用方面:学习资源大多是免费开源的。 新手学习 AI 可以这样做: 1. 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,浏览入门文章了解其历史、应用和发展趋势。 2. 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台按自己节奏学习并获取证书。 3. 选择感兴趣模块深入:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品做出作品,在知识库分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 学习周期因人而异,取决于您的学习时间投入、学习效率和理解能力等因素。 关于变现项目,比如可以尝试用 GPT 和 SD 制作图文故事绘本、小说推文等,但要注意项目可能存在的不确定性。
2025-01-23
大模型学习之路
大模型的学习之路包括以下几个重要方面: 什么是大模型: 通俗来讲,大模型是通过输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU更合适,只有购买得起大量GPU的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系。 4. 就业指导:为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 Token: Token被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法。在将输入进行分词时,会对其进行数字化,形成一个词汇表。 大模型的运作原理: 以“我今天吃了狮子头和蔬菜”这句话为例,在transformer中,会由attention层对这句话加入更多信息来补充,最终层与层之间,哪些信息需要补充、保留、传递,均由模型自主学习完成。这些层就好像人在阅读文章时的连贯性注意力的过程,大模型以词向量和transformer的模型学习海量知识,把知识作为向量空间中的一种关系网进行存储,并在接受输入时,通过向量空间中的一系列匹配进行输出。 大模型的构建过程: 1. 收集海量数据:如同教孩子成为博学多才的人,让其阅读大量书籍、观看纪录片、与人交谈,对于AI模型就是收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:像为孩子整理资料,AI研究人员也需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:为孩子设计学习计划,研究人员需要设计AI模型的“大脑”结构,通常是一个复杂的神经网络,如使用Transformer架构。 4. 训练模型:如同孩子开始阅读和学习,AI模型开始“阅读”提供的数据,通过反复尝试预测句子中的下一个词,逐渐学会理解和生成人类语言。
2025-01-23
如何学习AI
以下是新手学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-23
如何学习comfyui
以下是一些学习 ComfyUI 的途径和资源: 1. 官方文档:ComfyUI 官方文档提供了使用手册和安装指南,适合初学者和有经验的用户,可在获取相关信息。 2. 优设网:有一篇详细的 ComfyUI 入门教程,适合初学者,详细介绍了其特点、安装方法及生成图像等内容,教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到相关教程。 4. Bilibili:提供了一系列涵盖从新手入门到精通各个阶段的视频教程,可在找到。 此外,还有 ComfyUI 共学快闪的飞书学习群,其中包含了众多如 Stuart 风格迁移、红泥小火炉基础课程等各类课程和讲解,如郑个小目标针对于某个插件的深入讲解、波风若川报错解决等。 另外,有人因为以下原因学习使用 ComfyUI:更接近 SD 的底层工作原理;自动化工作流,消灭重复性工作;作为强大的可视化后端工具,可实现 SD 之外的功能,还能根据定制需求开发节点或模块。例如,有人为了工作室获取抠图素材的需求,基于创建了工作流,不仅能用于绿幕素材抠图,还能自动生成定制需求的抠图素材,全程仅需几秒。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-23