Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

关于物流在人工智能配送方面的知识

Answer

在物流配送领域,人工智能有以下应用:

  • 优化物流路线和配送计划,降低运输成本。
  • 实现无人机送货,将货物快速送达偏远地区。 例如:
  • 美团外卖配送系统利用数据分析和机器学习优化外卖小哥的配送路线,会根据订单位置、餐厅出餐速度等因素,在高峰期自动调整配送路线,确保外卖及时送达。
  • 猎聘 APP 作为 AI 招聘求职平台,利用数据分析和自然语言处理技术,连接求职者和招聘企业,促进就业。
  • 链家 APP 作为 AI 房地产交易平台,利用数据分析和自然语言处理,为买卖双方提供安全、高效的交易平台。
  • 游戏开发工具 Unity 利用图像生成和机器学习技术,为游戏开发者自动生成游戏关卡,提高开发效率。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:请问 AI 有哪些应用场景?

自动驾驶:AI可以用于开发自动驾驶汽车,提高交通安全性和效率。交通管理:AI可以用于优化交通信号灯和交通流量,缓解交通拥堵。物流和配送:AI可以用于优化物流路线和配送计划,降低运输成本。无人机送货:AI可以用于无人机送货,将货物快速送达偏远地区。6.其他应用场景:教育:AI可以用于个性化学习,为每个学生提供定制化的学习体验。农业:AI可以用于分析农田数据,提高农作物的产量和质量。娱乐:AI可以用于开发虚拟现实和增强现实体验。能源:AI可以用于优化能源的使用,提高能源效率。人工智能的应用场景还在不断扩展,未来人工智能将对我们的生活产生更加深远的影响。内容由AI大模型生成,请仔细甄别

100个AI应用

|序号|已有产品|主题|使用技术|市场规模|一句话介绍|项目功能||-|-|-|-|-|-|-||68|美团外卖配送系统|AI物流配送优化系统|数据分析、机器学习|数十亿美元|优化物流配送路线,提高配送效率。|美团外卖配送系统利用AI算法优化外卖小哥的配送路线,根据订单的位置、餐厅的出餐速度等因素,提高配送效率。例如在高峰期,系统会自动调整配送路线,确保外卖及时送达。||69|猎聘APP|AI招聘求职平台|数据分析、自然语言处理|数十亿美元|连接求职者和招聘企业,促进就业。|猎聘APP利用AI技术分析求职者的简历和企业的招聘需求,为双方提供精准匹配。例如求职者上传简历后,平台会根据其技能和经验,推荐合适的职位;企业发布招聘信息后,平台会推荐符合要求的候选人。||70|链家APP|AI房地产交易平台|数据分析、自然语言处理|数十亿美元|为买卖双方提供房地产交易平台。|链家APP利用AI分析房地产市场数据和用户需求,为买卖双方提供安全、高效的交易平台。例如购房者可以通过APP查看房源信息、了解房价走势,卖房者可以发布房源并获得专业的评估和推广服务。||71|游戏开发工具Unity|AI游戏关卡生成器|图像生成、机器学习|数亿美元|为游戏开发者自动生成游戏关卡。|Unity游戏开发工具利用AI技术可以为游戏开发者自动生成各种风格的游戏关卡,提高开发效率。例如在一款冒险游戏中,根据游戏的主题和难度要求,生成不同的地形、怪物分布和任务设置。|

Others are asking
2030年前全国中小学普及人工智能是哪发布 的
目前没有明确的权威信息表明“2030 年前全国中小学普及人工智能”这一具体说法的发布来源。但以下信息可能对您有所帮助: 美国第 116 届国会第二次会议提到,国家科学基金会主任应授予 K12 等教育阶段的教育项目资助,以支持人工智能系统相关的多样化劳动力培养、提高对其伦理、社会、安全等影响的认识,并促进对人工智能原理和方法的广泛理解。 北京市大中小学推广了 AI 学伴和 AI 导学应用。
2025-01-24
如何学习好人工智能
以下是关于如何学习好人工智能的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、中学生学习 AI 的特别建议 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,学习 AI 可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的发展做好准备。 七、在医疗保健领域的 AI 学习 为了在医疗保健中让 AI 产生真正的改变,我们应该投资于创建一个模型生态系统——比如说,“专家”AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于 AI 来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。我们应该通过使用彼此堆叠的模型来训练 AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。
2025-01-23
人工智能的场景应用及其对社会治理的新挑战,注意场景应用和社会治理的对应,同时突出新挑战
以下是关于人工智能的场景应用及其对社会治理新挑战的相关内容: 场景应用: 医疗领域:如利用 AI 技术预测蛋白质结构,加速科学研究和救命药物的开发,在对抗疟疾、抗生素耐药性和塑料垃圾等方面取得巨大进展。 气候领域:通过 AI 技术应对气候变化。 对社会治理的新挑战: 可能产生新的风险,如使用 AI 可能带来的未知问题。 复杂的 AI 技术可能引发公众的不安。 涉及数据获取、计算能力、可持续性以及内容生产者和 AI 开发者权利平衡等重要问题,需要综合考虑。 需确保在保护权利持有者和支持 AI 开发者获取所需数据之间保持恰当平衡。
2025-01-23
人工智能的场景应用
人工智能(AI)的应用场景广泛,涵盖以下多个领域: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新疗法。 提供个性化医疗方案。 控制手术机器人,提高手术精度和安全性。 2. 金融服务: 识别和阻止欺诈行为,降低风险。 评估借款人信用风险,辅助贷款决策。 分析市场数据,辅助投资决策。 提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 分析客户数据进行产品推荐。 改善搜索结果和提供个性化购物体验。 实现动态定价。 提供聊天机器人服务,解决客户问题。 4. 制造业: 预测机器故障,避免停机。 检测产品缺陷,提高质量。 优化供应链,提高效率和降低成本。 控制工业机器人,提高生产效率。 5. 交通运输: 开发自动驾驶汽车,提高交通安全性和效率。 优化交通信号灯和交通流量,缓解拥堵。 优化物流路线和配送计划,降低运输成本。 实现无人机送货,送达偏远地区。 6. 其他领域: 教育:提供个性化学习体验。 农业:分析农田数据,提高农作物产量和质量。 娱乐:开发虚拟现实和增强现实体验。 能源:优化能源使用,提高能源效率。 此外,AI 绘画在以下场景也有应用: 广告设计:快速生成创意概念图,为广告策划提供灵感和初稿。 游戏开发:创建游戏场景、角色形象,提高开发效率。 影视制作:辅助生成特效场景、概念设计。 建筑设计:帮助构想建筑外观和内部布局。
2025-01-23
能帮生成一个人工智能行业分析的PPT
以下是为您生成的人工智能行业分析的 PPT 相关内容: 一、AI 辅助的 PPT 工具 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等,还可能包含互动元素和动画效果,网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 二、Gamma 的用法 将 Claude 的答案放到 Google Docs 中并导入 Gamma app 可自动转成初始版只有文字没有图片的 PPT,可给 Gamma app 发送指令进行美化。 三、Claude 和 Gamma 的组合使用 1. 用 Claude 解决不会使用学术网站条件搜索的问题。 如让其搜索营销领域权威期刊、特定期刊中关于 ChatGPT 的最新论文并筛选等。 2. 用 Claude 和 Gamma 达到以下目的: 快速寻找符合条件的论文。 提取精炼论文中某部分信息。 找到适合的 PPT 制作工具并学会使用。 希望以上内容对您制作人工智能行业分析的 PPT 有所帮助。
2025-01-21
我想学习人工智能知识,从哪里开始呢?
对于新手学习人工智能,建议您从以下几个方面入手: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-21
AI如何运用到集装箱物流行业?
AI 在集装箱物流行业有以下应用方式: 1. 物流路线优化:利用 AI 分析各种数据,如货物数量、目的地、运输条件等,优化物流路线,降低运输成本。 2. 配送计划制定:通过 AI 制定更合理的配送计划,提高配送效率和准确性。 3. 集装箱管理:借助数据分析和机器学习技术,优化集装箱的分配和使用,提高利用率。 4. 预测需求:利用 AI 预测货物的需求,提前做好准备,减少库存和延误。 5. 风险评估:分析潜在的风险因素,如天气变化、交通拥堵等,提前制定应对策略。 例如,像丰巢快递柜管理系统利用 AI 和物联网技术管理柜子的使用情况,提高快递配送效率。未来,AI 在集装箱物流行业的应用还将不断拓展和深化。
2025-01-24
物流方面的知识用哪方面的AI好?
在物流方面,以下几种 AI 应用较为有益: 1. 路线优化:AI 可用于优化物流路线,降低运输成本。 2. 配送计划优化:帮助制定更高效的配送计划。 3. 无人机送货:利用 AI 实现无人机送货,将货物快速送达偏远地区。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-06
你了解哪儿些大模型在电商行业供应链物流领域的应用,如果能举例阿里、淘宝、抖音、京东等涉及到电商的公司进行说明就更好了
目前在电商行业供应链物流领域,一些大模型的应用还处于不断发展和探索的阶段。 阿里巴巴:可能利用其强大的技术能力和数据优势,通过大模型优化物流路径规划、库存管理和订单预测等方面,提高物流效率和降低成本。 淘宝:或许借助大模型来分析消费者的购买行为和偏好,从而更精准地进行商品推荐,并优化物流配送的调度。 抖音:可能运用大模型对用户的兴趣和行为进行深度挖掘,以实现更高效的商品匹配和物流配送安排。 京东:有可能利用大模型改进仓储管理、物流配送的智能调度,以及预测商品的需求和销售趋势。 但需要注意的是,具体的应用情况和效果会受到多种因素的影响,包括数据质量、算法优化、业务场景的复杂性等。
2024-09-25
AI如何根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率
AI技术在供应链管理中的应用可以大大提高采购计划、库存预测和物流优化的效率。以下是如何利用AI根据历史数据和市场变化自动生成这些内容的详细步骤: 1. 数据收集和预处理 首先,需要收集大量的历史数据和实时市场数据。这些数据可以来自企业内部系统(如ERP、WMS)和外部数据源(如市场情报、经济指标)。 数据类型: 历史销售数据:包括销售数量、时间、地点等。 库存数据:当前库存水平、历史库存变化、仓储信息。 采购数据:采购订单、供应商信息、采购周期等。 市场数据:市场需求预测、经济指标、季节性变化等。 数据预处理: 数据清洗:处理缺失值、异常值和重复数据。 数据整合:将来自不同来源的数据整合成统一格式。 特征工程:提取关键特征,如时间序列特征、季节性特征等。 2. 采购计划自动生成 利用AI模型分析历史采购和销售数据,结合市场变化,生成优化的采购计划。 方法: 时间序列分析:使用ARIMA、Prophet等模型预测未来的需求量。 机器学习算法:如随机森林、XGBoost,通过学习历史数据中的模式来预测需求。 深度学习:如LSTM、GRU,适合处理复杂的时间序列数据。 具体步骤: 1. 需求预测:预测未来一段时间内的产品需求量。 2. 供应商选择和评估:根据历史绩效和市场条件,选择最佳供应商。 3. 采购量确定:结合库存水平、需求预测和供应商能力,确定每个产品的采购量。 4. 优化采购时间:利用AI优化采购时间,以最低成本满足需求。 3. 库存预测 利用AI技术进行库存预测,确保在最低库存水平下满足需求,减少库存持有成本和缺货风险。 方法: 库存优化模型:如Economic Order Quantity 。 库存水平预测:基于历史数据和需求预测,计算安全库存和再订货点。 机器学习算法:如支持向量机(SVM)、KNN,通过学习历史库存变化和需求波动,预测未来库存需求。 具体步骤: 1. 需求预测:预测未来的产品需求。 2. 库存水平计算:根据需求预测、订单交付时间、当前库存水平,计算安全库存和再订货点。 3. 库存补货策略:制定补货策略,确定何时和多少补货。 4. 物流优化 AI技术可以优化物流路径、运输方式和仓储布局,降低物流成本,提高运输效率。 方法: 路线优化:利用优化算法(如遗传算法、蚁群算法)优化运输路线,减少运输成本和时间。 运输方式选择:根据货物类型、运输距离、成本等因素,选择最佳的运输方式(如海运、空运、陆运)。 仓储布局优化:利用AI优化仓库布局,提高仓储效率和利用率。 具体步骤: 1. 运输需求分析:分析需求预测和库存计划,确定运输需求。 2. 路线规划:利用优化算法规划最佳运输路线。 3. 运输方式选择:根据成本和时间要求,选择合适的运输方式。 4. 仓储优化:利用AI优化仓库布局和操作,提高仓储效率。 案例示例:使用AI进行供应链优化 以下是一个使用AI进行供应链优化的具体示例: 需求预测: 1. 收集过去两年的销售数据和市场数据。 2. 使用LSTM模型对未来6个月的需求进行预测。 3. 将预测结果与当前库存水平进行比较,确定需要补货的产品和数量。 采购计划: 1. 根据需求预测结果,使用EOQ模型计算每个产品的最优采购量。 2. 结合供应商历史绩效数据,选择最佳供应商并确定采购时间。 库存管理: 1. 使用支持向量机(SVM)模型预测未来的库存水平。 2. 根据预测结果调整安全库存和再订货点,制定补货计划。 物流优化: 1. 利用蚁群算法优化运输路线,降低运输成本。 2. 根据货物类型和运输距离选择最佳运输方式。 3. 利用AI优化仓库布局,提高货物存取效率。 总结 通过利用AI技术,企业可以实现自动化和智能化的采购计划、库存预测和物流优化。这不仅可以提高供应链管理的效率,还能降低成本,减少库存风险,提升客户满意度。为了实施这些AI技术,企业需要投入时间和资源进行数据收集、模型开发和系统集成,同时需要培养数据分析和AI技术的人才。
2024-05-30
你觉得作为一个普通不懂得程序的人来说,在面对未来的AI时代,需要学习编程的基础知识吗?系统性的学习Python或者你觉得学习Python哪些主要知识注音对了。
对于普通不懂得程序的人来说,在面对未来的 AI 时代,学习编程的基础知识是有一定必要的。如果想系统性地学习 Python,以下是一些需要重点关注的主要知识: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等基本数据类型。 控制流:学会使用条件语句(if)、循环语句(for 和 while)来控制程序执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数以及调用现有的函数。 参数和返回值:理解函数接收参数和返回结果的方式。 作用域和命名空间:了解局部变量和全局变量的概念及工作方式。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序功能。 4. 面向对象编程(OOP): 类和对象:了解类的定义和实例化等基本概念。 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态的方法。 5. 异常处理: 理解异常:了解异常的概念及在 Python 中的工作原理。 异常处理:学会使用 try 和 except 语句处理程序中可能出现的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容和写入文件。 文件与路径操作:理解如何使用 Python 处理文件路径及列举目录下的文件。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景,探索如百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
飞书知识库ai机器人
以下是关于飞书知识库 AI 机器人的相关信息: 简介:在飞书 5000 人大群里,内置了一个智能机器人「waytoAGI 知识库智能问答」,它是基于飞书 aily 搭建的。() 如何使用:在飞书群里发起话题时即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 功能: 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,可以对多文档进行总结、提炼。 知识搜索:在内置的「waytoAGI」知识库中搜索特定的信息和数据,快速返回相关内容。 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 多语言支持:支持多语言问答,满足不同背景用户的需求。 搭建问答机器人的分享:2024 年 2 月 22 日的会议首先介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。接着,讨论了如何利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。然后,介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。之后,讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。最后,介绍了企业级 agent 方面的实践。 背后的技术:「飞书智能伙伴创建平台」(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。云雀是一款由字节跳动研发的语言模型,通过便捷的自然语言交互,能够高效的完成互动对话、信息获取、协助创作等任务。 关于“我是谁”:是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。 使用方法: 方法 1:在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(下图二维码仅作示意,请在找到最新二维码),然后点击加入,直接@机器人即可。 方法 2:在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 做问答机器人的原因: 整个知识库的内容已经非常庞大,内容越来越丰富的同时,作为一个刚进入知识库的用户,并没有办法可以很快的找到知识库的内容。 传统的搜索是基于关键词及关键词的相关性。例如搜索“吃了吗?”和“昨天晚上鸡腿好吃”,在字面意义上的差异和语义上的价值。 作为一个 AI 知识库,需要用更先进的办法来解决:RAG 技术。 在群中提供一个可以快速供大家检索信息的方式,使用更加便捷。
2025-01-24
初学者如何使用AI学习AI知识
对于初学者学习 AI 知识,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-23
知识库中已有的ai工具按能力分类列举
以下是知识库中已有的 AI 工具按能力分类列举: 工具入门篇 数据工具: 多维表格小白之旅 适用人群:Excel 重度使用者、手动数据处理使用者、文件工作者 简要说明:用表格+AI 进行信息整理、提效、打标签,满足 80%数据处理需求 编程工具: Cursor 的小白试用反馈 适用人群:0 编程经验、觉得编程离我们很遥远的小白 简要说明:通过 AI 工具对编程祛魅,降低技术壁垒 音乐工具: Suno 的小白探索笔记 适用人群:0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白 简要说明:AI 赋能音乐创作,无需乐理知识即可参与音乐制作 100 个 AI 应用 81 100: AI 菜谱口味调整工具 已有产品:下厨房口味调整功能 一句话介绍:根据用户反馈调整菜谱口味。 AI 语言学习纠错平台 已有产品:英语流利说纠错功能 一句话介绍:帮助语言学习者纠正错误。 AI 电影剧情分析系统 已有产品:豆瓣电影剧情分析工具 一句话介绍:分析电影剧情,提供深度解读。 AI 办公文件分类系统 已有产品:腾讯文档分类功能 一句话介绍:自动分类办公文件,方便管理。 AI 美容护肤方案定制平台 已有产品:美丽修行定制方案功能 一句话介绍:根据用户肤质定制护肤方案。 21 40: AI 菜谱生成平台 已有产品:豆果美食 APP 一句话介绍:根据用户口味和现有食材生成个性化菜谱。 AI 语言学习助手 已有产品:沪江开心词场 一句话介绍:辅助用户学习语言,提供个性化学习方案。 AI 电影推荐系统 已有产品:爱奇艺智能推荐 一句话介绍:根据用户喜好推荐电影,发现优质影片。 AI 办公自动化工具 已有产品:WPS Office 一句话介绍:提高办公效率,实现自动化办公流程。
2025-01-23
如何构建企业AI知识库
构建企业 AI 知识库可以参考以下步骤: 1. 结合企业私有数据与 RAG 模型的私有化部署。如有特殊需求,还可以进行模型的 Finetuning(微调),以优化性能。基础模型负责提供推理提示,RAG 用于整合新知识,实现快速迭代和定制化信息检索。 2. 确定功能范围,包括编写【prompt】提示词,设定 Bot 的身份和目标。 3. 创建【知识库】: 整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 选择创建知识库路径,如个人空间知识库创建知识库。 支持的知识库文档类型包括本地文档、在线数据、飞书文档、Notion 等,可根据需求选择,如本次使用【本地文档】。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:知识库的好用程度与内容切分粒度有关,可以在内容中加上特殊分割符,如“”,便于自动切分数据。分段标识符号选择“自定义”,内容填“”。如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮进行相应操作。 在构建过程中,KnowHow 很重要,同时工作流不必复杂,能实现目的即可,所以在设计 Bot 前“确定目的”和“确定功能范围”很关键。
2025-01-23
本地怎么构建知识库
以下是关于本地构建知识库的详细步骤和相关知识: 一、硬件配置要求 运行大模型需要较高的机器配置,个人玩家可能负担不起。 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 二、RAG 技术 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 RAG 是指检索增强生成(Retrieval Augmented Generation),当需要依靠不包含在大模型训练集中的数据时,通过以下 5 个过程实现: 1. 文档加载(Document Loading):从多种不同来源加载文档。LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化的数据、SQL 在内的结构化的数据,以及 Python、Java 之类的代码等。 2. 文本分割(Splitting):文本分割器把 Documents 切分为指定大小的块。 3. 存储:涉及将切分好的文档块进行嵌入(Embedding)转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. Output(输出):把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 三、本地知识库搭建步骤 如果想要对知识库进行更加灵活的掌控,需要一个额外的软件:AnythingLLM。 1. 安装 AnythingLLM 安装地址:https://useanything.com/download 安装完成后,会进入到其配置页面,主要分为三步: 第一步:选择大模型 第二步:选择文本嵌入模型 第三步:选择向量数据库 2. 构建本地知识库 AnythingLLM 中有一个 Workspace 的概念,可以创建自己独有的 Workspace 跟其他的项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式。AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 测试对话:当上述配置完成之后,就可以跟大模型进行对话了。 四、写在最后 “看十遍不如实操一遍,实操十遍不如分享一遍”。如果对 AI Agent 技术感兴趣,可以联系作者或者加作者的免费知识星球(备注 AGI 知识库)。
2025-01-22