直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

关于物流在人工智能配送方面的知识

回答

在物流配送领域,人工智能有以下应用:

  • 优化物流路线和配送计划,降低运输成本。
  • 实现无人机送货,将货物快速送达偏远地区。 例如:
  • 美团外卖配送系统利用数据分析和机器学习优化外卖小哥的配送路线,会根据订单位置、餐厅出餐速度等因素,在高峰期自动调整配送路线,确保外卖及时送达。
  • 猎聘 APP 作为 AI 招聘求职平台,利用数据分析和自然语言处理技术,连接求职者和招聘企业,促进就业。
  • 链家 APP 作为 AI 房地产交易平台,利用数据分析和自然语言处理,为买卖双方提供安全、高效的交易平台。
  • 游戏开发工具 Unity 利用图像生成和机器学习技术,为游戏开发者自动生成游戏关卡,提高开发效率。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:请问 AI 有哪些应用场景?

自动驾驶:AI可以用于开发自动驾驶汽车,提高交通安全性和效率。交通管理:AI可以用于优化交通信号灯和交通流量,缓解交通拥堵。物流和配送:AI可以用于优化物流路线和配送计划,降低运输成本。无人机送货:AI可以用于无人机送货,将货物快速送达偏远地区。6.其他应用场景:教育:AI可以用于个性化学习,为每个学生提供定制化的学习体验。农业:AI可以用于分析农田数据,提高农作物的产量和质量。娱乐:AI可以用于开发虚拟现实和增强现实体验。能源:AI可以用于优化能源的使用,提高能源效率。人工智能的应用场景还在不断扩展,未来人工智能将对我们的生活产生更加深远的影响。内容由AI大模型生成,请仔细甄别

100个AI应用

|序号|已有产品|主题|使用技术|市场规模|一句话介绍|项目功能||-|-|-|-|-|-|-||68|美团外卖配送系统|AI物流配送优化系统|数据分析、机器学习|数十亿美元|优化物流配送路线,提高配送效率。|美团外卖配送系统利用AI算法优化外卖小哥的配送路线,根据订单的位置、餐厅的出餐速度等因素,提高配送效率。例如在高峰期,系统会自动调整配送路线,确保外卖及时送达。||69|猎聘APP|AI招聘求职平台|数据分析、自然语言处理|数十亿美元|连接求职者和招聘企业,促进就业。|猎聘APP利用AI技术分析求职者的简历和企业的招聘需求,为双方提供精准匹配。例如求职者上传简历后,平台会根据其技能和经验,推荐合适的职位;企业发布招聘信息后,平台会推荐符合要求的候选人。||70|链家APP|AI房地产交易平台|数据分析、自然语言处理|数十亿美元|为买卖双方提供房地产交易平台。|链家APP利用AI分析房地产市场数据和用户需求,为买卖双方提供安全、高效的交易平台。例如购房者可以通过APP查看房源信息、了解房价走势,卖房者可以发布房源并获得专业的评估和推广服务。||71|游戏开发工具Unity|AI游戏关卡生成器|图像生成、机器学习|数亿美元|为游戏开发者自动生成游戏关卡。|Unity游戏开发工具利用AI技术可以为游戏开发者自动生成各种风格的游戏关卡,提高开发效率。例如在一款冒险游戏中,根据游戏的主题和难度要求,生成不同的地形、怪物分布和任务设置。|

其他人在问
人工智能相关的销售行业
以下是与人工智能相关的销售行业的一些信息: 与销售工作有关的 AI 工具: Salesforce 爱因斯坦:能分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务,让销售团队专注于关键方面,如建立客户关系和完成交易。 Clari:专门从事智能收入运营的软件,能统一各种来源数据并以易于理解的方式呈现,简化财务预测过程。 Hightime:销售团队的 AI 助手,可处理重复性任务和耗时研究。 关于大模型与利润分配:大模型拿走产业绝大部分利润取决于两个前提,一是 AGI 能否实现,二是大模型公司能否实现垄断。AGI 能否实现是个黑盒,行业内顶级专家对此有分歧。在 AGI 未达到时,大模型公司难以低成本提供所有端到端的解决方案,客户需要具体的解决方案,应用层公司在其中发挥作用。以 AI 销售为例,需根据客户类型和场景应用大模型能力,不同销售场景和客户类型意味着背后的产品不同,需要精心设计,不仅是模型层面能解决的问题。
2024-12-19
怎么利用人工智能为一家一人公司赋能,具体实施办法,图片,视频等除外,讲一些实用的,新的想法
对于一家一人公司而言,利用人工智能赋能可以从以下几个实用且新颖的方面入手: 首先,在客户服务方面,可以运用智能聊天机器人来处理常见问题,提高响应速度和服务质量。通过自然语言处理技术,让机器人能够理解客户的需求并提供准确的回答。 其次,在市场营销中,利用人工智能进行数据分析,深入了解目标客户的行为和偏好,从而精准定位市场,制定更有效的营销策略。 再者,在业务流程优化上,借助人工智能的自动化能力,例如自动化文档处理、自动化邮件分类等,节省时间和精力,提高工作效率。 另外,在财务管理方面,使用人工智能工具进行风险预测和财务规划,帮助做出更明智的决策。 最后,在产品研发中,利用人工智能的创意生成能力,获取新的产品设计思路和创新点。
2024-12-18
人工智能会出现自主意识吗
目前对于人工智能是否会出现自主意识尚无定论。 一方面,有观点认为模仿可能是使 AI 具有“自主意识”的一种可能路径。如果一个 AI 可以长期观察人类,在类似条件再次触发时,可能会判断形成某一动机是大概率事件,进而通过长期模仿训练而产生动机。并且,如果让数字克隆体可以交流、融合,形成群体智能,也可能促使其产生自主意识。 另一方面,按照一些专家的预测,当 AI 变得比人类更聪明,达到奇点时,机器可能会具有自我意识和超级智能,届时我们对机器意识的概念将有重大转变,可能会面对真正的数字生命形式。但目前的 LLM 应用程序和智能体还未达到完全自主智能体的水平。 总之,关于人工智能是否会出现自主意识仍在探讨和研究中。
2024-12-18
如果人工智能继续发展,人类社会会变成什么样子。
人工智能的继续发展将给人类社会带来多方面的影响。 一方面,它会带来一些负面影响,比如对劳动力市场产生重大影响,但大多数工作的变化速度会比人们想象的慢,人们也不必担心缺乏事情可做。因为人们天生有创造和彼此有用的欲望,人工智能将放大这种能力,社会将重新进入不断扩张的世界,专注于正和游戏。 另一方面,在未来几十年,我们将能够做许多像魔法一样的事情。这种发展并非新鲜事物,但会加速。人们能力的提升并非源于基因改变,而是得益于社会基础设施。人工智能将为人们提供解决困难问题的工具,添加新的进步支柱。很快我们能与人工智能合作完成更多事情,最终每个人都可能拥有个人的虚拟专家团队,实现各种想象。比如在医疗保健、软件创造等方面。有了新能力,能实现共同繁荣,改善世界各地人民的生活。 然而,单纯的繁荣不一定带来幸福,但确实能显著改善生活。我们有可能在几千天内拥有超级智能,最终实现这一目标。在通往智能未来的道路上,我们既要乐观探索其无限可能,也要谨慎警惕潜在风险,才能与 AI 和谐共舞,共同创造美好未来。
2024-12-18
全球人工智能治理报告中的全球人工智能的十大议题,十个议题中选一个写认识理解、研究方向、未来
以下是为您提供的关于全球人工智能治理报告中相关议题的内容: 在“Model Evaluation for Extreme Risks”这一议题中: 认识理解:该议题强调了模型评估在应对极端风险以及在模型的训练、部署和安全方面做出负责任决策的重要性,并详细探讨了网络攻击、欺骗、说服与操纵、政治策略、武器获取、长期规划、AI 开发、情景意识以及自我传播等十个主要风险。 研究方向:深入研究如何更精准地评估模型在极端风险场景下的表现,以及如何基于评估结果优化模型的训练和部署策略,以降低潜在风险。 未来:随着 AI 技术的广泛应用,对于极端风险的模型评估将越发重要,有望形成更加完善和严格的评估标准和方法,以保障 AI 系统的安全可靠运行。 由于您没有明确指定具体的一个议题,以上仅为示例,您可以补充更具体的需求,以便为您提供更精准的回答。
2024-12-18
全球人工智能治理报告
以下是关于全球人工智能治理的相关报告内容: 英国: 创建了世界上第一个人工智能安全研究所(AISA),其有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。 AISA 还发布了 Inspect 框架,用于 LLM 安全评估,涵盖核心知识、推理能力和自主能力等方面。 宣布与美国等效机构签署谅解备忘录,双方同意共同开发测试,并计划在美国旧金山设立办事处。 通过其高级研究与发明机构(ARIA),花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险。 政府报道称计划设立“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。 美国: 能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。 大型实验室努力应对欧洲监管。 对中国实施更严格的出口管制和投资限制,商务部要求美国制造商停止向我国半导体制造商进行最先进设施的销售,采取措施阻止或限制中国初创企业的投资,并向国际合作伙伴施压。 欧洲: 《欧盟人工智能法案》获得批准并正式生效,成为世界上第一个全面采用人工智能监管框架的地区,执行将分阶段进行,对“不可接受的风险”的禁令将于 2025 年 2 月生效。 中国: 是第一个开始制定生成式人工智能监管框架的国家,审查机构已介入。 持续生产 SOTA 模型,由国家互联网信息办公室监督。 政府希望模型避免给政治问题提供“错误”答案,发布模型前须提交测试以校准拒绝率。 禁止 Hugging Face 等国外网站访问,但官方批准的“主流价值观语料库”可作为训练数据源。
2024-12-18
物流方面的知识用哪方面的AI好?
在物流方面,以下几种 AI 应用较为有益: 1. 路线优化:AI 可用于优化物流路线,降低运输成本。 2. 配送计划优化:帮助制定更高效的配送计划。 3. 无人机送货:利用 AI 实现无人机送货,将货物快速送达偏远地区。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-06
你了解哪儿些大模型在电商行业供应链物流领域的应用,如果能举例阿里、淘宝、抖音、京东等涉及到电商的公司进行说明就更好了
目前在电商行业供应链物流领域,一些大模型的应用还处于不断发展和探索的阶段。 阿里巴巴:可能利用其强大的技术能力和数据优势,通过大模型优化物流路径规划、库存管理和订单预测等方面,提高物流效率和降低成本。 淘宝:或许借助大模型来分析消费者的购买行为和偏好,从而更精准地进行商品推荐,并优化物流配送的调度。 抖音:可能运用大模型对用户的兴趣和行为进行深度挖掘,以实现更高效的商品匹配和物流配送安排。 京东:有可能利用大模型改进仓储管理、物流配送的智能调度,以及预测商品的需求和销售趋势。 但需要注意的是,具体的应用情况和效果会受到多种因素的影响,包括数据质量、算法优化、业务场景的复杂性等。
2024-09-25
AI如何根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率
AI技术在供应链管理中的应用可以大大提高采购计划、库存预测和物流优化的效率。以下是如何利用AI根据历史数据和市场变化自动生成这些内容的详细步骤: 1. 数据收集和预处理 首先,需要收集大量的历史数据和实时市场数据。这些数据可以来自企业内部系统(如ERP、WMS)和外部数据源(如市场情报、经济指标)。 数据类型: 历史销售数据:包括销售数量、时间、地点等。 库存数据:当前库存水平、历史库存变化、仓储信息。 采购数据:采购订单、供应商信息、采购周期等。 市场数据:市场需求预测、经济指标、季节性变化等。 数据预处理: 数据清洗:处理缺失值、异常值和重复数据。 数据整合:将来自不同来源的数据整合成统一格式。 特征工程:提取关键特征,如时间序列特征、季节性特征等。 2. 采购计划自动生成 利用AI模型分析历史采购和销售数据,结合市场变化,生成优化的采购计划。 方法: 时间序列分析:使用ARIMA、Prophet等模型预测未来的需求量。 机器学习算法:如随机森林、XGBoost,通过学习历史数据中的模式来预测需求。 深度学习:如LSTM、GRU,适合处理复杂的时间序列数据。 具体步骤: 1. 需求预测:预测未来一段时间内的产品需求量。 2. 供应商选择和评估:根据历史绩效和市场条件,选择最佳供应商。 3. 采购量确定:结合库存水平、需求预测和供应商能力,确定每个产品的采购量。 4. 优化采购时间:利用AI优化采购时间,以最低成本满足需求。 3. 库存预测 利用AI技术进行库存预测,确保在最低库存水平下满足需求,减少库存持有成本和缺货风险。 方法: 库存优化模型:如Economic Order Quantity 。 库存水平预测:基于历史数据和需求预测,计算安全库存和再订货点。 机器学习算法:如支持向量机(SVM)、KNN,通过学习历史库存变化和需求波动,预测未来库存需求。 具体步骤: 1. 需求预测:预测未来的产品需求。 2. 库存水平计算:根据需求预测、订单交付时间、当前库存水平,计算安全库存和再订货点。 3. 库存补货策略:制定补货策略,确定何时和多少补货。 4. 物流优化 AI技术可以优化物流路径、运输方式和仓储布局,降低物流成本,提高运输效率。 方法: 路线优化:利用优化算法(如遗传算法、蚁群算法)优化运输路线,减少运输成本和时间。 运输方式选择:根据货物类型、运输距离、成本等因素,选择最佳的运输方式(如海运、空运、陆运)。 仓储布局优化:利用AI优化仓库布局,提高仓储效率和利用率。 具体步骤: 1. 运输需求分析:分析需求预测和库存计划,确定运输需求。 2. 路线规划:利用优化算法规划最佳运输路线。 3. 运输方式选择:根据成本和时间要求,选择合适的运输方式。 4. 仓储优化:利用AI优化仓库布局和操作,提高仓储效率。 案例示例:使用AI进行供应链优化 以下是一个使用AI进行供应链优化的具体示例: 需求预测: 1. 收集过去两年的销售数据和市场数据。 2. 使用LSTM模型对未来6个月的需求进行预测。 3. 将预测结果与当前库存水平进行比较,确定需要补货的产品和数量。 采购计划: 1. 根据需求预测结果,使用EOQ模型计算每个产品的最优采购量。 2. 结合供应商历史绩效数据,选择最佳供应商并确定采购时间。 库存管理: 1. 使用支持向量机(SVM)模型预测未来的库存水平。 2. 根据预测结果调整安全库存和再订货点,制定补货计划。 物流优化: 1. 利用蚁群算法优化运输路线,降低运输成本。 2. 根据货物类型和运输距离选择最佳运输方式。 3. 利用AI优化仓库布局,提高货物存取效率。 总结 通过利用AI技术,企业可以实现自动化和智能化的采购计划、库存预测和物流优化。这不仅可以提高供应链管理的效率,还能降低成本,减少库存风险,提升客户满意度。为了实施这些AI技术,企业需要投入时间和资源进行数据收集、模型开发和系统集成,同时需要培养数据分析和AI技术的人才。
2024-05-30
在WAY TO AGI 知识库有没有适合老师备课用的AI?请推荐
以下是为老师备课推荐的一些 AI 相关内容: B 站 up 主 Nally 的课程,免费且每节 15 分钟,内容很棒。 14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等。 16 号晚上中老师将带大家动手操作炼丹,炼丹可能需要准备一些图,后续会让中老师提前发布内容方便大家准备。 工程生产有很多可控性,AI 视频相关内容丰富,文档会列出工具优劣及操作。很多工具每天有免费积分,共学课程基本不用花钱。每周有 AI 视频挑战赛。 有 AI 音乐的流派和 prompt 电子书,格林同学做了翻译。 此外,还有以下相关信息: 高效 PB 及相关案例:高效 PB 投入力度大,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 11 月 2 号左右将开展博物馆奇妙日主题活动,在各地博物馆进行新创意。 关于 AI 知识库及学习路径的介绍,包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。
2024-12-20
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
怎么学习ai知识
以下是新手学习 AI 知识的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-12-19
知识图谱
知识图谱: 知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 关键技术包括: 1. 知识抽取:通过自动化技术抽取可用的知识单元,包含实体抽取(命名实体识别)、关系抽取、属性抽取。 2. 知识表示:如属性图、三元组。 3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,包括实体对齐、知识加工、本体构建、质量评估、知识更新,以形成高质量知识库。 4. 知识推理:在已有知识库基础上挖掘隐含知识。 在 AI Agent 系列中,外置知识包括向量数据库、关系型数据库和知识图谱。知识图谱以图的形式组织数据,强调实体之间的关系,适合复杂的语义分析和知识推理。在实际应用中,外置知识的集成和管理常采用 RAG 架构,允许智能体实时检索和整合最新外部信息。 知识表示方面,知识是存在于我们脑海中、代表对世界理解的东西,通过活跃学习过程获得,将接收到的信息碎片整合进世界模型。知识与信息、数据等概念不同,在 DIKW 金字塔中,数据独立存在可传递,信息是头脑中解释数据的方式,知识是融入世界模型的信息,智慧是更高层次的理解。知识表示的问题是找到以数据形式在计算机中表示知识并能自动化使用的有效方法。
2024-12-19
怎么构建个人本地知识库
构建个人本地知识库可以按照以下步骤进行: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,RAG 可解决依靠不在训练集中的数据的问题。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载可从多种来源加载,如 PDF 等非结构化数据、SQL 等结构化数据和代码等。 文本分割将文档切分为指定大小的块。 存储涉及将文档块嵌入转换为向量形式并存储到向量数据库。 检索通过算法找到与输入问题相似的嵌入片。 输出是将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器将用户提供的文本加载到内存以便后续处理。 2. 准备软件: 需要一个额外的软件 AnythingLLM,它包含所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 3. 安装和配置: 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 4. 构建本地知识库: 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 首先创建一个工作空间。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,AnythingLLM 提供 Chat 模式(大模型根据训练数据和上传文档综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 完成配置后进行测试对话。 本文的思路来源于视频号博主黄益贺,作者按照其视频进行了实操并附加了一些关于 RAG 的额外知识。
2024-12-19
可不可以提供一个本地化的大模型方法,让我建立这个合规法律的知识库
以下是为您提供的本地化大模型及搭建合规法律知识库的方法: 一、通过 Open WebUI 使用大模型 1. 首先访问相关网址。打开页面时需使用邮箱注册账号。 2. 登陆成功后,若您使用过类似 ChatGPT 的大模型对话网站,对该页面不会陌生。 3. Open WebUI 一般有两种使用方式: 聊天对话。 RAG 能力,即让模型根据文档内容回答问题,这是构建知识库的基础之一。 4. 如果要求不高,此时已搭建本地大模型,并通过 Web UI 实现对话功能。 5. ChatGPT 访问速度快且回答效果好的原因: 速度快是因为 GPT 大模型部署的服务器配置高。 效果好是因为 GPT 大模型的训练参数多、数据更优及训练算法更好。 二、您的硬件达标了么 运行大模型需要很高的机器配置,个人玩家大多负担不起。以下是不同类型大模型的配置要求: 1. 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 2. 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 3. 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 最低配置运行非常慢,不建议使用。但这不妨碍我们亲自实操一遍,以加深对大模型构建知识库底层原理的了解。若想要更顺滑的体验知识库,可以参考文章: 三、本地知识库进阶 若要更灵活掌控知识库,需额外软件 AnythingLLM。它包含 Open WebUI 的所有能力,并额外支持以下能力: 1. 选择文本嵌入模型。 2. 选择向量数据库。 AnythingLLM 安装和配置 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库 AnythingLLM 中有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。具体步骤: 1. 首先创建一个工作空间。 2. 上传文档并在工作空间中进行文本嵌入。 3. 选择对话模式。AnythingLLM 提供两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅依靠文档中的数据给出答案。 4. 测试对话。完成上述配置后,即可与大模型进行对话。 四、写在最后 “看十遍不如实操一遍,实操十遍不如分享一遍”。若您对 AI Agent 技术感兴趣,可以联系我或者加我的免费知识星球(备注 AGI 知识库)。
2024-12-18