直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

推荐一些学习AI的书籍

回答

以下是为您推荐的学习 AI 的书籍:

  • 神经科学相关:
    • 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga; Richard B.Lvry; George R.Mangun):世界权威的认知神经科学教材,系统涵盖认知神经科学的诸多方面。
    • 《神经科学原理》(作者:Eric R.Kandel; James H.Schwartz):让您系统了解神经元的细胞和分子生物学等内容。
    • 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域的世界级名著,涵盖神经科学的方方面面。
  • Python 与 AI 相关:
    • Python 方面:《Python 学习手册》《Python 编程》。
    • AI 方面:《人类简史》《深度学习实战》。

此外,对于初学者,还可以考虑微软的相关课程,例如:

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

书籍推荐:三本神经科学书籍

[title]书籍推荐:三本神经科学书籍可能你需要的3本基础学科书籍📖 AI是多学科交叉的产物,在学习和运用具体的能力时,比如学习他人的prompt模板或设计prompt,与AI协作(对话沟通)等等,有一些基础学科作为基底,或许能打开AI的新天地:1.《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga; Richard B.Lvry; George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。CyberDaily:想象AI像人一样思考与决策,而不是让AI像计算机输入输出。2.《神经科学原理》(作者:Eric R.Kandel; James H.Schwartz)这本书,让你系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。CyberDaily:得益于神经网络的联结主义,知识并非存在于某个文档或者知识库或者在记忆区里,而是存在于知识与知识之间,这是一场流动的盛宴,而非躲藏在某个区域的金库。3.《神经生物学:从神经元到脑》(作者:John G.Nicholls等著)神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。CyberDaily:将以上两本一起食用,效果更佳,造物主设计的人脑值得细细研究和理解。

写给不会代码的你:20分钟上手 Python + AI

[heading3]书籍推荐-作为新手入门1.作为新手入门,在Python方面,我会推荐这些:《Python学习手册》:动物园家的书,名声在外《Python编程》:新手友好1.在AI方面,我会推荐这些:《人类简史》:「认知革命」的相关章节令我获益匪浅《深度学习实战》:按脉络,梳理了ChatGPT爆发前的AI信息与实践[heading3]课程&资源&信息推荐[content]对于Python,以及各种AI工具的使用,我会最优先的推荐B站up主「PAPAYA电脑教室」的Python入门课(他的很多课都很棒,而且完全免费):https://space.bilibili.com/402780815/channel/seriesdetail?sid=2762019对于现在的大模型,我相信很少有人比Andrej Karpathy讲得更好,毕竟他也是OpenAI创始团队的成员油管地址:https://www.youtube.com/watch?v=zjkBMFhNj_gB站地址:https://www.bilibili.com/video/BV1AU421o7ob对于资料库,我非常推荐AJ和众多小伙伴们共创的资料库(一个飞书文档):🌈通往AGI之路(一个飞书文档)这应该是当下最全的中文AI资料库,免费、开源、共创。包含了几乎所有有价值的文档、文章、资料、资讯,并永远是第一时间更新https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e[heading1]最后愿大家[heading1]Good Good Study[heading1]Day Day Up!!!

微软AI初学者入门课程

[title]微软AI初学者入门课程特定的机器学习云框架。例如[Azure Machine Learning](https://azure.microsoft.com/services/machine-learning/?WT.mc_id=academic-77998-cacaste),[Microsoft Fabric](https://learn.microsoft.com/en-us/training/paths/get-started-fabric/?WT.mc_id=academic-77998-bethanycheum),或[Azure Databricks](https://docs.microsoft.com/learn/paths/data-engineer-azure-databricks?WT.mc_id=academic-77998-cacaste)。如有需要,考虑以下课程:《[使用Azure Machine Learning构建和运行机器学习解决方案](https://learn.microsoft.com/en-us/training/paths/explore-azure-machine-learning-workspace/?WT.mc_id=academic-77998-cacaste)》、《[使用Azure Databricks构建和运行机器学习解决方案](https://learn.microsoft.com/en-us/training/paths/build-operate-machine-learning-solutions-azure-databricks/?WT.mc_id=academic-77998-cacaste)》。对话式人工智能和聊天机器人。这方面有一个单独的课程《[创建对话式人工智能解决方案](https://learn.microsoft.com/en-us/training/paths/create-conversational-ai-solutions/?WT.mc_id=academic-77998-cacaste)》,你也可以参考[这篇博文](https://soshnikov.com/azure/hello-bot-conversational-ai-on-microsoft-platform/)了解更多详情。深度学习背后的深层数学(Deep Mathematics)。关于这一点,我们推荐Ian Goodfellow、Yoshua Bengio和Aaron Courville合著的《深度学习》(Deep Learning)一书,该书可在https://www.deeplearningbook.org/上获取。

其他人在问
如果借助AI开启2周岁女儿的绘本启蒙之旅
对于借助 AI 开启 2 周岁女儿的绘本启蒙之旅,目前知识库中没有相关的直接内容。但以下是一些可能的建议: 首先,可以利用 AI 生成简单、有趣、色彩鲜艳的绘本故事,内容可以是关于小动物、日常生活中的常见事物等,以吸引孩子的注意力。 其次,通过语音交互的 AI 工具,为孩子朗读绘本故事,培养孩子的听力和语言感知能力。 还可以借助具有互动功能的 AI 应用,让孩子在观看绘本的过程中进行一些简单的操作,增强参与感。 希望这些建议能对您有所帮助。
2024-12-21
小白怎么学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并进行自己实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 此外,以下是一些关于 AI 技术原理的通俗易懂的内容: 1. 视频一主要回答了什么是 AI 大模型,原理是什么。 生成式 AI 生成的内容,叫做 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是利用有标签的训练数据学习输入和输出之间的映射关系,包括分类和回归。无监督学习是在学习的数据没有标签的情况下,算法自主发现规律,经典任务包括聚类。强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法。神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。对于生成式 AI,其中生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT 中 Transformer 是关键,Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-21
AI选股
以下是为您提供的关于 AI 选股的相关信息: 1. 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15): Zephyr AI:2024 年 3 月 13 日融资,融资金额 1.11 亿美元,轮次 A,主营 AI 药物发现和精准医疗。 Together AI:2024 年 3 月 13 日融资,融资金额 1.06 亿美元,轮次 A,估值 12 亿美元,主营 AI 基础设施和开源生成。 Glean:2024 年 2 月 27 日融资,融资金额 2.03 亿美元,轮次 D,估值 22 亿美元,主营 AI 驱动企业搜索。 Figure:2024 年 2 月 24 日融资,融资金额 6.75 亿美元,轮次 B,估值 27 亿美元,主营 AI 机器人。 Abridge:2024 年 2 月 23 日融资,融资金额 1.5 亿美元,轮次 C,估值 8.5 亿美元,主营 AI 医疗对话转录。 Recogni:2024 年 2 月 20 日融资,融资金额 1.02 亿美元,轮次 C,主营 AI 接口解决方案。 2. 2024 年 3 月科技变革与美股投资: AI 将引领新的服务模式,即“智能即服务”,重塑工作和生活,重新赋能芯片和云计算行业,创造新的投资机会,GPU 需求预计持续增长。 企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额超过企业软件。 科技巨头通过资本控制 AI 模型公司的趋势明显,如 OpenAI 与微软、Anthropic 与 Google 等的合作。 企业竞争策略主要集中在迅速成长为大型模型公司并寻找强大背书,或保持小规模专注盈利并灵活应对市场变化。 2024 年将是大模型争霸的一年,OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 是市场上受瞩目的公司。 3. 展望 2025,AI 行业的创新机会: 在 ToP 领域,峰瑞投资的冰鲸科技是一家 AI 智能硬件公司,为全球创作者和专业玩家设计创新的私有云产品,推出集成端侧 GPU 的旗舰产品——ZimaCube。 在 ToB 领域,AI 应用进入企业内部可从纵向的独立业务模块和横向的通用技能模块切入。2024 年 7 月,美国投资机构 A16z 发布文章探讨了人工智能在变革企业销售技术中的潜力,其中提到的多数产品符合上述特点。ToB 和 ToP 存在一定交集。
2024-12-21
openai 12天都有哪些内容
以下是 OpenAI 12 天相关的内容: 12 月 18 日: API 正式版:速度更快,成本降低 60%,支持视觉识别、函数调用、结构化输出等功能。 语音交互升级:引入 WebRTC 支持,12 行代码即可实现实时语音交互,音频处理费用降低 60%。 偏好微调功能:让 AI 回答更具个性化,企业 AI 准确率提升显著。 新增 Go 和 Java 工具包,简化 API 密钥申请流程。 12 月 12 日: 苹果设备深度集成 ChatGPT,可通过 Siri 实现文档总结、任务分配、节日创意等操作。 多平台无缝衔接:支持 iPhone、iPad 和 Mac,涵盖 Siri 集成、写作工具增强、视觉智能分析等多种应用场景。 实用场景:圣诞派对策划、PDF 总结、歌单生成、视觉智能评选毛衣创意等功能演示,体现全新交互体验。 12 月 5 日: OpenAI 近日宣布将举行为期 12 天的活动,期间每天直播展示新功能或工具。 DeepMind 发布了基础世界模型 Genie 2,可以通过一张图片生成可操作的 3D 环境,实现智能体的实时交互与行为预测。 真格基金投资副总裁 Monica 在其播客「OnBoard!」发布的最新一期对谈中,与在一线大模型机构有实际训练大语言模型(LLM)经验的研究员针对 OpenAI o1 模型进行了三个多小时的拆解与解读。强化学习如何给大语言模型带来新的逻辑推理能力?这种能力的来源、实现方式和未来潜力又是怎样的?o1 带来的「新范式」会对行业有怎样的影响?
2024-12-20
有没有能根据哼唱,出伴奏的AI
以下是一些能根据哼唱出伴奏的 AI 相关信息: 在音乐创作中,如果只有词和一小段自己哼唱的旋律,可以上传这段哼唱的旋律,让 AI 扩展出自己喜欢的风格,然后将这段音轨作为动机音轨继续创作。 对于已有简单录音小样,可以利用 REMIX 优化音质与编曲结构,并利用 AI 尝试不同曲风版本,找到最喜欢的风格,然后制作成核心音轨,进而完成全曲创作。 同时,在使用 AI 进行音乐相关处理时也存在一些问题和需要注意的地方: 检查乐谱时,主旋律基本能还原,但可能会把噪声识别成音符形成错误信息,需要具备乐理知识去修复。 重奏输出方面,修谱和重奏软件可以使用 中的 Muse Score,它支持多种常用音频编辑格式的导出和高清输出。 目前存在一些待解决的问题,如延长音部分可能会抢节奏,爵士乐中的临时升降号可能导致判断混乱,高音和低音的符点会相互影响,基础修谱可能导致旋律单调等。 在将 Midi 导出到 MP3 虚拟演奏文件时,可以直接导总谱或分轨导出,后期若想输出到某些音乐平台可能需要转码。还可以使用相关软件修改音色进行渲染。把文件丢给 AI 做二次创作时,可以根据具体情况选择完整小节或在中间掐断。
2024-12-20
2025年AI的大走向是什么
2025 年 AI 的大走向可能包括以下几个方面: 1. 大型基座模型能力的优化与提升:通过创新训练与推理技术,强化复杂推理和自我迭代能力,推动在科学研究、编程等高价值领域的应用,并围绕模型效率和运行成本进行优化,为广泛普及和商业化奠定基础。 2. 世界模型与物理世界融合的推进:构建具备空间智能的世界模型,使系统能够理解和模拟三维环境,并融入物理世界,推动机器人、自主驾驶和虚拟现实等领域发展,提升对环境的感知与推理能力以及执行任务的实际操作能力,为人机交互带来更多可能。 3. AI 的多模态融合:整合文本、图像、音频、视频、3D 等多模态数据,生成式 AI 将显著提升内容生成的多样性与质量,为创意产业、教育、娱乐等领域创造全新应用场景。 4. 数字营销方面:AI 技术将成为数字营销的核心,品牌应注重利用 AI 提升用户体验,预计全球 AI 在数字营销领域的市场规模将达到 1260 亿美元,采用 AI 技术的公司在广告点击率上提高 35%,广告成本减少 20%。 5. 行业发展:2025 年或将成为 AI 技术逐渐成熟、应用落地取得阶段性成果的关键节点,同时成为 AI 产业链“资产负债表”逐步修复的年份,标志着行业从高投入、低产出向商业化路径优化迈出重要一步。 6. 竞争格局:大语言模型供应商将各具特色,竞争加剧;AI 搜索引擎将成为杀手级应用,快速普及,颠覆传统搜索方式;不同领域的 AI 搜索引擎将出现,针对专业需求提供更精准的信息服务。
2024-12-20
生成书籍阅读助手的 Prompt
以下是为您生成的书籍阅读助手的 Prompt 相关内容: 如果想让 AI 帮助您像“樊登读书”或者“得到”这样给您讲书,您需要设计一个叫做“书籍阅读助手”的 Prompt。要把通用型的读书方法论复刻到 Prompt 里,再根据不同类型的书籍测试,不断优化和迭代。 通用型读书方法论的访谈问题包括: 1. 不同类型的书是不是有不同的阅读和记忆方法?如何分类,有没有一些共性的方法论可以给出? 2. 阅读和记忆是不是有不同的思维模型或者小技巧,能列出来参考吗? 3. 读书时更需要的好像是一种自驱力,如何优先选择自己“一定看得下去”的书籍?怎么通过目录大纲确定一本书的核心内容? 4. 一本书您会读几遍?有什么顺序上的讲究吗? 5. 您会在读的过程中做笔记吗?还是读完以后回忆来做大纲呢? 6. 如果要教您大学刚毕业的孩子学会有效读书,怎么才能快速教会他呢? 当上述问题都有清晰、明确的答案之后,就可以开始设计 Prompt 了。 如果想要让 AI 在“选书”和“督促我读书”这个环节起作用,那要做的是一个叫做“催我读书”的 Prompt,要重点研究如何选出适合用户的书,如何实现 Prompt 的激励效果和让自己读完有获得感(例如生成读书笔记)。 如果更侧重读完书后的知识内化部分,要重点研究的是读书的效率和信息转化问题,这里更重要的是结构化信息能力和有效的记忆存储和调取。
2024-12-19
有没有阅读书籍的ai 工具
以下是一些可以用于阅读书籍的 AI 工具: Elicit:可以让用户直接向文章本身提出问题,有助于在不必阅读整篇文章的情况下了解文章是否涉及提出的问题。 ChatGPT:向其提供要查询的书籍的详细信息,提供越详细,越能针对问题提供准确答案。 此外,在创作小说方面,以下 AI 工具可以辅助创作: ChatGPT:擅长构思。 Claude:文笔好于 ChatGPT。 彩云小梦、Kimi、MidReal 等。 其他开源模型。
2024-12-12
关于ai的书籍推荐
以下是为您推荐的关于 AI 的书籍: 神经科学相关: 《认知神经学科:关于心智的生物学》(作者:Michael S. Gazzaniga; Richard B. Lvry; George R. Mangun):世界权威的认知神经科学教材,是认知神经科学之父的经典力作,系统涵盖了认知神经科学的诸多方面。 《神经科学原理》(作者:Eric R. Kandel; James H. Schwartz):能让您系统了解神经元的细胞和分子生物学、突触传递等内容。 《神经生物学:从神经元到脑》(作者:John G. Nicholls 等著):神经生物学领域的世界级名著,涵盖了神经科学的各个方面。 Python 和 AI 相关: Python 方面:《Python 学习手册》《Python 编程》。 AI 方面:《人类简史》《深度学习实战》。 希望这些推荐能满足您的需求。
2024-11-25
入门大模型的简要学习书籍清单
以下是为您推荐的入门大模型的简要学习书籍清单: 1. 《大模型入门指南》: 通俗解释了大模型,即通过输入大量语料让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 用上学参加工作类比大模型的训练和使用过程,包括找学校(训练所需的大量计算和 GPU)、确定教材(大量数据)、找老师(算法)、就业指导(微调)、搬砖(推导)。 介绍了 Token 作为模型处理和生成的文本单位,以及其在数字化和形成词汇表中的作用。 2. 《从 0 到 1 了解大模型安全,看这篇就够了》: 介绍了不同类型的模型架构,如 encoderonly 适用于自然语言理解任务,encoderdecoder 用于理解和生成内容,decoderonly 更擅长自然语言生成任务。 指出目前大型语言模型多为只使用 Decoder 的 Decoderonly 架构,其预训练数据量大,参数多。 提到了大模型在安全性方面的差别。 3. 《走入 AI 的世界》: 以 GPT3 为例,说明了预训练阶段大模型学习的内容和数量,如使用了 4990 亿 token 的数据集,相当于 86 万本《西游记》。 介绍了 Transformer 模型,这是一种处理文本内容的经典架构,不清楚其具体细节不影响使用大模型,感兴趣可通过相关链接深入了解。
2024-10-28
我计划编写一本关于生成式人工智能的书籍,但是在开始前,我需要确定一个合适的大纲框架来组织我的思路。这个框架应该包括那些部分,以及如何将各个部分连接起来,以便读者能够理解掌握AIGC的概念和应用
以下是为您编写关于生成式人工智能书籍提供的大纲框架建议: 一、引言 介绍编写本书的目的和背景,引导读者进入生成式人工智能的世界。 二、基础概念 1. 什么是生成式人工智能(AIGC) 定义和特点 与传统人工智能的区别 2. 相关技术名词 AI(人工智能) 机器学习(包括监督学习、无监督学习、强化学习) 深度学习(神经网络、神经元) 生成式 AI(可生成文本、图片、音频、视频等内容形式) LLM(大语言模型) 三、AIGC 的应用领域 1. 文字生成(如使用大型语言模型生成文章、故事、对话等) 2. 图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等) 3. 视频生成(如使用 Runway、KLING 等模型生成动画、短视频等) 四、AIGC 与其他内容生成方式的关系 1. AIGC 与 UGC(用户生成内容) 区别与联系 各自的优势和适用场景 2. AIGC 与 PGC(专业生成内容) 区别与联系 相互的影响和融合 五、技术原理 1. Transformer 模型 自注意力机制 处理序列数据的优势 2. 技术里程碑(如谷歌团队发表的《Attention is All You Need》论文) 六、实际案例分析 展示不同领域中成功的 AIGC 应用案例,分析其实现过程和效果。 七、挑战与展望 1. 面临的挑战(如数据隐私、伦理问题等) 2. 未来发展趋势和前景 八、结论 总结全书重点内容,对 AIGC 的未来发展进行展望。 各个部分之间可以通过逻辑递进、案例引用、对比分析等方式进行连接,使读者能够逐步深入理解掌握 AIGC 的概念和应用。
2024-10-23
那款AI更适合写书籍读后感
以下是关于适合写书籍读后感的 AI 的相关信息: 在书籍推荐方面,有三本神经科学书籍值得关注: 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga; Richard B.Lvry; George R.Mangun):这是世界权威的认知神经科学教材,系统涵盖了认知神经科学的诸多方面,包括发展历史、细胞机制与认知、神经解剖与发展等。 2. 《神经科学原理》(作者:Eric R.Kandel; James H.Schwartz):能让您系统了解神经元的细胞和分子生物学、突触传递等内容。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):是神经生物学领域的世界级名著,涵盖了神经科学的各个方面。 在利用 AI 写书籍读后感的提示词方面,您可以参考以下方法: 1. 明确不同类型书籍的阅读和记忆方法,总结共性方法论。 2. 了解阅读和记忆的思维模型和小技巧。 3. 掌握选择自己“一定看得下去”的书籍的方法,通过目录大纲确定核心内容。 4. 确定一本书的阅读次数和顺序。 5. 决定读书过程中是否做笔记以及何时做大纲。 6. 思考如何教刚毕业的孩子有效读书。 根据上述问题的清晰答案,可以设计不同用途的 Prompt,如“书籍阅读助手”“催我读书”等,并根据不同类型的书籍进行测试和优化。如果侧重知识内化,要重点研究读书效率和信息转化,注重结构化信息能力和有效的记忆存储与调取。
2024-10-13
如何系统学习AI知识
以下是系统学习 AI 知识的方法: 1. 编程语言基础:从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 工具和平台体验:使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识学习: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目参与:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 对于新手学习 AI,还可以: 1. 了解基本概念:阅读「」部分,熟悉 AI 的术语和基础概念,浏览入门文章了解其历史、应用和发展趋势。 2. 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 3. 选择感兴趣模块深入:AI 领域广泛,可根据兴趣选择特定模块(如图像、音乐、视频等)深入学习,掌握提示词技巧。 4. 实践和尝试:理论学习后通过实践巩固知识,尝试使用各种产品并分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2024-12-20
AI绘画这么厉害了,那儿童还有必要学习素描课吗
即便 AI 绘画很厉害,儿童仍有必要学习素描课。手绘素描笔记有助于建立突触连接,将信息从短期记忆转化为长期记忆,让人成为更好的概念思考者。例如,在科学观察中,学生通过手绘能更好地学会观察,这个过程不可被替代。就学习而言,掌握新技能时应先进行动手、动脑、技术最小化的学习,不应一开始就依赖 AI。比如在记笔记时,手写比打字能让学生记住更多信息。此外,在一些课程设计中,如离谱村的 AI 课,通过巧妙的环节设置和老师的引导,能让孩子更好地学习和发挥想象。
2024-12-20
如何从零学习
以下是从零学习 AI 的步骤和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果您想系统学习 Stable Diffusion 的提示词,可以参考以下步骤: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。
2024-12-20
学习AI
新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 体验 ChatGPT、Midjourney 等 AI 生成工具。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-20
AI基础学习课程
以下是为新手提供的 AI 基础学习课程相关内容: 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 开始 AI 学习之旅:在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,同时掌握提示词技巧。 实践和尝试:理论学习后,实践是巩固知识的关键,可尝试使用各种产品创作作品,知识库中有很多实践后的作品和文章分享。 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 此外,还有以下具体的课程推荐: 【野菩萨】课程:预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。ChatGPT 体系课程有 ChatGPT 基础、核心 文风、格式、思维模型等内容。ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。应对 SORA 的视听语言课程涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。若想免费获得该课程,可参与 video battle,每期冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。扫码添加菩萨老师助理可了解更多课程信息。 微软 AI 初学者入门课程:包括特定的机器学习云框架,如了解更多详情。深度学习背后的深层数学(Deep Mathematics)可参考 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 合著的《深度学习》(Deep Learning)一书,该书可在 https://www.deeplearningbook.org/上获取。
2024-12-19
哪个智能体能够根据用户的购物历史、浏览行为和偏好,提供个性化的产品推荐。
以下智能体能够根据用户的购物历史、浏览行为和偏好提供个性化的产品推荐: 1. 电子商务网站:通过收集用户的购物历史和浏览习惯等数据,使用机器学习和数据挖掘技术进行分析,从而推荐相似产品。 2. 基于人工智能的语音助手:可以分析用户行为、偏好以及历史购买记录,为用户提供更个性化的商品推荐,提升购物体验。 3. 中小企业:利用 AI 分析客户行为数据,包括购买历史、浏览记录、反馈等,基于分析结果生成个性化的产品推荐和服务。 4. 扣子模板中的个性化推荐引擎:利用人工智能和机器学习算法,根据用户的历史行为和偏好,实时推荐最相关的产品或服务,以提升转化率。
2024-12-20
在WAY TO AGI 知识库有没有适合老师备课用的AI?请推荐
以下是为老师备课推荐的一些 AI 相关内容: B 站 up 主 Nally 的课程,免费且每节 15 分钟,内容很棒。 14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等。 16 号晚上中老师将带大家动手操作炼丹,炼丹可能需要准备一些图,后续会让中老师提前发布内容方便大家准备。 工程生产有很多可控性,AI 视频相关内容丰富,文档会列出工具优劣及操作。很多工具每天有免费积分,共学课程基本不用花钱。每周有 AI 视频挑战赛。 有 AI 音乐的流派和 prompt 电子书,格林同学做了翻译。 此外,还有以下相关信息: 高效 PB 及相关案例:高效 PB 投入力度大,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 11 月 2 号左右将开展博物馆奇妙日主题活动,在各地博物馆进行新创意。 关于 AI 知识库及学习路径的介绍,包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。
2024-12-20
免费的图生视频软件有推荐吗
以下是为您推荐的免费图生视频软件: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果您熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 3. Kaiber:这是一款视频转视频 AI,能够将原视频转换成各种风格的视频。 此外,您还可以通过以下途径获取更多相关信息: 1. 更多的文生视频的网站可以查看: 2. Vidu 全球上线,Web 端访问:https://www.vidu.studio/ ,具有极速生成、动漫风格、角色可控、精准理解、大片质感等特点。 关于 SVD 图生视频模型的下载和使用: 1. 下载模型:最新模型在前面,建议除开第一个模型都下载。 https://huggingface.co/stabilityai/sv3d/ 【Stable Video 3D模型,最新模型,生成图片 3D 旋转视频,暂时没测试是否能支持】 https://huggingface.co/stabilityai/stablevideodiffusionimg2vidxt11/ 【SVD 1.1 XT 版,支持生成 1024x576 分辨率每秒 14 帧视频,优化了文件大小,提高生成效率】 https://huggingface.co/stabilityai/stablevideodiffusionimg2vidxt 【SVD 1.0 XT 版,支持生成 1024x576 分辨率生成每秒 25 帧视频】 https://huggingface.co/stabilityai/stablevideodiffusionimg2vid 【SVD1.0 版,支持生成生成 1024x576 分辨率每秒 14 帧视频】 2. 放置模型:下载好的 SVD 图生视频模型放置在指定文件夹下。 3. 使用方法:Controlnet 中上传原图选择深度,预处理器可选择不同算法,右侧深度模型记得选择深度模型,获得需要的深度图。结合大模型和提示词,利用文生图就可以生成图片。然后上传制作好的图片,选择 SVD 图生视频大模型,设置参数,生成视频。 内容由 AI 大模型生成,请仔细甄别。
2024-12-19
我完全没有AI基础,请帮我推荐一些资料学习
以下是为完全没有 AI 基础的您推荐的学习资料: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有可能获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-12-19
推荐一个大模型,可以实现特定人的声音,朗读文字
以下为您推荐可以实现特定人声音朗读文字的大模型及相关工具: 大模型方面:包括 ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。 语音合成(TTS)工具: 微软的 edgetts:https://github.com/rany2/edgetts,只能使用里面预设的人物声音,目前接口免费。 VITS:https://github.com/jaywalnut310/vits,还有很多的分支版本,可以去搜索一下,vits 系列可以自己训练出想要的人声。 sovitssvc:https://github.com/svcdevelopteam/sovitssvc,专注到唱歌上面,前段时间很火的 AI 孙燕姿。 Eleven Labs:https://elevenlabs.io/ ,ElevenLabs Prime Voice AI 是一款功能强大且多功能的 AI 语音软件,使创作者和出版商能够生成逼真、高品质的音频。人工智能模型能够高保真地呈现人类语调和语调变化,并能够根据上下文调整表达方式。 Speechify:https://speechify.com/ ,Speechify 是一款人工智能驱动的文本转语音工具,使用户能够将文本转换为音频文件。它可作为 Chrome 扩展、Mac 应用程序、iOS 和 Android 应用程序使用,可用于收听网页、文档、PDF 和有声读物。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,Microsoft Azure Speech Studio 是一套服务,它赋予应用程序能力,让它们能够“听懂、理解并与客户进行对话”。该服务提供了支持 100 多种语言和方言的语音转文本和文本转语音功能。此外,它还提供了自定义的语音模型,这些模型能够适应特定领域的术语、背景噪声以及不同的口音。 Voicemaker:https://voicemaker.in/ ,AI 工具可将文本转换为各种区域语言的语音,并允许您创建自定义语音模型。Voicemaker 易于使用,非常适合为视频制作画外音或帮助视障人士。 此外,上述算法开源的代码有很多,例如: ASR 语音识别: openai 的 whisper:https://github.com/openai/whisper wenet:https://github.com/wenete2e/wenet speech_recognition:https://github.com/Uberi/speech_recognition 除了算法,人物建模模型可以通过手动建模(音频驱动)或者 AIGC 的方式生成人物的动态效果(例如 wav2lip 模型)实现,这样就完成了一个最简单的数字人。但这种简单的构建方式还存在很多问题,例如如何生成指定人物的声音,TTS 生成的音频如何精确驱动数字人口型以及做出相应的动作,数字人如何使用知识库,做出某个领域的专业性回答等。
2024-12-18
推荐视频自动去水印ai工具
以下为您推荐一些视频自动去水印的 AI 工具: 1. AVAide Watermark Remover:这是一个在线工具,运用 AI 技术去除图片水印。它支持多种图片格式,如 JPG、JPEG、PNG、GIF 等。操作简便,上传图片、选择水印区域,然后保存并下载处理后的图片即可,还提供去除文本、对象、人物、日期和贴纸等功能。 2. Vmake:提供 AI 去除图片水印功能,用户可上传最多 10 张图片,AI 自动检测并移除水印,处理完成后可选择保存生成的文件,适合需快速去水印并在社交媒体分享图片的用户。 3. AI 改图神器:具备 AI 智能图片修复去水印功能,可一键去除图片中的多余物体、人物或水印且不留痕迹,支持直接粘贴图像或上传手机图像,操作简单方便。 此外,如果您想去除视频水印,还可以: 利用剪映工具,创建黑屏贴纸遮住水印,导出后裁掉黑边部分,但会损失一部分视频画面。 使用工具如 https://clipdrop.co/cleanup 去除图片水印。 这些工具各有特点,您可根据具体需求选择最适合的去水印工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-18