Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

生成式AI教育场景应用 项目式学习 中小学案例

Answer

以下是一些中小学在生成式 AI 教育场景应用中采用项目式学习的案例:

北京市新英才学校:

  • 开设“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导和帮助下,主导设计一款实用的桌游。
    • 学生们提出解决学校面积大导致新生和访客迷路的问题,决定制作一款学校地图桌游。
    • 课程中,学生有时听老师讲解人工智能知识和工具使用方法,有时自己写 prompt 与大语言模型对话,还使用文生图 AI 工具生成桌游卡牌背后的图案,手绘第一版学校地图,选择游戏机制并梳理游戏流程。

在教育领域,生成式 AI 带来了诸多改变:

  • 解决了教育科技长期以来在有效性和规模之间的权衡问题,可大规模部署个性化学习计划,为每个用户提供“口袋里的老师”,如实时交流并给予发音或措辞反馈的语言老师。
  • 出现了众多辅助学习的产品,如教授新概念、帮助学习者解决各学科问题、指导数学作业、提升写作水平、协助创建演示文稿等。
Content generated by AI large model, please carefully verify (powered by aily)

References

桌游、英语分级、生物模型……这所学校的师生用生成式AI做了这些事情!

在特色课程等创新课程中,天然有融入AIGC的环境。北京市新英才学校是一所十五年一贯制的国际化学校,小学有课后服务特色课程,课程丰富多样。学校新开设了一门叫“AI创作家”的小学课后服务特色课程,希望学生们能用AIGC工具解决生活中的实际问题。本学年,参与“AI创作家”的12个五、六年级的学生,将在AI的帮助下设计一款实用的桌游。整个桌游从收集用户需求,定义真实问题,设计具体的桌游背景、机制、内容、视觉,到测试,迭代等环节都由学生主导,老师则负责引导和提供帮助。“我们学校面积很大,新生和访客经常迷路,我们能不能解决这个问题?”学生们提出了这个想法,魏一然表示同意,这个项目就正式启动了。经过探讨,学生们决定做一款学校地图桌游。这样一来,玩了这款桌游的学生可以知道在哪里上音乐课,体育课,在哪里就餐,在哪里自由活动等,玩了桌游的访客也可以很快了解新英才学校的全貌、特色和历史。课程中,学生们有时候听魏一然老师讲解人工智能知识,了解人工智能工具的使用方法,有时候使用学校人工智能实验室的苹果电脑自己写prompt,与各种大语言模型对话,在AI对话工具的帮助下进一步了解桌游的概念、玩法和机制。魏一然还带学生使用上海人工智能实验室旗下的OpenInnoLab(浦育)平台,让学生们使用文生图AI工具生成桌游卡牌背后的图案。此外,学生们还手绘了第一版学校地图,选择了类似飞行棋的地图类桌游游戏机制,梳理好了整个游戏流程。

生成式 AI:下一个消费者平台

教育科技长期以来一直在有效性和规模之间做权衡。为大众打造有效的解决方案,就会失去吸引个体的个性化。为满足个体的需求而打造完美的解决方案,却又难以扩展。有了AI,这种状况不再存在。我们现在可以大规模部署个性化的学习计划,为每个用户提供一个“口袋里的老师”,这个老师理解他们独特的需求,并可以回答问题或测试他们的技能。想象一个由AI驱动的语言老师,能够实时交流,并对发音或措辞给予反馈。[Speak](https://www.speak.com/)、[Quazel](https://www.quazel.com/)和[Lingostar](https://www.lingostar.ai/)已经在做这样的事情!我们已经看到了教授新概念或帮助学习者在几乎所有学科中“摆脱困境”的产品。像[Photomath](https://photomath.com/en)和[Mathly](https://mathly.webflow.io/)这样的应用指导学生解决数学问题,而[PeopleAI](https://chatbotkit.com/apps/peopleai?ref=theresanaiforthat)和[Historical Figures](https://twitter.com/scottbelsky/status/1611244139764649991)通过模拟与杰出人物的聊天来教授历史。除了学习特定的科目,学生们还在他们的作业中利用AI助手。像Grammarly、[Orchard](https://orchard.ink/)和[Lex](https://lex.page/~)这样的工具帮助学生克服写作难题,并提升他们的写作水平。处理其他形式内容的产品也在全国各地的中学和大学中越来越受欢迎——例如,[Tome](https://beta.tome.app/)和[Beautiful.ai](https://www.beautiful.ai/)协助创建演示文稿。了解更多关于[AI时代学习的未来](https://a16z.com/2023/02/08/the-future-of-learning-education-knowledge-in-the-age-of-ai/)。

桌游、英语分级、生物模型……这所学校的师生用生成式AI做了这些事情!

来源|多知作者|王上当大众都在讨论生成式人工智能(AIGC)对教育的影响时,学校已经行动起来。跨学科项目老师带着学生用AIGC做学校地图桌游,英语老师在AIGC的帮助下备课和授课,生物和信息科技老师合作一起带着学生用训练AI模型,用以识别植物……这是北京市新英才学校正在探索的事情,数字与科学中心EdTech跨学科小组组长魏一然正在深入参与其中。魏一然曾在美国范德堡大学读研究生,在创新学校做过老师,还在腾讯做过教育产品经理,而今在北京市新英才学校的工作内容似乎是为她量身订做的——以AIGC为切入点,做教师培训,探索新的教学方式,并指导学生做新的项目。在这个过程中,魏一然感触颇多,她在接受多知访谈时提到:“我没想到的是,学生们对AIGC的认知和理解有天壤之别,有部分学生对ChatGPT等工具几乎一无所知,很难提出好问题;但有小部分学生熟稔各种AI工具,比老师都懂。”对于目前的进展,魏一然说:“学校领导层非常重视人工智能教育的发展,鼓励老师们大胆探寻新的教育方式和教育工具,也给了很大的自由空间。整体而言,我们还在探索的初级阶段,但也有了一定的经验和成果。”[heading1]01

Others are asking
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19
生成式AI教育场景应用 中小学案例
以下是北京市新英才学校在中小学教育场景中生成式 AI 的应用案例: 特色课程方面:学校开设了“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导下,用 AIGC 工具设计一款实用的桌游。学生主导从收集需求、定义问题到设计背景、机制、内容、视觉,再到测试、迭代的全过程。例如,为解决学校面积大导致新生和访客迷路的问题,学生决定做一款学校地图桌游。课程中,学生学习人工智能知识、使用工具写 prompt 与大语言模型对话,还使用 OpenInnoLab平台生成桌游卡牌图案、手绘地图、选择游戏机制、梳理游戏流程。此外,还邀请中国传媒大学的吴卓浩教授合作,采用“大学生,小学生同上一节课”的方式,大学生为小学生讲解 AI 工具、试玩桌游。本学期,学生们测试并迭代桌游,使用 3D 打印机打印配件,用 ChatGPT 和 Midjourney 增强视觉设计,用 Kimi 辅助编写说明书,还计划让学生尝试用文生音乐工具 Suno 制作歌曲加入桌游 2.0 版本。 英语主课方面:初中部的英语课也融入了 AIGC 工具。魏一然协助初中部的英文老师杨佳欣和刘奕玚进行探索。在课程初期,更多是老师带着学生使用 AIGC 工具,prompt 由学生提出,老师引导。例如,在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话,了解处理方法,让 ChatGPT 为学生生成生词解释和例句,形成生词库,并灵活加工生词生成题目、游戏或文章帮助学生复习单词。在关于社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。
2025-02-18
中小学AI教育场景 生成式 全息
以下是关于中小学 AI 教育场景生成式的相关内容: 北京市新英才学校在中小学 AI 教育方面进行了积极探索。跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 帮助下备课和授课,生物和信息科技老师合作带着学生训练 AI 模型以识别植物。数字与科学中心 EdTech 跨学科小组组长魏一然深入参与其中。 在英语课上,对于初中以上学生,一开始更多是老师带着使用 AIGC 工具,由学生提出 prompt,老师引导。例如在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话获取信息,还让 ChatGPT 生成单词解释和例句,加工生词生成题目、游戏或文章帮助学生复习单词。在社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。 教育科技长期以来在有效性和规模之间权衡,而有了 AI 这种状况不再存在。现在可以大规模部署个性化学习计划,为每个用户提供“口袋里的老师”。像 Speak、Quazel、Lingostar 已在做实时交流并给予反馈的语言教学。Photomath、Mathly 指导学生解决数学问题,PeopleAI、Historical Figures 通过模拟与杰出人物聊天教授历史。学生在作业中也利用 Grammarly、Orchard、Lex 等工具提升写作水平,处理其他形式内容的产品如 Tome、Beautiful.ai 协助创建演示文稿。
2025-02-17
影视行业的生成式AI工具有哪些?帮我分一下类
以下是影视行业常见的生成式 AI 工具分类: 视频和图像类:Civitai、Kling AI、Viggle、Hailuo、Hedra、RunPod、Higgsfield、ThinkDiffusion、neural frames、Genmo、fal、LTX Video、CogVideoX、Morph Studio、Domo、Haiper、Pony Diffusion、Leonardo AI、Rubbrband 音频类:ElevenLabs、Hailuo、Cartesia、Sync、Tunes by Freepik 3D 类:Playhouse、Playbook、Tripo AI 故事板类:SAGA 在视频大类的分类下,按场景分,主要有以下几类: 1. 纯 AI 视频生成(RunwayML 等为代表) 2. 数字人(Heygen 等) 3. 营销类视频生成及编辑(生成内容以模板化,商业化内容为主) 4. 视频编辑(全面编辑,长剪短等) 此外,全球最大的生成式 AI 视频竞赛之一 Project Odyssey 第二季已开始,相关信息如下: 赛事官网:https://www.projectodyssey.ai/ 注册地址:https://projectodyssey.myflodesk.com/season2 赛事 Discord:https://discord.com/invite/projectodysseyai 提交地址:https://www.projectodyssey.ai/submission 时间线: 12 月 2 日:Project Odyssey 第二季开放报名 12 月 9 日:比赛规则公布 12 月 16 日:报名用户可解锁免费试用、完整规则正式发布、作品提交正式开启 1 月 16 日:提交截止,进入评审阶段 2 月 14 日:直播颁奖 参赛类别: 叙事类:通过鲜明的角色和深刻的故事情节,讲述能够打动人心的故事。 音乐视频:将视觉效果与原创音乐完美结合,打造震撼体验。 品牌创意:构思创意广告或活动视频,为虚拟品牌注入灵魂。(短于 60 秒) 创意预告片:制作极具吸引力的预告片或片头,为电影或剧集呈现特别概念。(短于 2 分 30 秒)
2025-02-16
吴恩达有《面向所有人的生成式 AI 入门课程 Generative AI for Everyone》下载资源
以下是吴恩达《面向所有人的生成式 AI 入门课程 Generative AI for Everyone》的相关资源: B 站: 学习笔记: 飞书: 下的相关课程
2025-02-07
李宏毅《生成式人工智能导论》课件
以下是关于李宏毅《生成式人工智能导论》的相关信息: 课程目录: 1. 第 0 讲:课程说明(2024 年 2 月 24 日) 2. 第 1 讲:生成式 AI 是什么?(2024 年 2 月 24 日) 3. 第 2 讲:今日的生成式人工智慧厉害在哪里?从「工具」变为「工具人」(2024 年 3 月 3 日) 4. 第 3 讲:训练不了人工智慧?你可以训练你自己—神奇咒语与提供更多资讯(2024 年 3 月 3 日) 5. 第 4 讲:训练不了人工智慧?你可以训练你自己—拆解问题与使用工具(2024 年 3 月 10 日) 6. 待更新…… 第 0 讲课程说明的要点: 1. 知道:有能力自己开发、何时需要自己开发、何时可以用现成的人工智能。 2. 目标:了解生成式 AI 背后的原理和更多可能性,作为你魔术师的开始。包括体验用生成式 AI 打造应用、体验训练自己的生成式 AI 模型。同时提到负面体验,如大模型训练花时间(以周为单位)、结果不可控。 3. 影响模型能力的指标很多,常规会看参数的量级来评估,量级指数级增长,FOMO,如 2019 年 GPT2.0 15b 参数,2024 年 GPT3.5 70b 参数。 附录: 1. 课程介绍:这是台湾大学李宏毅教授的生成式 AI 课程,主要介绍生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容。课程共 12 讲,每讲约 2 小时。 2. 学习目标:掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 3. 学习内容:包括什么是生成式 AI、生成式模型、生成式对话、预训练语言模型、生成式 AI 的挑战与展望等方面。 4. 学习资源:教材《生成式 AI 导论 2024》,参考书籍《深度学习》,在线课程李宏毅的生成式 AI 课程,开源项目 OpenAI GPT3、字节跳动的云雀等。 5. 学习方法。 课程地址:https://www.youtube.com/watch?v=AVIKFXLCPY8
2025-01-16
在日常工作中,AI可以做什么 ?
在日常工作中,AI 具有广泛的应用,主要包括以下方面: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新治疗方法。 提供个性化医疗方案。 控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 评估借款人信用风险,辅助贷款决策。 分析市场数据,辅助投资决策。 提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 分析客户数据,推荐可能感兴趣的产品。 改善搜索结果,提供个性化购物体验。 动态调整产品价格。 提供聊天机器人服务,解决客户问题。 4. 制造业: 预测机器故障,避免停机。 检测产品缺陷,提高产品质量。 优化供应链,提高效率和降低成本。 控制工业机器人,提高生产效率。 5. 交通运输: 智能推荐路线,预测交通拥堵。 此外,AI 还能在工作中帮助人们从单调重复的任务中解放出来,例如输入数据、填写文件等,让人们有更多时间从事专业训练相关的工作。同时,流媒体服务利用 AI 推荐节目和影片,导航软件利用 AI 规划最佳路线等,这些都是 AI 在日常生活中的应用实例。
2025-02-20
我是ai小白,该如何学习ai。并利用ai赚钱
以下是为 AI 小白提供的学习 AI 并利用其赚钱的建议: 一、学习 AI 1. 了解基本概念 阅读「」,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始学习之旅 参考「」中的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 4. 实践和尝试 理论学习后进行实践,巩固知识。 尝试使用各种产品制作作品,并在知识库分享实践成果。 5. 体验 AI 产品 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 二、利用 AI 赚钱 目前利用 AI 赚钱的方式多样,例如: 1. 开发 AI 相关应用或服务,满足特定市场需求。 2. 利用 AI 提升工作效率,在现有工作中创造更多价值从而获得更高收入。 3. 为企业提供 AI 咨询和解决方案服务。 但要注意,成功利用 AI 赚钱需要深入的知识和技能积累,以及对市场需求的敏锐洞察。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其中作者分享了适合纯小白的学习模式,即输入→模仿→自发创造。同时,学习资源大多免费开源,可减轻学习成本。另外,《【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)》中也有关于 AI 技术原理和相关概念的详细介绍,有助于建立知识框架。
2025-02-20
AI 阅读
以下是为您整理的关于 AI 阅读的相关内容: 1. 1 月 19 日的 Xiaohu.AI 日报中提到: AWPortrait 1.3 人像模型更新,优化了棚拍质感、皮肤肌理,增强户外场景优化,提高对面部表情的识别。 Meta AI 的自奖励语言模型采用新型训练方法,自生成训练数据,在 AlpacaEval 2.0 排行榜上表现优异。 微软推出为学生设计的 AI 阅读教练工具,能创造 AI 生成故事,通过语音转文本 AI 分析阅读流利性。 Stefano Rivera 的 AI 交互式“MR 木偶秀”利用多种 AI 工具,包括 3D 渲染、场景构建、音乐和语音技术。 KREA AI 实时生图有新功能,提供文本到图像、背景去除和橡皮擦工具,可实时生成图像提高创作便捷性。 推荐开源知识库程序 Outline,其特点为美观、实时协作、功能丰富,支持 Markdown、即时搜索、与 Slack 集成等。 2. GPT1 到 Deepseek R1 所有公开论文《The 2025 AI Engineer Reading List》中提到:挑选了 50 篇涉及人工智能工程 10 个领域(LLMs、基准、提示、RAG、代理、CodeGen、视觉、语音、扩散、微调)的论文/模型/博客。如果从零开始,可以从此处入手。该系列中所有演讲者的精选文章为 2024 年做了总结,因开办论文俱乐部的文章,多次被要求为从零开始的人推荐阅读清单。这里为人工智能工程师策划了“必读书目”。
2025-02-20
ai入门学习
以下是新手学习 AI 的全面指南: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还有以下相关的学习内容: 1. 入门指南:强化学习: 原文地址:https://mp.weixin.qq.com/s/pOO0llKRKL1HKG8uz_Nm0A 学习深度强化学习的第一个算法可以选择 DQN,并以搞懂它作为入门目标。 2. 写给不会代码的您:20 分钟上手 Python+AI: 在深入学习 AI 时,编程可能会带来挑战,但这份指南旨在让大家更快掌握 Python 和 AI 的相互调用。 您可以在接下来的 20 分钟内,循序渐进地完成以下任务:完成一个简单程序、完成一个爬虫应用抓取公众号文章、完成一个 AI 应用为公众号文章生成概述。 关于 Python:Python 拥有丰富的标准库,还可以通过 pip 工具从类似 GitHub 的平台订购新的工具,在 AI 领域被广泛使用。 关于 OpenAI API:OpenAI 通过 ChatGPT 提供开箱即用的服务,也通过 OpenAI API 提供更加灵活的服务,可通过代码调用完成更多自动化任务。
2025-02-20
免费生成音乐的ai 软件
以下是一些免费生成音乐的 AI 软件: :与 DAW 集成的生成音乐工具,100%免版权费。 :为创意媒体提供的伦理音乐 AI。 :AI 音乐创作平台和探索声音宇宙的个人音乐制作人。 :通过音乐赋予您新的创作和表达方式。 :使用 AI 改变您的歌唱声音。 :为您的创造力和生产力提供 AI 音乐。 :使用 AI 生成声音、音效、音乐、样本、氛围等。 :带有 AI 助手并支持本地 VST 插件的网页 DAW。 :Audacity®音频编辑器的网页版。 此外,Riffusion 推出了 FUZZ 这一全新音乐生成模型,基于扩散模型,支持永久免费开放(只要服务器能撑住)。FUZZ 通过生成声谱图(Spectrogram)并转换为音频,可输入提示词(音乐类型、乐器、情绪等)生成风格匹配的音乐,支持无缝风格过渡,如从“爵士小号独奏”平滑切换到“电子舞曲节奏”。
2025-02-20
雪梅May的AI学习笔记
以下是雪梅 May 的 AI 学习笔记相关内容: 1. 作者介绍: 适合纯 AI 小白,可参考此日记,学习模式为输入→模仿→自发创造。 学习内容因 AI 节奏快可能不适用,可去 waytoAGI 社区找感兴趣的最新内容。 学习时间有空就进行,目前作者进行到 90 天。 2024 年保持较好学习状态,若觉得难做到不用有压力。 学习资源免费开源。 2. 第一阶段: DAY5 2024.5.26:开始使用 kimi,抱着每天问 100 个问题的心态调整思考模式。 DAY6 2024.5.31:应朋友推荐学习吴恩达生成式人工智能课程,在 B 站有资源,抽空 3 天学完。 DAY7 2024.6.1:探索用 AI 解决真实问题,如写行业研究报告。 3. 2024 年 12 月 31 日历史更新(归档): 雪梅 May 挑战 100 天与 AI 学习的过程,分为系统性学习、模仿实践、研究 Prompt 提示词阶段,学习路线图适合新人参考。 Meta 首席 AI 科学家 LeCun 访谈,指出 AI 根本局限,阐述不同于主流 LLM 的技术路径。 少卿的《AI 帮你赢,谈双重主体性》,强调将 AI 视为方法,提供实用应用框架。
2025-02-20
2030年前全国中小学普及人工智能是哪发布 的
目前没有明确的权威信息表明“2030 年前全国中小学普及人工智能”这一具体说法的发布来源。但以下信息可能对您有所帮助: 美国第 116 届国会第二次会议提到,国家科学基金会主任应授予 K12 等教育阶段的教育项目资助,以支持人工智能系统相关的多样化劳动力培养、提高对其伦理、社会、安全等影响的认识,并促进对人工智能原理和方法的广泛理解。 北京市大中小学推广了 AI 学伴和 AI 导学应用。
2025-01-24
人工智能在中小学教育中的解决方案
以下是人工智能在中小学教育中的一些解决方案: 课程内容设计: 对于三年级的孩子,在讲解“什么是 AI”时,先与学生互动,倾听他们对 AI 的理解,再用学生能理解的语言引出概念,比如“简单地说,就是让计算机或机器能像我们人类一样思考和学习的技术”,旨在激发学生的兴趣和好奇心。 设计 Q&A 环节,例如: 询问学生最喜欢哪一个 AI 应用及原因。 探讨 AI 能不能替代人类的艺术家或者作家,引导学生思考人类创造力与机器效率之间的关系。 想象是否想要一个 AI 机器人朋友及希望它帮忙做什么,讨论友谊的意义和 AI 能否模拟人类情感互动。 假设 AI 可以帮忙完成家庭作业,希望它完成哪部分及原因,同时讨论依赖技术的潜在风险。 个性化学习计划: AI 可以大规模部署个性化的学习计划,为每个学生提供一个“口袋里的老师”,理解他们独特的需求,并回答问题或测试技能。例如,有像 Speak、Quazel 和 Lingostar 这样的应用已经在做实时交流并给予发音或措辞反馈的语言教学。 学科学习辅助: 有像 Photomath 和 Mathly 这样的应用指导学生解决数学问题。 PeopleAI 和 Historical Figures 通过模拟与杰出人物的聊天来教授历史。 作业辅助: 像 Grammarly、Orchard 和 Lex 这样的工具帮助学生克服写作难题,提升写作水平。处理其他形式内容的产品如 Tome 和 Beautiful.ai 协助创建演示文稿。 您可以通过了解更多相关内容。
2024-12-30
你好,你们Way to AGI能否为我提供中小学课程内容设计,尤其是AI通识课理论部分
以下是为您提供的关于中小学 AI 通识课理论部分的相关内容: 目前在“通往 AGI 之路”中,有以下相关课程和活动: 1. 一堂超好玩儿的离谱村 AI 课以及后续开源共创预告: 由一个小团队创建通用课件,然后开源给部分老师群体,在实践中迭代并补充多样的变体用法,最后完全开源。目前共创小团队有作者和詹娜。作者对 AI 了解深,詹娜在创新教育领域视野开阔。若有强烈加入共创的意愿,欢迎留言介绍专长、教育主张及在教育上使用 AI 的状况。 对于公立学校和公益机构的老师,后续会免费提供:支付一定押金可得教学课件和授课说明,教学后写相关文章回馈社区(原创内容>1000 字,公开署名发表)则全额退回押金,否则押金捐赠为活动经费。商业机构若需要,可向 waytoagi 采购课件。 为保护版权,初期只对在 waytoagi 社群并做出贡献的人群提供,是否符合标准由 waytoagi 智囊团判断。 2. 【已结束】AIPO:校园 AI 创投活动 10 月 8 日10 月 20 日: 10 月 9 日 20:00 有理论基础课程,讲师为银海,课程标题为基础通识课。 3. 如果让我推荐一门 AI 课: 预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 如果您想要免费获得课程,可以参与 video battle,每期的评委野菩萨老师要求严格,需要寓意深度审美并存。冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。扫码添加菩萨老师助理,可了解更多课程信息。
2024-12-30
针对 中小学生的AI课程
以下是为中小学生设计的 AI 课程相关内容: 一、新手学习 AI 1. 了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 二、当 AI 走进小学课堂(全套课程设计) 1. 课程内容设计 什么是 AI:要和三年级的孩子对话,要用学生能理解的语言,旨在激发学生的兴趣,引起学生的好奇心即可。在课堂上,先和学生互动,先听听他们口中的 AI,再引出我们的概念。 Q&A 你们最喜欢哪一个 AI 应用?为什么?引导策略:无论学生选择哪种应用,都询问他们为什么喜欢,以及他们认为这种技术如何影响他们或他人的生活。鼓励学生思考这些技术背后的科学和工程原理。倡导的想法:强调科技的多样性和创新,以及技术如何帮助解决日常问题或改善生活质量。 AI 能不能替代人类的艺术家或者作家?引导策略:鼓励学生探讨人类创造力与机器效率之间的关系。可以讨论 AI 创造艺术作品和人类艺术之间的差异,询问他们是否认为机器创造的艺术与人类创造的艺术有同等的“灵魂”或情感价值。倡导的想法:倡导对技术的负责任使用,并理解技术是人类创造力的扩展而不是替代。强调人类独特的情感和创造性。 你想不想有一个 AI 机器人朋友?你想让它帮你做什么?引导策略:让学生想象与 AI 机器人的互动场景,并讨论机器人可以帮助他们完成哪些活动。进一步询问他们认为和机器人交友和人类交友有何不同。倡导的想法:讨论友谊的意义,以及 AI 是否能够完全模拟人类情感互动的复杂性。倡导理解技术的辅助角色,而非人际关系的替代。 如果 AI 可以帮你完成家庭作业,你希望它帮你做哪部分?为什么?引导策略:鼓励学生分享他们在家庭作业中遇到的挑战,并探讨 AI 如何帮助他们克服这些挑战。同时,讨论依赖技术的潜在风险,特别是在学习和知识掌握方面。倡导的想法:强调使用 AI 作为学习工具来增强理解和效率,而非完全依赖 AI 完成任务。提倡诚实和自我驱动的学习态度。
2024-12-06
养老场景实时健康监测与风险预警在技术上怎么实现,用AI大模型实现,请给出一个可行的方案
以下是一个利用 AI 大模型实现养老场景实时健康监测与风险预警的可行方案: 首先,需要明确相关的概念和技术名词。AI 即人工智能,机器学习是电脑找规律学习,包括监督学习、无监督学习和强化学习。监督学习是基于有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。无监督学习是在无标签数据中自主发现规律,例如聚类。强化学习是从反馈中学习以最大化奖励或最小化损失,类似训小狗。深度学习参照人脑,具有神经网络和神经元,因层数多被称为深度,神经网络可用于多种学习方式。生成式 AI 能生成文本、图片、音频、视频等内容形式,LLM 是大语言模型,生成图像的扩散模型不属于大语言模型,像谷歌的 BERT 模型可用于语义理解,如上下文理解、情感分析、文本分类。 在技术里程碑方面,2017 年 6 月谷歌团队发表的《Attention is All You Need》论文首次提出了 Transformer 模型,其完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。 对于养老场景的实时健康监测与风险预警,可利用传感器收集老人的生理数据,如心率、血压、血糖等。这些数据通过物联网传输到服务器,利用深度学习算法对数据进行分析和处理。例如,使用基于 Transformer 模型的大模型,对历史健康数据和当前实时数据进行学习和分析,建立老人的健康模型。通过与正常健康指标的对比,及时发现异常情况,并结合无监督学习中的聚类算法,对不同健康状况的老人进行分类,以便提供个性化的预警和建议。同时,利用强化学习不断优化模型的预警准确性和及时性。 总之,通过整合传感器数据采集、物联网传输、深度学习算法分析和模型优化等环节,借助 AI 大模型实现养老场景的实时健康监测与风险预警。
2025-02-20
AI在强业务规则的公文写作场景可以如何应用?
在强业务规则的公文写作场景中,AI 可以通过以下方式应用: 1. 先梳理传统公文写作工作流,包括选题、搜资料、列提纲、起标题、配图片、排版发布等环节。 2. 在资料搜集环节,可以使用 AI 搜索工具辅助,提高搜集效率和准确性。 3. 在写作环节,可引入如 Claude 等工具辅助创作。 4. 对于公文润色,AI 能够在保留文章结构和准确性的基础上,提升公文质量。 5. 例如“学习强国公文助手”,可以帮助用户进行文汇检索、AI 公文书写等。 需要注意的是,在引入 AI 之前要先理清传统工作流,明确每个环节的因果逻辑和输入输出关系,以业务逻辑为先,让 AI 为更高效地达成业务目标服务。
2025-02-19
目前各大高校有哪些场景会实用算力
目前各大高校实用算力的场景可能包括以下方面: 1. 科研计算:如在物理学、化学、生物学等学科的研究中,进行复杂的模拟和数据分析。 2. 人工智能研究:包括模型训练、算法优化等。 3. 图形和图像处理:例如在设计、动画制作等专业中的应用。 4. 数据分析和处理:用于处理大规模的数据集,以支持学术研究和决策制定。 需要注意的是,具体的应用场景会因高校的学科设置、研究方向和教学需求而有所不同。
2025-02-19
AI Agent 或者 工作流, 落地的场景
以下是 AI Agent 或工作流的一些落地场景: Long horizon task 长期任务执行:Agent 能像称职的项目经理,分解大任务为小步骤,保持目标导向并适时调整策略。 多模态理解:Agent 能同时理解文字、图像、声音等多种交流方式,全方位感知世界和任务上下文。 记忆与行动:通过先进的记忆机制,Agent 能积累经验,记住对话、操作步骤和效果,行动更精准高效。 自适应学习:从每次交互中吸取经验,不断完善策略,实现“智慧成长”。 在技术层面,有两条技术路线:以自主决策为核心的 LLM 控制流和以工作流(Workflow)编排为重点的工具集成系统。Anthropic 提出的 MCP(Model Context Protocol)提供了通用接口协议,将外部资源抽象为“上下文提供者”,便于模型与外部世界交互。 工作流驱动的 Agent 搭建,简单情况分为 3 个步骤:规划,包括制定任务关键方法、总结目标与执行形式、分解子任务等;实施,在 Coze 上搭建框架并分步构建和测试功能;完善,全面评估并优化效果。 典型例子如利用 Kimi Chat 进行网页搜索和总结分析。 包括 Agent 自行规划任务执行的工作流路径,适用于简单或线性流程。 多 Agent 协作,如吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色共同开发应用或复杂程序。 OpenAI 研究主管 Lilian Weng 提出 Agent 的基础架构为“Agent=LLM+规划+记忆+工具使用”,规划包括子目标分解、反思与改进。
2025-02-15