Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何快速了解ai

Answer

以下是快速了解 AI 的方法:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。知识库提供了很多实践后的作品、文章分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。

对于希望继续精进的情况,还可以尝试了解以下作为基础的内容:

  1. AI 背景知识:
    • 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。
    • 历史发展:简要回顾 AI 的发展历程和重要里程碑。
  2. 数学基础:
    • 统计学基础:熟悉均值、中位数、方差等统计概念。
    • 线性代数:了解向量、矩阵等线性代数基本概念。
    • 概率论:基础的概率论知识,如条件概率、贝叶斯定理。
  3. 算法和模型:
    • 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。
    • 无监督学习:熟悉聚类、降维等算法。
    • 强化学习:简介强化学习的基本概念。
  4. 评估和调优:
    • 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。
    • 模型调优:学习如何使用网格搜索等技术优化模型参数。
  5. 神经网络基础:
    • 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。
    • 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。

另外,还可以通过一些具体的例子来了解 AI 是什么,比如:

  1. 从计算机科学和人工智能之父图灵的故事开始,他在二战期间构建的机器破译了德军的密码,并提出了“图灵测试”的方法。
  2. 观看 2024 年春 OpenAI 公司发布新一代 ChatGPT 聊天机器人(GPT4o)产品时的发布会视频,感受其接近人类交流的体验。思考 ChatGPT 是否可以跨越图灵测试,以及关于 AI 是否拥有自主意识等新问题。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

写给不会代码的你:20分钟上手 Python + AI

[heading3]如果希望继续精进...对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

一个希望有点意思的AI分享(一)

咱们会通过一些具体的例子,让大家对AI是什么有个印象;然后会尝试介绍一些AI的技术原理,希望你能体会到AI技术的美妙和深刻;接着我们会解释如何理解”AI能做什么“这个问题;再者我们会介绍一些具体的工具案例和资料;最后我们会简单聊一些AI的未来发展以及影响。首先来看AI是什么这个问题。我们从它的父亲说起。有一部电影叫做《模仿游戏》,它讲述的就是计算机科学和人工智能之父,图灵的故事。他在二战期间构建的机器,或者说计算机的原型,破译了德军的密码。他预见了计算机的发展,并开始考虑一个很深刻的问题:“如何判断一台机器具有智能?”在他的1950年的论文中,他提出了一种被称为“图灵测试”的方法。测试中,一位人类提问者通过文字通道向两个回应者(一个是计算机,另一个是人类)连续提问。在相当长的时间内,如果提问者无法可靠地区分哪个回应者是计算机,哪个是人类,那么可以认为这台计算机具备了智能。这是一个非常经典和深刻的方法,要实现这一点其实很困难。下面是2024年春OpenAI公司发布新一代ChatGPT聊天机器人(GPT4o)产品时的发布会视频,你可以选择从9分钟开始直接看用户和ChatGPT交流的现场展示部分。如果你之前对AI没有那么关注,相信你会感到震惊。这个体验已经非常接近和正常人类的交流。事实上如果考虑到知识丰富和情绪稳定,它应该比大多数人类更适合交流;p那么,请你想象一下,如果你是提问者,你觉得ChatGPT可以跨越图灵测试吗?虽然学术界依然存在着很多争议,但是确实有很多人认为目前的AI产品已经可以通过图灵测试。事实上,这可能比绝大多数人认为的到来得早得多。也有人说,我们需要新的标准来判定AI真正拥有智慧,比如,它是否拥有自主意识?那自主意识又是什么以及如何测定呢?这是人类面临的新问题。

Others are asking
普通人怎么开展ai应用层的创业
对于普通人开展 AI 应用层的创业,以下是一些建议和分析: 1. 基础设施层:布局投入确定性强,但资金需求巨大,入行资源门槛高,未来更多由“国家队”负责。普通人若无强资源,应谨慎入局,可考虑“合作生态”的切入机会。 2. 技术层:处于技术爆炸期,迭代速度极快。若团队规模不大,需慎重考虑技术迭代风险。基础通用大模型研发烧钱且竞争激烈,非巨无霸公司不建议考虑。 3. 应用层:是一片广阔蓝海,当前从业者增加,虽有相关产品涌现,但成熟应用和“杀手级”应用较少,对于普通个体和小团队,强烈推荐重点思考和布局,拥有超级机会和巨大发展空间。 在应用层创业的具体方向上,比如智能体领域: 智能体可以简单理解为 AI 机器人小助手,类似移动互联网中的 APP 应用。 有很多公司已关注 AI 应用层的产品机会,如在 C 端,有社交方向的用户注册后先捏自己的 Agent 再聊天等有趣场景;在 B 端,有帮助商家搭建 Agent 的机会。 国内有众多智能体开发平台,如字节的扣子、腾讯的元器、Dify.AI 等。
2025-02-19
目前市面上免费的生成图片的AI工具有哪些?
目前市面上免费的生成图片的 AI 工具主要有以下几种: 1. 文生图工具: DALL·E:由 OpenAI 推出,能根据输入的文本描述生成逼真图片。 StableDiffusion:开源工具,可生成高质量图片,支持多种模型和算法。 MidJourney:因高质量的图像生成效果和用户友好的界面设计而受欢迎,在创意设计人群中流行。 您可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104)查看更多文生图工具。 2. 图生图工具: Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感,丰富创作过程。 Retrato:将图片转换为非凡肖像,有 500 多种风格选择,适合制作个性头像。 Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具有细节的全新视觉作品。 Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计,将上传的照片转换为芭比风格,效果好。 3. 图片生成 3D 建模工具: Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型。 Meshy:支持文本生成 3D、图片生成 3D 以及 AI 材质生成。 CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象,再转换为 3D 模型。 Sudo AI:支持通过文本和图像生成 3D 模型,适用于游戏领域的模型生成。 VoxCraft:由生数科技推出的免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供多种功能。 需要注意的是,这些工具可能存在一些局限,如偶尔会出现性能不稳定、生成内容不当等问题。内容由 AI 大模型生成,请仔细甄别。
2025-02-19
普通人和小企业在大企业垄断的ai时代该如何破局
在大企业垄断的 AI 时代,普通人和小企业可以考虑以下破局方式: 1. 对于普通人: 关注并参与关于在 AGI 降临的世界中个体如何生存、创造价值以及新的分配方式的思考、讨论和争取。 2. 对于小企业: 利用欧盟的相关政策,如监管沙盒等措施降低合规成本,促进科技创新。具体包括制约单方面强加给中小企业和初创企业的不公平合同条款,采取规制格式合同的方式使显著不公平的条款无效,促进监管沙盒广泛而平等的参与,并减免参加费用和提供部署前服务等增值服务,适当降低评估费用或其他合规要求,在处罚规定中考虑中小企业的利益和经济活力,相关准则的制定充分考虑中小企业需求以降低合规负担。 在 AI 产业链中,应用层存在超级机会和巨大发展空间,小企业可以重点思考和布局应用层。但基础设施层入行资源门槛较高,需谨慎入局,可考虑“合作生态”的切入机会;技术层迭代速度快,规模不大的团队须慎重考虑“技术迭代风险”,基础的通用大模型非巨无霸公司不建议考虑。
2025-02-19
零基础学习ai
以下是为零基础学习 AI 提供的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有一个案例供您参考:二师兄来自上海,是典型的 80 后,房地产行业从业二十年,计算机零基础。2024 年 2 月,他在七彩虹的售后群中,因老哥分享用 AI 绘画的心得,要了 SD 秋叶安装包,下载了教学视频,迈出了 AI 学习的第一步。之后他不断学习和实践,如在 3 月啃完 SD 的所有教程并开始炼丹,4 月与小伙伴探讨 AI 变现途径,5 月加入 Prompt battle 社群,开始 Midjourney 的学习。
2025-02-18
AI数据分析
以下是关于 AI 数据分析的相关内容: ChatGPT 助力数据分析: 本文重点介绍了 AI 与数据分析结合的应用,通过实际案例与相关技巧,描述了 ChatGPT 如何助力数据分析。 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身使用情况,输入一句话可分析用户配置图表相关数据。用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行返回结果数据,再传给 GPT 分析,最后输出分析结论和建议并返回前端页面渲染图表。 个性化分析:平台支持上传数据,可提供数据信息辅助分析,前端解析文件后传给 GPT 分析,后续步骤与 SQL 分析一致。 分析完成后展示结果数据的图表和分析结论,图表支持折线图和柱状图可随意切换。 生成式 AI 季度数据报告 2024 月 1 3 月: 作者包括郎瀚威 Will、张蔚 WeitoAGI、江志桐 Clara 等。 报告涵盖总体流量概览、分类榜单、文字相关(个人生产力、营销、教育、社交)、创意相关(图像、视频)、音频大类、代码大类、Agent、B2B 垂类等方面。 涉及数据准备、分类标准图谱准备、赛道分析、竞争分析等内容。
2025-02-18
找一个能够生成音乐的AI。我给一个曲名(比如《生日快乐歌》),他就能给我生成不同风格的音乐供我下载。
以下为您推荐能够根据给定曲名生成不同风格音乐并供下载的 AI 工具: 1. Suno AI: 地址:https://www.suno.ai/ 简介:被誉为音乐界的 ChatGPT,能够根据简单提示创造出从歌词到人声和配器的完整音乐作品。 账号要求:需要拥有 Discord、谷歌或微软中的至少一个账号,并确保网络环境稳定。 订阅信息: 免费用户每天 50 积分,每首歌消耗 5 积分,每天可创作 10 首歌曲,每次点击生成两首歌曲。 Pro 用户每月 2500 点数(大约 500 首歌),按月每月 10 美元,按年每月 8 美元,每年 96 美元。 Premier 用户每月 10000 点数(大约 2000 首歌),按月每月 30 美元,按年每月 24 美元,每年 288 美元。 操作模式: 默认模式:包括关闭个性化、歌曲描述、乐器开关、模型选择 v3 等设置。 个性化模式:开启个性化定制,可填写歌词、曲风、标题等。 生成歌词:可使用大模型如 Kimi、GPT、文心一言等生成。 开始生成:填写好所需内容后点击 Create,等待 2 3 分钟即可。 下载:生成后可下载。 2. Udio:由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。地址:https://www.udio.com/ 3. YuE:支持从歌词生成 5 分钟高质量音乐(含人声与伴奏),多语言支持(中、英、日、韩),覆盖多种音乐风格与专业声乐技术。详细介绍:https://www.xiaohu.ai/c/xiaohuai/yue5
2025-02-18
我是一个ai小白,我想要在一个月内快速入行ai,需要怎么做
以下是对于您在一个月内快速入行 AI 的建议: 首先,要明白对于超出自己理解范围的事情,最简单有效的方法就是亲自尝试。学习新事物,百闻不如一练。AI 是未来必然的发展方向,其科普还有很长的路要走,但尽可能简单地试用它,是让普通人在这场 AI 浪潮中受益的最佳方式。 对于普通人来说,对 AI 最好的直观初接触主要有两个方面: 1. 思考最低成本能直接上手试的工具是什么,自己能否亲自尝试。 2. 了解现在最普遍或最好的工具是什么,以及它们能达到的效果。 虽然底层都是大模型,但 AI 工具各有侧重,不同公司也会进行各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。为了更便捷地展示 AI 的能力,让普通人能更直观地马上上手,您可以重点关注以下几种工具: 1. 聊天工具 2. 绘画工具 3. 视频工具 4. 音乐工具 如果您想要跟他人交流、一起在 AI 路上探寻,可以戳这里:
2025-02-18
如何快速入门AI工具
以下是快速入门 AI 工具的一些建议: 1. 对于普通人来说,对 AI 最好的直观初接触有两个方面: 最低成本能直接上手试的工具是什么,自己能否亲自尝试。 现在最普遍/最好的工具是什么,能达到什么效果。 2. 虽然底层都是大模型,但 AI 工具各有侧重,不同公司也有各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。 3. 为了让普通人更直观地马上上手,可选择以下几种工具展开说明:聊天工具、绘画工具、视频工具、音乐工具。 4. 对于超出自己理解范围内的事情,最简单的方法就是试一试。学习新东西,百闻不如一练。 5. 在面向父母的“AI 布道”活动中发现,因“AI 工具”功能强大能做无数事情,反而在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,是让普通人在这场 AI 浪潮中受益的最好方式,不论是什么人群。 6. 最后,如果想交流并一起在 AI 路上探寻,欢迎戳 。
2025-02-17
非计算机专业出身,怎样快速入门ai
对于非计算机专业出身想要快速入门 AI 的人,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于不会代码的您,20 分钟上手 Python + AI 的方法如下: 在深入学习 AI 时,许多朋友发现需要编程,变得头大。同时,各类教程都默认您会打命令行,导致入门十分困难。鉴于此,就有了这份简明入门,旨在让大家更快掌握 Python 和 AI 的相互调用,并使您在接下来的 20 分钟内,循序渐进的完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。 一些背景: 1. 关于 Python: Python 就像哆拉 A 梦,它拥有一个百宝袋,装满了各种道具,被称为标准库。当遇到问题时,都可以拿出来直接使用。 如果百宝袋里的道具不够用,还可以打电话给未来百货,去订购新道具。在这里:打电话对应 pip 一类的工具,可以用来订购任何的道具;未来百货对应 GitHub 一类的分享代码的平台,里面啥都有。 Python 被全世界广泛使用,尤其是在 AI 领域,所以遍地是大哥。 2. 关于 OpenAI API: OpenAI 通过两种方式提供服务:其一,通过 ChatGPT,提供开箱即用的服务,直接对话即可,简单直观;其二,通过 OpenAI API,提供更加灵活的服务,通过代码调用,来完成更多自动化任务,比如全自动将本地的 1 万本小说,从中文翻译成英文。 欢迎来到“AI 企业落地应用”专栏,在这里,我们将分享 AI 技术在真实商业场景中落地应用的有趣案例故事和实战经验教训。做为铺垫和开始,这是一篇能带你快速搞懂本轮 AI 大模型革命相关核心知识信息的文章,我们将从历史到今天,从原理到应用,从产业到趋势,用尽可能通俗易懂但又不失专业严谨的方式,带你快速走入 AI 的世界,跟上 AI 大势。阅读提示:为了方便没有计算机学习背景但又热衷学习 AI 应用的伙伴更好的阅读,下面的内容可能会使用打比方、作类比的方式来让那些晦涩枯燥的知识变得更为有趣和更容易入心入脑,帮助于您在学习应用 AI 的路上走得更加顺畅和稳健,但这也势必会一定程度带来专业性上的不严谨,我们将会显性的做出标注提示,方便您识别,您可以关注文末的论文推荐导引,去了解真实的技术细节。此外,文章中可能还会涉及一些相对专业和可能超纲的知识内容,我们也将会显性的做出标注提示,告诉您这部分内容即使不懂,也完全没关系,可以放心跳过,不必焦虑。
2025-02-16
怎么快速做一个知识库
以下是快速创建知识库的方法: 1. 在 Coze 中创建知识库: 来到个人空间,找到知识库导航栏,点击创建知识库。 选择知识库的格式,目前(2024.06.08)Coze 支持文档、表格(CSV、Excel 等)、图片三种格式。 选择本地文档或问答对选择表格等方式。 选择自定义的文档切割。 数据处理完成后,一个问答对会被切割成一个文档片。 关于使用知识库,可参考教程:。 2. 通过其他方式创建并上传表格数据: API 方式:获取在线 API 的 JSON 数据,将 JSON 数据上传至知识库。在表格格式页签下,选择 API,然后按照以下步骤操作:单击下一步、新增 API、输入网址 URL 并选择数据的更新频率、输入单元名称或使用自动添加的名称、配置数据表信息(包括确认表结构、指定语义匹配字段等)、查看表结构和数据,确认无误后单击下一步、完成上传后单击确定。 自定义方式:手动创建数据表结构和数据。在表格格式页面下,选择自定义,然后按照以下步骤操作:单击下一步、输入单元名称、在表结构区域添加字段、设置列名,并选择指定列字段作为搜索匹配的语义字段、单击确定、单击创建分段,然后在弹出的页面输入字段值,然后单击保存。 3. 在 FastGPT+OneAPI+COW 中创建知识库: 地址输入浏览器:http://这里替换为你宝塔左上角的那一串:3000/ 进入后,点击应用并创建,选择 qwen 模型。 创建知识库。点击知识库 选择 qwen Embedding 1 点击确认创建。 上传文件,等待处理,直到文本状态是“已就绪”。 回到刚刚创建的应用,关联上创建的知识库。 点击两个发布。之前第一个叫做保存。 点击新建,创建 key。创建后保存同时将 API 根地址最后加上/v1 也保存下来。 回到宝塔,打开【终端】,依次输入以下命令: cd/root git clone https://github.com/zhayujie/chatgptonwechat cd chatgptonwechat/ pip install r requirements.txt pip install r requirementsoptional.txt
2025-02-15
我的工作是财务会计,经常需要对账,输入是2个Excel表格,但格式内容都有不少差异,哪些大模型或者工具可以帮我快速完成这个工作?
以下是一些可能有助于您快速完成对账工作的大模型或工具: 1. Coze 记账管家:它能通过大语言模型将用户输入的非结构化数据转变为结构化数据存入数据库。工作流程包括定义提示词,让大模型拆解并识别记账事项、发生时间、变动金额等,然后将这些数据存入数据库。 2. GLM4AllTools:可用于统计平台月度账单,例如您可以从平台导出月度明细数据,上传账单给沙盒,让模型统计账单数据和用量,还能分析账单数据波动。 3. 生成式 AI:在金融服务领域,它能帮助改进内部流程,如预测编写 Excel、SQL 和 BI 工具中的公式和查询,自动创建报告的文本、图表、图形等内容,为会计和税务团队提供税法和扣除项的可能答案,以及帮助采购和应付账款团队自动生成和调整合同、采购订单和发票等。
2025-02-15
如何快速AI入门?
以下是为您提供的快速 AI 入门的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于不会代码的情况: Python 就像哆拉 A 梦,拥有一个百宝袋,即标准库,遇到问题时可直接使用。若标准库的道具不够用,还可通过 pip 一类的工具订购新道具,或者从 GitHub 一类的分享代码的平台获取。 这份简明入门旨在让大家更快掌握 Python 和 AI 的相互调用,您可以在接下来的 20 分钟内,循序渐进地完成以下任务:完成一个简单程序、完成一个爬虫应用抓取公众号文章、完成一个 AI 应用为公众号文章生成概述。 OpenAI 通过两种方式提供服务:其一,通过 ChatGPT 提供开箱即用的服务,直接对话即可;其二,通过 OpenAI API 提供更加灵活的服务,通过代码调用完成更多自动化任务。
2025-02-14
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
我想了解如何在微信公众号搭建一个能发语音的数字人
以下是在微信公众号搭建能发语音的数字人的相关步骤: 1. 照片数字人工作流及语音合成(TTS)API 出门问问 Mobvoi: 工作流地址:https://github.com/chaojie/ComfyUImobvoiopenapi/blob/main/wf.json 相关文件: 记得下载节点包,放进您的 node 文件夹里,这样工作流打开就不会爆红了!ComfyUI 启动后就可以将 json 文件直接拖进去使用了! 2. 「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人: 组装&测试“AI 前线”Bot 机器人: 返回个人空间,在 Bots 栏下找到刚刚创建的“AI 前线”,点击进入即可。 组装&测试步骤: 将上文写好的 prompt 黏贴到【编排】模块,prompt 可随时调整。 在【技能】模块添加需要的技能:工作流、知识库。 【预览与调试】模块,直接输入问题,即可与机器人对话。 发布“AI 前线”Bot 机器人: 测试 OK 后,点击右上角“发布”按钮即可将“AI 前线”发布到微信、飞书等渠道。 发布到微信公众号上: 选择微信公众号渠道,点击右侧“配置”按钮。 根据以下截图,去微信公众号平台找到自己的 App ID,填入确定即可。不用了解绑即可。 最后去自己的微信公众号消息页面,就可以使用啦。
2025-02-18
我是一个有23年软件系统开发和设计经验的架构师,但是对AI还没有系统化了解过,请问我该如何开始?如何在短时间内掌握AI的使用、原理以及二次开发?
以下是为您提供的在短时间内系统化学习 AI 的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。我建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识 (1)基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 (2)历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 (1)统计学基础:熟悉均值、中位数、方差等统计概念。 (2)线性代数:了解向量、矩阵等线性代数基本概念。 (3)概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 (1)监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 (2)无监督学习:熟悉聚类、降维等算法。 (3)强化学习:简介强化学习的基本概念。 4. 评估和调优 (1)性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 (2)模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 (1)网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 (2)激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,以证件照为例,Code AI 应用开发教学中,智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。但 AI CODING 虽强,目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。在创建 AI 应用时,要学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-02-17
我想了解diffusion技术相关的重要论文
以下是一些与 diffusion 技术相关的重要论文: 《HighResolution Image Synthesis with Latent Diffusion Models》:https://arxiv.org/abs/2112.10752 《Denoising Diffusion Probabilistic Models》:作者为 Ho、Jain、Abbeel,出自 Berkeley (2020)
2025-02-16
从0开始了解AI
以下是为您提供的从 0 开始了解 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-14
我几乎是一个AI小白,只能日常跟AI对话,让AI回答我的问题,我希望能系统的了解AI,认识AI,学会正确使用AI,让AI帮助我提高效率,希望你能给出学习建议
以下是为您提供的系统学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 与大语言模型交流的技巧: 对话尽量具体、丰富、少歧义,多说有用的。 假想特定场景,明确希望获得的内容。 把大模型当作大学生,指明方向,拆解任务,教其一步一步操作。 7. AI 教育方面: 以 Khanmigo AI 为例,AI 教师应具有友善和支持的性格,语言简明,不直接给答案,而是通过适当提问帮助学生独立思考,根据学生知识水平调整问题,检查学生是否理解,警惕学生滥用帮助等。
2025-02-10