直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

详细介绍aigc技术发展历程

回答

AIGC 技术的发展历程主要包括以下几个重要阶段:

  1. 机器学习阶段:
    • 根据卡耐基梅隆大学计算机学院教授汤姆·米切尔(Tom Michell)的定义,机器学习是指“计算机程序能从经验 E 中学习,以解决某一任务 T,并通过性能度量 P,能够测定在解决 T 时机器在学习经验 E 后的表现提升”。
    • 数据获取:为机器提供用于学习的数据。
    • 特征工程:提取出数据中的有效特征,并进行必要的转换。
    • 模型训练:学习数据,并根据算法生成模型。
    • 评估与应用:将训练好的模型应用在需要执行的任务上并评估其表现,如果取得了令人满意的效果就可以投入应用。
  2. 图灵测试与起源阶段:1950 年,艾伦·图灵发表了一篇划时代的论文《计算机器与智能》,探讨了让机器具备人类一样智能的可能性。论文在开篇就抛出了一个有趣的问题:“机器能思考吗?”
  3. 行为主义阶段:
    • 行为主义起源于控制论,主要关注模拟人的智能行为和动作,而非内部认知过程。
    • 与符号主义相比,行为主义不强调对智能的深层理解,而是通过观察和模仿行为来实现智能控制。
    • 这一流派在智能机器人和自动化控制系统领域有广泛应用,21 世纪末随着相关技术的进步,行为主义开始受到更多关注,尽管它在智能模拟方面存在局限性,如缺乏对智能本质的深入理解。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

YoYo:小白 AI 初识知识点扫盲

机器学习根据卡耐基梅隆大学计算机学院教授汤姆·米切尔(Tom Michell)的定义,机器学习是指“计算机程序能从经验E中学习,以解决某一任务T,并通过性能度量P,能够测定在解决T时机器在学习经验E后的表现提升”数据获取:为机器提供用于学习的数据。特征工程:提取出数据中的有效特征,并进行必要的转换。模型训练:学习数据,并根据算法生成模型。评估与应用:将训练好的模型应用在需要执行的任务上并评估其表现,如果取得了令人满意的效果就可以投入应用。

YoYo:小白 AI 初识知识点扫盲

图灵测试,起源1950年,艾伦·图灵发表了一篇划时代的论文《计算机器与智能》(Computing Machinery and Intelligence),探讨了让机器具备人类一样智能的可能性。论文在开篇就抛出了一个有趣的问题:“机器能思考吗?”

YoYo:小白 AI 初识知识点扫盲

行为主义行为主义起源于控制论,主要关注模拟人的智能行为和动作,而非内部认知过程。与符号主义相比,行为主义不强调对智能的深层理解,而是通过观察和模仿行为来实现智能控制。这一流派在智能机器人和自动化控制系统领域有广泛应用,21世纪末随着相关技术的进步,行为主义开始受到更多关注,尽管它在智能模拟方面存在局限性,如缺乏对智能本质的深入理解。

其他人在问
中国关于AIGC的法律
目前,我国对 AIGC 的监管框架主要由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》等共同监管 AIGC 行业。 涉及 AIGC 的数据隐私问题,主要可以参考《个人信息保护法》《数据安全法》《网络安全法》《电信和互联网用户个人信息保护规定》以及《数据出境安全评估办法》等。AIGC 服务提供者使用数据不可避免涉及数据脱敏、储存、传输等环节,服务提供者往往通过与使用者签订服务条款明确权利义务,而协议的合法性、可履行性则需要进一步检验。
2024-11-21
AIGC伦理检查清单
以下是一份关于 AIGC 伦理检查清单的相关内容: AIGC 概述: GenAI(生成式 AI)是能够从已有数据中学习并生成新数据或内容的 AI 应用,利用 GenAI 创建的内容即 AIGC(AIGenerated Content)。 我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成共同监管形势。 AIGC 的分类及应用: 主要分为语言文本生成、图像生成和音视频生成。 语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 GeminiUltra。 图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。 音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 AIGC 触发的法律与道德风险: 重伦理道德,主要体现在两方面: 国家安全:不得生成煽动颠覆国家政权、推翻社会主义制度,危害国家安全和利益、损害国家形象,煽动分裂国家、破坏国家统一和社会稳定,宣扬恐怖主义、极端主义。 伦理道德:不得宣扬民族仇恨、民族歧视,暴力、淫秽色情,以及虚假有害信息等法律、行政法规禁止的内容。 GenAI 工具和 AIGC 提供者应注意在算法设计、训练数据选择、模型生成和优化、提供服务等过程中,采取有效措施防止产生民族、信仰、国别、地域、性别、年龄、职业、健康等歧视。
2024-11-21
什么是AIGC
AIGC 即 AI generated content,又称为生成式 AI,意为人工智能生成内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,在内容创作、广告、媒体等领域有着广泛的应用。其具体应用包括: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 与 UGC(普通用户生产)、PGC(专业用户生产)都是内容生成的不同方式。UGC 由用户生成内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 由专业人士或机构生成内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 能进行 AIGC 的产品项目和媒介很多,包括且不限于: 1. 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 等。 2. 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 3. 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。 其中,SD 是 Stable Diffusion 的简称,是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model; LDM)。SD 的代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。我们可以通过一系列的工具搭建准备,使用 SD 进行想要的图片 AIGC。
2024-11-21
Aigc
AIGC 即 AI generated content,又称为生成式 AI,意为人工智能生成内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等都属于 AIGC 的应用。 AIGC 常见的产品项目和媒介众多。语言文字类有 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等;语音声音类有 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等;图片美术类有早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火了我们熟悉的 Midjourney、先驱者谷歌的 Disco Diffusion、一直在排队测试的 OpenAI 的 Dalle·2 以及 stability ai 和 runaway 共同推出的 Stable Diffusion 等。 SD 是 Stable Diffusion 的简称,是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型,主要用于根据文本的描述产生详细图像,是一种扩散模型的变体,叫做“潜在扩散模型”。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版。源代码库为 github.com/StabilityAI/stablediffusion 。 AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,在内容创作、广告、媒体等领域有着广泛的应用,包括文字生成、图像生成、视频生成等。 AIGC、UGC 和 PGC 都是内容生成的不同方式。AIGC 由人工智能生成内容,优势在于快速、大规模生成内容,适用于自动化新闻、广告创作等;UGC 由用户生成内容,优势在于内容丰富多样,适用于社交媒体、社区论坛等;PGC 由专业人士或机构生成内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等。 AIGC 在 CRM 领域有着广阔的应用前景,主要包括个性化营销内容创作、客户服务对话系统、产品推荐引擎、CRM 数据分析报告生成、智能翻译和本地化、虚拟数字人和营销视频内容生成、客户反馈分析等方面。不过在应用过程中,仍需解决算法偏差、版权和知识产权等伦理法律问题。
2024-11-21
我想收集一些AIGC行业应用的案例
以下是一些 AIGC 行业应用的案例: 在内容创作方面: 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 在制造业领域: 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可以根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。 工艺规划和优化:结合大语言模型的自然语言处理能力,可以自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可以预测设备故障,并自动生成维修建议,提高设备可靠性。 供应链管理:AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 客户服务:基于对话模型的 AI 客服机器人,可以自动生成个性化的客户回复,提升客户体验。 在医疗行业: 疾病的诊断与预测、药物研发以及个性化医疗。例如,麻省理工学院利用 AI 发现了一种名为 Halicin 的新型广谱抗生素。 在广告营销行业: 从初期的市场分析、中期的客户转化以及后期的客户复购均可参与,为消费者提供更个性化、智能化和互动性强的营销体验,还能降低内容制作成本并加速创意实现。
2024-11-20
我如何给小朋友介绍AIGC
小朋友们,今天我们来了解一下很有趣的 AIGC 哦! AIGC 就是利用特别厉害的人工智能技术来生成各种各样内容的一种方式。它能通过学习很多很多的数据,按照我们给的要求生成内容。 AIGC 可以生成好多东西呢,比如文字,像故事、文章、对话;还能生成好看的图片、有趣的视频。 AIGC 跟其他生成内容的方式不太一样,比如 UGC 是由像你们这样的用户自己生成的内容,像在社交媒体上发的照片、文章。PGC 呢,则是由专业的叔叔阿姨们生成的高质量内容,像新闻报道、影视作品。 AIGC 里面还有很多相关的技术名词哦。AI 就是人工智能,它能像我们的大脑一样思考。机器学习是电脑自己找规律学习,有监督学习、无监督学习和强化学习。监督学习是有标签的训练数据,无监督学习是自己发现规律,强化学习就像训练小狗一样从反馈里学习。深度学习是一种参照人脑的方法,有神经网络和神经元。生成式 AI 能生成文本、图片、音频、视频等。 2017 年 6 月,谷歌团队发表了一篇很重要的论文,提出了 Transformer 模型,它处理数据可厉害了,比其他的模型更能处理长距离的文本。 小朋友们,现在是不是对 AIGC 有一点了解啦?
2024-11-15
ai诈骗发展历程
AI 诈骗是随着 AI 技术的发展而出现的一种新型诈骗手段,其发展历程与 AI 技术的整体发展密切相关。 AI 技术的发展历程大致如下: 1. 早期阶段(1950s 1960s):出现专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理得到发展。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等兴起。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等成为主流。 随着 AI 技术的进步,AI 幻觉等问题也逐渐显现。AI 幻觉并非新问题,从早期的“人工智障”到如今“一本正经地胡说八道”,其复杂性和隐蔽性不断提升。这一演变反映了 AI 技术从依赖人工规则到依靠数据驱动,再到深度学习的发展过程,在变得更“聪明”的同时也面临更多挑战。 在神经网络方面,如 CNN 的结构基于大脑细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色,随着对大脑工作机制认知的加深,神经网络算法和模型不断进步。 目前,AI 技术的发展为诈骗手段的更新提供了可能,例如利用深度伪造技术制造虚假的语音、视频进行诈骗等。
2024-11-21
AI 图像识别的发展历程
AI 图像识别的发展历程如下: 早期处理印刷体图片的方法是将图片变成黑白、调整为固定尺寸,与数据库对比得出结论,但这种方法存在多种字体、拍摄角度等例外情况,且本质上是通过不断添加规则来解决问题,不可行。 神经网络专门处理未知规则的情况,如手写体识别。其发展得益于生物学研究的支持,并在数学上提供了方向。 CNN(卷积神经网络)的结构基于大脑中两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色。 ImageNet 数据集变得越来越有名,为年度 DL 竞赛提供了基准,在短短七年内使获胜算法对图像中物体分类的准确率从 72%提高到 98%,超过人类平均能力,引领了 DL 革命,并开创了新数据集的先例。 2012 年以来,在 Deep Learning 理论和数据集的支持下,深度神经网络算法大爆发,如卷积神经网络(CNN)、递归神经网络(RNN)和长短期记忆网络(LSTM)等,每种都有不同特性。例如,递归神经网络是较高层神经元直接连接到较低层神经元;福岛邦彦创建的人工神经网络模型基于人脑中视觉的运作方式,架构基于初级视觉皮层中的简单细胞和复杂细胞,简单细胞检测局部特征,复杂细胞汇总信息。
2024-11-14
AI大模型历程
AI 大模型的发展历程如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):出现专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等得到发展。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术兴起。 自 2022 年 11 月 30 日 ChatGPT 发布以来,国内大模型大致经历了三个阶段:准备期(ChatGPT 发布后国内产学研迅速形成大模型共识)、成长期(国内大模型数量和质量开始逐渐增长)、爆发期(各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势)。 当前,随着大模型技术的愈发成熟和规模增大,为 AI Agent 提供了强大能力,有望构建具备自主思考、决策和执行能力的智能体,并广泛应用于多个行业和领域。当前 AI 的前沿技术点包括:大模型(如 GPT、PaLM 等)、多模态 AI(视觉 语言模型如 CLIP、Stable Diffusion 以及多模态融合)、自监督学习(自监督预训练、对比学习、掩码语言模型等)、小样本学习(元学习、一次学习、提示学习等)、可解释 AI(模型可解释性、因果推理、符号推理等)、机器人学(强化学习、运动规划、人机交互等)、量子 AI(量子机器学习、量子神经网络等)、AI 芯片和硬件加速。
2024-11-05
AI的发展历程
AI 的发展历程如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):主要有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前 AI 前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,包括模型可解释性、因果推理、符号推理等。 6. 机器人学,涵盖强化学习、运动规划、人机交互等。 7. 量子 AI,如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 AI 的起源最早可追溯到 1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科被确立下来。此后近 70 年,AI 的发展起起落落。 最初,符号推理流行,带来了专家系统等重要进展,但因方法的局限性,20 世纪 70 年代出现了“人工智能寒冬”。随着计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中,“人工智能”一词常被用作“神经网络”的同义词。
2024-10-29
大语言模型发展历程
大语言模型的发展历程如下: 2017 年,发布了《Attention Is All You Need》论文,为后续发展奠定基础。 2018 年,Google 提出 BERT(Bidirectional Encoder Representations from Transformers),其创新性地采用双向预训练并行获取上下文语义信息,以及掩码语言建模(MLM)以更好地推断语义信息,参数规模在 110M 到 340M 之间。 2018 年,OpenAI 提出 GPT(Generative Pretrained Transformer),开创了仅使用自回归语言建模作为预训练目标而无需额外监督信号的方式,展示了强大的语言生成能力,参数规模达 1750 亿。 2021 年,Meta 提出 Large LAnguage Model Approach(LLAMA),这是首个开源模型,为构建更大规模、更通用的语言模型提供了方法与工具,参数规模在十亿到千亿之间。 此外,OpenAI 的 GPT3.5 是其大语言模型 GPT 系列中多年来最完善的一次迭代,并通过 ChatGPT 成功推向大众,在短时间内实现了用户的快速增长。 在语言模型的发展中,20 世纪 80 年代发明了递归神经网络(RNN)处理单词序列,但存在训练速度慢和遗忘问题。1997 年发明的长短期记忆(LSTM)网络解决了部分问题,但语言能力有限。 2020 年中期,Lewis 等人提出检索增强生成(RAG),它将外部数据检索整合到生成过程中,提高了模型提供准确和相关回答的能力。RAG 的演进轨迹在四个不同阶段展开,2017 年的创始阶段主要重点是通过预训练模型(PTM)来吸收额外的知识以增强语言模型。
2024-10-15
ai发展历程
AI 技术的发展历程大致可分为以下几个阶段: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):主要有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前 AI 的前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,例如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,包括元学习、一次学习、提示学习等。 5. 可解释 AI,涵盖模型可解释性、因果推理、符号推理等。 6. 机器人学,涉及强化学习、运动规划、人机交互等。 7. 量子 AI,包含量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。
2024-09-30
如何做好中国市场的知识库可以让ai学习并给出详细的三年计划
很抱歉,目前知识库中没有关于如何做好中国市场的知识库让 AI 学习并给出详细三年计划的相关内容。但一般来说,要做好这个计划,您可以从以下几个方面考虑: 1. 市场调研:深入了解中国市场的特点、需求、竞争态势等,为 AI 提供丰富准确的数据。 2. 数据整理:将收集到的市场信息进行分类、清洗和标注,以便 AI 能够有效学习。 3. 设定目标:明确三年中在市场份额、客户满意度、品牌知名度等方面的具体目标。 4. 阶段规划:第一年着重基础建设,如数据积累和模型训练;第二年优化模型,拓展应用场景;第三年实现规模化应用和持续优化。 5. 技术支持:确保有足够的技术团队来维护和更新 AI 系统。 6. 反馈机制:建立有效的反馈渠道,根据市场变化和用户反馈及时调整 AI 的学习方向。 以上只是一个初步的框架,您还需要根据具体的行业和市场情况进行进一步的细化和完善。
2024-11-20
我有一张图像,我要如何用stable Diffusion给它添加噪音。我是一个小白,请给出详细的步骤,用webui来操作。
以下是使用 WebUI 为图像添加噪音的详细步骤: 1. 首先,了解 Stable Diffusion 的加噪原理。从数据集中选择一张干净样本,然后用 random 函数生成 0 3 共 4 种强度的噪声,在每次迭代中随机选择一种强度的噪声添加到干净图片上,完成图片的加噪流程。 2. 在训练过程中,对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。 3. 加噪过程中,每次增加的噪声量级可以不同,假设存在 5 种噪声量级,每次都可以选取一种量级的噪声,以增加噪声的多样性。 4. 与图片生成图片的过程相比,在预处理阶段,先把噪声添加到隐空间特征中。通过设置去噪强度(Denoising strength)控制加入噪音的量。如果去噪强度为 0 ,则不添加噪音;如果为 1 ,则添加最大数量的噪声,使潜像成为一个完整的随机张量。若将去噪强度设置为 1 ,就完全相当于文本转图像,因为初始潜像完全是随机的噪声。
2024-11-18
windows电脑和安卓手机可以怎么注册并使用chatgpt? 请详细说明如何访问国外网络和注册及使用、
以下是 Windows 电脑和安卓手机注册并使用 ChatGPT 的详细步骤: 安卓手机: 1. 对于自带谷歌框架的机型(如红米 K60): 打开系统设置。 拉到最底下,点击更多设置。 点击账号与同步。 点击谷歌基础服务。 打开基础服务按钮。 2. 安装 Google Play: 到小米自带的应用商店搜索 Google Play 进行安装。 安装好后打开谷歌商店,点击右上角登录谷歌账号。 3. 安装 ChatGPT: 到谷歌商店搜索 ChatGPT 进行下载安装,建议把谷歌邮箱也安装上,方便接收验证码。 如果您只想体验 ChatGPT 3.5 版本,不升级 GPT4,可跳转到第 4 步第 6 小步进行登录使用,如果想直接订阅 GPT4 Plus 版本,请接着往下看。 Windows 电脑:未提供相关内容。 需要注意的是,在中国访问国外网络需要合法合规的途径。同时,ChatGPT 的使用也需要遵守其相关规定和服务条款。
2024-11-14
详细描述AI大模型历史
AI 大模型的发展具有丰富的历史。 早期阶段,人工智能经历了从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统等的发展。 随着技术的进步,大模型逐渐兴起。其由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,而数据质量对生成理想的大模型至关重要。 近年来,从 2022 年开始掀起了生成式 AI 的革命。生成式 AI 是深度学习中的一个细分流派,相较之前的所有 AI 实现方法,在结果质量和效果上有了根本性、跨时代的进步。在某些细分场景应用中,甚至让人感觉通过了图灵测试。 随着大模型技术愈发成熟、规模增大,为 AI Agent 提供了强大能力,有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。如今,大模型和多模态模型呈现出百花齐放的态势。
2024-11-05
图生文产品经理工作内容,详细一些
以下是关于图生文产品经理工作内容的详细介绍: 1. 学历与专业背景:通常要求本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 工具使用与原理掌握:熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验;熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 3. 项目负责:负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 4. 技术了解:了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 5. 数据分析与决策:对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 6. 创新思维:具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 7. 前沿关注:对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践;对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 8. 编程与算法能力:具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成;具有一定的编程基础,熟练使用 Python、Git 等工具。 此外,从实际案例来看,产品经理还会在工作中运用 AI 工具解决实际问题,如使用 GPT 优化代码以提高工作效率和解决性能问题等。
2024-10-16
@ 用ai制作优美的歌曲用什么工具软件,详细的使用教程
以下是用 AI 制作优美歌曲的相关工具软件及使用教程: 工具软件: 1. Udio:由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。网址:https://www.udio.com/ 2. Suno AI:是一款革命性的人工智能音乐生成工具,它通过先进的深度学习技术,能够将用户的输入转化为富有情感且高质量的音乐作品。网址:https://suno.com/ 使用教程: 1. 导出时间轴歌词:使用剪映(剪辑软件),其导出时间轴歌词的功能位置如下图所示。 2. 音乐分轨:可以使用腾讯 QQ 音乐旗下的 TME Studio,支持一键分轨,再将分轨好的音频文件进行全部导出。TME Studio 网站链接:https://y.qq.com/tme_studio/ 3. 音频编辑:对于分轨好的视频,可以导入 Adobe Audition 进行编辑。有编曲经验的同学可以自由发挥,没有编曲经验的小白可以打开电脑的录屏工具,录制歌曲的工程文件,上传提供创作证明。 4. 准备音频素材: 使用干声转换时,在软件中分别导入人声干声和伴奏,放在两个轨道上。干声用于转成 MIDI 做 AI 演唱。 男歌女唱或者女歌男唱时,在导入前先进行变调。常用的工具包括 TME Studio(腾讯音乐开发的 AI 音频工具箱,其中最常用的是音频分离,可用于将人声和伴奏从歌曲中提取出来。地址:https://y.qq.com/tme_studio/index.html/editor)和 Vocalremover(包含音频分离、变调、BPM 查询等功能,使用较多的是变调和 BPM 查询。建议在准备素材阶段,就将音频调整到所需调,并获取到 BPM。地址:https://vocalremover.org/zh/keybpmfinder) 关于申请网易云音乐人和上传音乐,只提供了认证成功的方法和过程,不能确保所有人都能成功,这是一个概率性的问题。此外,根据 AI 创作目前的特殊性,会在平台上声明此音乐为 AI 创作,并且也绝对支持尊重所有原创作品,也希望平台能尽快开辟一个 AI 创作的专区,可以提供一个容纳并保护所有群体的不同板块。
2024-09-17
推荐一款能够修正英语语法,并智能扩写的AI,并简要介绍其功能
以下为您推荐能够修正英语语法并智能扩写的 AI 工具及简要介绍其功能: Grammarly:可以进行英语写作和语法纠错,帮助改进英语表达和写作能力。 ChatGPT:能用于英语会话练习和对话模拟,提高交流能力和语感。 此外,关于内容仿写的 AI 工具,为您推荐以下几款中文工具: 秘塔写作猫:网址为 https://xiezuocat.com/ 。它是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,还能智能分析文章各类属性并打分。 笔灵 AI 写作:网址为 https://ibiling.cn/ 。是智能写作助手,能处理多种文体,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:网址为 https://effidit.qq.com/ 。由腾讯 AI Lab 开发,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-22
请介绍图片搜索最好用的AI工具
以下为您介绍一些在图片搜索相关方面表现出色的 AI 工具: 图片去水印工具: 1. AVAide Watermark Remover:在线工具,支持多种图片格式,操作简单,可去除水印、文本、对象等。 2. Vmake:可上传最多 10 张图片,自动检测并移除水印,适合快速处理。 3. AI 改图神器:能一键去除图片中的多余物体、人物或水印,支持粘贴或上传手机图像。 图生图产品: 1. Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感。 2. Retrato:将图片转换为非凡肖像,有 500 多种风格选择。 3. Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:将上传照片转换为芭比风格。 图片生成 3D 建模工具: 1. Tripo AI:在线 3D 建模平台,能利用文本或图像快速生成高质量 3D 模型。 2. Meshy:支持文本、图片生成 3D 及 AI 材质生成。 3. CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 可通过手绘草图实时设计 3D 形象。 4. Sudo AI:通过文本和图像生成 3D 模型,适用于游戏领域。 5. VoxCraft:免费工具,能将图像或文本快速转换成 3D 模型,提供多种功能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。这些工具各有特点,您可以根据具体需求选择最适合您的工具。
2024-11-21
介绍一下GRAMMARLY
Grammarly 是一款非常实用的工具,具有以下特点和功能: 功能: 提供语法检查、拼写纠正、风格建议和语气调整等功能。 可以帮助提高写作的语法和词汇准确性,支持多种语言。 优点: 易于使用,支持多种平台(如浏览器扩展、桌面应用、手机应用),适用于多种语言。 网站: 使用方法:将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。
2024-11-21
介绍一下什么是AI
AI 是一门令人兴奋的科学,它是指让计算机表现出智能行为,例如做一些人类所擅长的事情。 对于不具备理工科背景的文科生来说,可以把 AI 当成一个黑箱,只需要知道它是某种模仿人类思维可以理解自然语言并输出自然语言的东西。其生态位是一种似人而非人的存在。 从技术层面看,最初计算机是按照明确定义的程序(即算法)来对数字进行运算。但对于像“根据照片判断一个人的年龄”这类任务,我们无法明确编程的每一个步骤,而这正是 AI 所感兴趣的。 对于三年级的小学生,可以用简单的语言来解释,即让计算机或机器能像人类一样思考和学习的技术。
2024-11-13
介绍一下WaytoAGI
WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库。 其特点和内容包括: 大家贡献并整合各种 AI 资源,使人们能轻松学习各类 AI 知识,应用 AI 工具和实战案例等。 知识库的内容覆盖 AI 绘画、AI 视频、AI 智能体、AI 3D 等多个版块,还包含赛事和活动以促进大家动手实践。 孵化了离谱村这个千人共创项目,让大家更轻松、更有兴趣地学习和接触 AI。 2023 年 4 月 26 日诞生,在没有任何推广的情况下,一年时间已有超过 70 万用户和超千万次的访问量。 您可以通过以下方式进一步了解: 即刻体验:https://waytoagi.com/ 更多详细介绍: 此外,还有一些相关的内容,如: 放几个有意思的视频:离谱村、春晚、24 节气、 关键词学社:
2024-11-07